174
191

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

AUTOSAR CountdownAdvent Calendar 2022

Day 6
エンジニアキャリアについてあなたの考えをシェアしよう!

プログラマにも読んでほしい「QC(2)検定にも役立つ!QCべからず集」OSEK(71) 統計(43)

Last updated at Posted at 2021-03-04

QCの基本はデータ解析。データ解析ばかりしていて、仕事に役立てない人をいっぱいみてきた。ある日、ある人の言葉から、筋書きを考えていたら、それ自分かもってなった。

データサイエンティストの気づき『勉強だけして仕事に役立てない人。大嫌い』それ自分かもってなった。
https://qiita.com/kaizen_nagoya/items/d85830d58d8dd7f71d07

OSEK OSを利用するにあたって、設計にあたっての証明と、HAZOPによる安全分析と、成果に対する品質測定を行ってきた。

QC検定にも役立つ! QCべからず集
https://bookmeter.com/books/4679281

すごく内容がよい。
プログラマの方にも読んで欲しいと思い、筆をとりました。

はじめに(introduction)

統計、確率を学べば、因果関係が大事なのではなく、時系列の推移が大事だとわかる。
統計力学、量子力学、遺伝子工学、疫学などの分野で常識になると嬉しいかもしれない。

ある統計力学の本で、基礎的なメカニズムを明らかにすることより実用的であることを優先するといったように読める部分があって衝撃を受けたことがあった。だいぶ飛ぶけど、プログラミングで使う技術にも同じような考え方が大事だと思って、バランスがよい方向に技術開発したいと考えてる。

確率と統計という概念をすべての事象に適用し、
ありとあらゆる科学分野を、確率と統計に基づいて理解する。
あるいは、あるとあらゆる活動を記録し、統計として、確率を予測して行動する。負帰還(feedback)だけでなく正帰還(feedworward)でもよいかもしれない。

プログラマがQC検定を受けることの意味・価値・課題
https://qiita.com/kaizen_nagoya/items/b03216eb6ab09eacc957

プログラマ以外の方にもわかるような四分類を付与し、逆も真である可能性を一覧に示した記事はこちら。

「QC検定にも役立つ!QCべからず集」四分類と逆が真な事例
https://qiita.com/kaizen_nagoya/items/fb920fedc445e7fd1eb8

背景(back ground)

QC検定1級では筆記試験がある。

解答を作成するためには、自分の見解だけでなく、社会的に認知度が高い見解との比較で記述するとよい。

参考にするとよい書籍を探していて、この本に出会った。

QC検定は製造業が対象である。
採点者にプログラマはいないかもしれない。
そこで1級の問題のプログラマの回答案を作ってみた。

プログラマがQC検定を受けることの意味・価値・課題
https://qiita.com/kaizen_nagoya/items/b03216eb6ab09eacc957

8.5.3 カンや経験を活用せずにデータ解析をするべからず

Don't analyze data without using intuition and experience

カンや経験は、人間が生物的にまたは精神的に統計処理した結果です。
経験や勘が、機械学習の結果を判定するのにとても役立ちます。
データ解析に、既知の統計処理を生かすのが人間の仕事ですし、
機械学習で役立つことですね。

KKD(経験と勘と度胸)は、一見、主観的な事実に思えるかもしれません。実は、確率・統計の成果で、他の主観的な事実と付き合わせてみると、経験と勘と度胸が深ければ深いほど、客観性が高くなるという、同じ方向性ということが分かるかもしれません。

Aさんの経験と勘と度胸、Bさんの経験と勘と度胸、

経験と度胸と感が分布と確率に裏打ち可能な証拠能力が一番高いという仮説。
https://qiita.com/kaizen_nagoya/items/f5ec32472774d17e46ec

4.1.2 データの素性をおろそかにするべからず

Don't neglect the identity of the data
Don't handle the background of the data without due respect

いつ、どこで、誰が、どんな方法でデータをとったのか履歴を残すことはデータ収集の基本です。測定方法が、対象に影響を与える方法を取ったかどうかは大事です。「統計の嘘」の始まりになるかもしれません。

測定機器の型番号、備品番号などが書いてあるとよい。校正日時などは追跡できるのであれば、必ずしも必須ではないかもしれません。
録画したのか、録音したのかの記載があれば、それらの生データも活用するとよいかもしれません。

物理科学のデータなのか、生命科学のデータなのか、社会科学のデータなのかで、扱う統計、確率の技法が違うかも。

仮説(93) 科学三分類・四分類・五分類と算譜(program)
https://qiita.com/kaizen_nagoya/items/a2f2b9cc3a51b6af7603

1.1.5 データをとらずに理屈だけで問題解決するべからず

Don't try to solve the problem just by reasoning without measuring

プログラミング、ソフトウェア利用では、必ずデータを取る仕組みを組み込むことが可能です。データを取らずに、問題解決することはありえません。

論理的な理屈は、なにか魅力的に感じる方もおみえになるかもしれません。
論理体系が正しいことを保証することができない以上、品質保証に論理を持ち込む必要がないのかもしれません。

1.1.4 目的・目標をはっきりさせずに仕事をするべからず

Don't work without clarifying your purpose and goals

自動車用のソフトウェアは、ホンダ自動車の排ガス規制を電子制御で達成したことが大きな転換点でした。しかし、自動車安全の方が、排ガス規制達成より大事だということをはっきりさせずに仕事をしていると、安全なシステムになりません。その2つの機能に邪魔をしないような、物理的に調停する通信規約がCAN(controller area network)です。そして、排ガス規制のための電子角速度制御の邪魔をせずに、かつ、CAN通信を円滑にする仕組みがOSEKという自動車用のOSです。

エンジン・電動機(motor)制御と、CAN、OSEKのすべてを自動生成で達成しようというのがAUTOSARの目指しているところのはずです。
これらの、目的・目標をはっきりさせずに仕事をすると、あとになって性能が出ないソフトウェアで悩むことになるかもしれません。

1.1.2 顧客は勝手なことを言うと思うべからず。

Don't expect customers to say anything for selfish ends.

顧客は勝手なことを言ってもいいのです。「買って」くれてれば。
言われた、勝手なことを、いかに新製品に生かすかが設計者の腕です。

プログラムも一緒。
オープンソースがなぜ発展してきたかというと、
多くのプログラマが勝手なことをいい、
ありとあらゆる方向の可能性を書いて試してみて、
それに対して、また顧客が勝手なことを言ってくれるから良くなってきたのですから。

4.3.1 まったくランダムにサンプルを採取しなければならないと思うべからず

Don't believe you have to take samples quite randomly

自分が無作為(random)だと思っていても、特定の傾向を持っている場合もしばしば。ありとあらゆる観測項目に対して無作為ということは不可能だと思った方がましかもしれません。

たくさんの測定機器のどれを使うかを無作為に決めるのは不可能かもしれません。

むしろ、何に偏りがある可能性があるかを記載するとよい。

測定機器の種類、測定時間、やり直し回数など、いつ、どこで、誰の役にたつかわかりません。

4.3.7 サンプルが多ければ良いと思うべからず

Don't think it's better to have more data.

全数検査でなければ、多いことが価値になるとは限りません。

工場で自動化して全数検査できるのに、抜き取り検査している場合に出くわすことがあります。抜き取り(sampling)する手間より全数検査の手間の方が少なくできないかを考えて見てください。

8.8.3 決めた標準に固執するべからず

Don't stick to the standards you set

標準は、ある条件でのあるやり方を示すものだと理解していれば、
条件が変われば、やり方も変えるものだとわかります。

現地現物を見ていれば、標準に固執する人っているんでしょうか。

いるから困っている人がいるんですね。

8.6.2 対策には排反事象(副作用)を忘れるべからず

Don't forget the mutual exclusivity as a countermeasure

対策に限らず、測定も同じです。

測定には副作用が生じます。

量子の測定で、位置とエネルギーを特定できないことはご存知ですね。

測定行為が、測定対象を変えるのは、人間も同じです。

何かを測ることが、行動を変えているのだから、よい行動をしやすいように測定に労力がいるのは、改悪になるかもという配慮があるといいですね。

仮説(67)「プロセス改善」が改悪へと突き進む
https://qiita.com/kaizen_nagoya/items/0f3a1174f81935bb6d85

1.1.1 品質第一はコストアップにつながると思うべからず
Don't believe that quality first leads to cost increase

と関係があるかも。

5.3.1 データが取れないとあきらめるべからず

Don't give up if you can't get the data

データというと、客観的でないといけないという思い込みがないですか。
主観的な記録でも、統計的にすごく意味があることがあります。

人間が使ったり、利用したりするものであれば、利用者は主観的です。
主観的なデータを取ったら怒られるとしたら、その怒っている人が主観的なだけだと思ってください。

どんな客観的なデータも、すべて主観的なデータの立場の違いだけだと気がつくかもしれません。客観的という立場の一つは、主観的かもしれません。ありとあらゆる立場を同時に満たすことはできないのかもしれないのですから。

2.1.1 会社方針だからといって上司の指示事項だけを実施するべからず。

Just because it is a company policy, you should not act only the order of your boss.

よくいますよね。上の言うことだけ聞いて、下に押し付けてくる人。
会社の3%くらいまでなら必要な人材だと思います。10%を超えたら、その組織は危険だと思ってくださると幸いです。

2.2.6 リーダの言うことのみに従うメンバになるべからず
Don't be a member who only follows that the leader says
も同じ文脈ですね。

2.2.3 同じ考え方の人だけで活動するべからず

Don't work with people who always have the same idea

昔は、「煙草部屋の弊害」と言っていたらしいですね。
考え方だけでなく、同じ行動をとる人だけで議論していては、どんどん狭くなっていくことに気がつきません。

麻雀とか、ゴルフでもそうかもしれません。
同じ数人だけで行動していては、発想がどんどん狭くなってしまいます。

HAZOPという分析手法では、一定時間ごとに人を入れ替える方法を採用するように勧めています。

効率的なHAZOPの進め方、仮説(187)https://qiita.com/kaizen_nagoya/items/2b8eae196945b7976446

5.5.3 飛び離れたプロットを無視するべからず

Don't ignore distant plots

飛び離れた値は、平均を計算するときに除外することがあります。
誤差の大きい測定の場合に、しばしば取る可能性がある処理です。

しかし、無条件に除外していいわけではありません。
飛び離れている理由を調べるか、除外する根拠が思い当たるのならいいかもしれません。

異常な点が、再現する可能性があるのかどうか。
逆手にとって、何かの解決に役立たないか。

いろいろな取り組みが可能かもしれません。

たかたか分析
https://qiita.com/kaizen_nagoya/items/1c848e8c71edb34c2f3f

6.7.1 想定外の事態発生はあきらめるしかないと思うべからず

Don't give up on unexpected situations

想定外を洗い出すのがHAZOP手法。

ちょけねこ たんじょうびのおくりもの https://qiita.com/kaizen_nagoya/items/fc9675686c229f7a155e

2.2.9 解決が見えている問題をQCストーリーで取り組むべからず

Don't write a QC story about problems that could be solved

改善方法がわかっている問題も同じかも。

効率的なやり方がわかっていたら、そのまま突き進めばよい。

わざわざ別の書式に書き込むのが無駄だと気がつくとよい。

集計するための仕組みに載せる方法はいくらでもあるはず。

3.1.1 ねらいの品質とできばえの品質を混同するべからず

Do not confuse the quality of aim with the quality of outcome.

ねらいの品質は設計品質。
できばえの品質は製造品質。

最近まで「ねらい」、「できばえ」の言葉を使っていませんでした。

プログラムは初めからできばえをねらって書きます。
動く設計書。ねらいとできばえは一体化していて、同じものの場合は、混同ではなく、同一。
プログラマがプログラマのために書くプログラムは、検証と妥当性確認が一体なのと一緒かも。

小学校では、「ねらい」と「めあて」という言葉を使い分けてるらしい。

狙い通り
https://researchmap.jp/blogs/blog_entries/view/98149/85bf5fecbbae6c12050eccfbc125a8a2?frame_id=403660

4.6.1 パソコンにデータ入力をしても生データは廃棄するべからず

Raw data should not be discarded even if data is entered into a personal computer

計算機が設置していないところで得たデータには、染みや、垢や、訂正したりした記録があるかもしれない。計数値にして、捨ててしまうのはもったいないという趣旨は理解できる。

しかし、今時、生データは直接画像で保存するので、破棄しない。
また、パソコンで生データを収集することが大事。
一次情報を直接コンピュータに入れるのではなく、計算機と別の場所でデータを作ってからコンピュータに入れるのは、計測として失格。

カメラにしろ、マイクにしろ、センサにしろ、直接生データをコンピュータに入れるのだから、生データはコンピュータの中で生きている。

4.6.2 統計量、統計解析の計算に時間を費やすべからず

Don't spend much time calculating statistics and statistical analysis

Data Robotというソフトをご存知だろうか。
統計解析の数十の手法を同時に計算し、比較して、役に立ちそうな計算を示すソフト。
現代制御理論に基づいて制御していたのより、よいパラメータを提示して改善に役立ったという事例を聞いたことがある。

今時、統計解析の計算に時間を費やす人はいない。
35年前、下記プログラムを評価するために四倍精度で計算しようとして3日たった時点で進捗を見たら、3年かかることがわかった。同じ計算を、今のパソコンは1日で計算可能。10分、1時間、1日とか、時間を区切って計算するのは、プログラマなら当たり前のこと。

半分の時間にする処理系やハードウェアを探すのも仕事のうちだし。

連立微分方程式のPade近似解法 Fortran手による最適化とコンパイラの最適化、誤差の評価
https://qiita.com/kaizen_nagoya/items/c55d29f0d7e9ebd07a31

5.3.2 計測器などで得られるもののみをデータと思うべからず

Don't believe that only what you can get with measuring instruments is data

逆も真ですね。人が書き込んだものをデータだと思う人がいます。
人手が要るようなものをデータと思わないようにすることも大切です。

5.3.1 データが取れないとあきらめるべからず

と関連していますね。計測器で取れない主観的なデータも役立ちますし、
主観的なデータを計測器によるデータと関連性を探すことも大事ですね。

5.4.1 生データばかり眺めるな

Don't look at the raw data only.

逆も真ですね。

生データを見ずに、統計データばかり眺めていては、大事なことを見落とすことがよくあります。最低でも1割の時間は生データを眺めてみてください。できている統計に抜け漏れがすくみつかるようならデータサイエンティストとして一人前かも。

生データ見たら、処理したい方法がつぎつぎ思い当たります。生データばかり眺めることはありえません。生データをながめながら、つぎつぎ統計処理をうごかしていくので、人間はずっと生データを見続けるかもしれません。生データ10分ながめて統計処理を思いつかなければ、統計と確率の勉強をし直すか、データ処理の訓練を受けてみてはいかがでしょうか。

確率論及統計論輪講 精度より成果
https://www.slideshare.net/kaizenjapan/ss-70572076

6.1.1 一件の言語データは簡単な単語で表現するべからず

One language data should not be expressed in abstract words

簡単な単語にしたら、その時点で情報量が大幅に減ってしまうかもしれません。

できるだけ具体的に素直に表現することが重要です。

日報、週報の書き方も同様ですね。日報、週報がついた月報で、簡素な言語に変換することは意味があります。元データのない要約は危険だと思うようになればもうけもの。

7.1.1. プロセスと業務は異なると考えるべからず

Don't believe that process and business are different

逆も真かもです。
プロセスと業務は同じと考えても、異なると考えてもどちらでもかまわないのです。

二つの視点で捉えれば、異なるという仮説をたてて測定すればよく、
同じだと捉えれば、同じという仮説をたてて測定すればよい。

同じか、異なるかはどちらでもよく、品質を改善できれる方法が見つかればいいだけです。

8.2.7 いつまでも簡単な問題に取り組むべからず

Don't tackle simple problems forever

改善は、最初は簡単な問題を解決して、はずみをつけるのが定石。
しかし、簡単な問題だけを取り組んでいたら競争相手に、いつか抜かされる。

ごめんなさい。私のことです。

8.5.1 「なぜなぜ分析」をせずに原因究明するべからず

Do not investigate the cause without "why-why analysis"

逆も真かも。「なぜなぜ分析」をしたら原因究明できると思うべからず。

原因はわからなくても対策を立てなくてはならないことはたくさんある。
原因を探ることに熱心で、対策がありきたりでは意味がない。

原因追求より対策探求が大事かも。

たかたか分析
https://qiita.com/kaizen_nagoya/items/1c848e8c71edb34c2f3f

HAZOPという空間と時間の質と量、上限と下限という8方向を検討する道具があります。
HAZOPを使ったら、原因究明したと思うのも危険です。
対象の本質に迫らない分析はいくらでもできるからです。

HAZOPは、TRIZと組み合わせることにより、対策探求にも役立ちます。

「ワークショップ「ソフトウェア開発におけるHAZOP入門」の結果」の分類
https://qiita.com/kaizen_nagoya/items/e62e91cb019c6275d6c1

8.5.5 要因解析は特性要因図づくりに終始するべからず

Factor analysis should not be done all the time to create a characteristic factor diagram

改善も一緒ですね。改善が、改善書類づくりに終始する人っていますよね。

目的と手段が逆転する人たち。

上から言われれば、やむをえないこともあります。
顧客から言われれば、やらざるをえないこともあります。
それらが半分の時間を超えたら、日報か、週報か、月報で警告を出してみましょう。

仮説(73)プログラマの「日報、週報、月報、年報」考
https://qiita.com/kaizen_nagoya/items/97ad8ac9217c12c3bb69

1.1.1 品質第一はコストアップにつながると思うべからず

Don't believe that quality first leads to cost increase

品質を良くすることによって、無駄をなくし、費用削減につながることがあることを紹介しています。

いつでも、費用が増加するとか、いつでも費用削減になるとかという発想は、統計的ではないし、確率論に基づいていません。

費用が増加する方法にはどういう方法があるか、
費用を削減する方法にはどういう方法があるか、
両方を考えてみればよいかもしれません。

プログラムを自分で組めば、すごく安く自動化できるかもしれません。だいたい、業者に見積もりを取った時の10分の1から100分の1が内製費用というのが目安でしょう。

なぜかっていうと、作るべきものの中身の分析は済んでいて、仕様も明確になっていて、あとはプログラミング言語で記述するか、仕様記述言語で記述すれば、すぐに動くものが作れる可能性があるからかもしれません。

発注するほど費用を見込めない場合は、内製することを検討してみてはいかがでしょうか。

p.s.
システムの設計の際に、有効な道具にHAZOPというものがあるかもです。

目次

本の内容に対する優先順位を「見出し」という項目に書きました。

Qiita記事の優先順位はアンケートを現在作成中。今しばらくお待ちください。

見出し優先順位 見出し 見出し優先順位 Qiita記事 偏差 偏差自乗
1 8.5.3 カンや経験を活用せずにデータ解析をするべからず 7 -6 36
2 4.1.2 データの素性をおろそかにするべからず 4 -2 4
3 1.1.5 データをとらずに理屈だけで問題解決するべからず 3 0 0
4 1.1.4 目的・目標をはっきりさせずに仕事をするべからず 2 2 4
5 1.1.2 顧客は勝手なことを言うと思うべからず。 1 4 16
6 4.3.1 まったくランダムにサンプルを採取しなければならないと思うべからず 5 1 1
7 4.3.7 サンプルが多ければ良いと思うべからず 6 1 1
8 8.8.3 決めた標準に固執するべからず 9 -1 1
9 8.6.2 対策には排反事象(副作用)を忘れるべからず 8 1 1
10 5.3.1 データが取れないとあきらめるべからず 14 -4 16
11 1.1.1 品質第一はコストアップにつながると思うべからず 10 1 1
12 2.2.3 同じ考え方の人だけで活動するべからず 11 1 1
13 2.1.1 会社方針だからといって上司の指示事項だけを実施するべからず。 13 0 0
14 6.1.1 一件の言語データは簡単な単語で表現するべからず 18 -4 16
15 5.3.2 計測器などで得られるもののみをデータと思うべからず 15 0 0
16 5.5.3 飛び離れたプロットを無視するべからず
17 6.7.1 想定外の事態発生はあきらめるしかないと思うべからず
18 2.2.9 解決が見えている問題をQCストーリーで取り組むべからず 16 0 0
19 8.5.5 要因解析は特性要因図づくりに終始するべからず 19 -2 4
20 4.6.2 統計量、統計解析の計算に時間を費やすべからず 12 6 36
21 4.6.1 パソコンにデータ入力をしても生データは廃棄するべからず 17 2 4
22 7.1.1. プロセスと業務は異なると考えるべからず 21 -1 1
23 8.2.7 いつまでも簡単な問題に取り組むべからず 20 1 1
24 3.1.1 ねらいの品質とできばえの品質を混同するべからず 23 -1 1
25 8.5.1 「なぜなぜ分析」をせずに原因究明するべからず 22 1 1
26 5.4.1 生データばかり眺めるな 24 0 0
0 146

復刊 希望

入手が困難そうで、復刊.comに登録しました。
https://www.fukkan.com/fk/VoteDetail?no=71164

清き一票をお願いします。

公共図書館所蔵状況

公共図書館で、国会図書館以外で所蔵しているのは、
山口県立、岡山県立、大阪市、滋賀県守山市、金沢市、
名古屋市、安城市、豊橋市、横浜市、品川区。

おお、愛知県だけ3箇所にある。

カーリル(都道府県を順に探した)
https://calil.jp/local/search?csid=aichi&q=QCべからず集

別の視点

べからず集だと積極的になれないかもしれない方のために、
べからずを、前向きに変換した記述を作成してみようかと努力中。

言語と数値のデータをうまく組み合わせるものが
経験と勘として人間の知能に蓄積していく。
プログラミングしたり、計算機の機械学習として体系化していけるはずだ。プログラマが統計的 品質管理(QC:quality control)の最先端に立てることを自覚したい。

196505516_4020123721401577_5687086552191931638_n.jpg 技術士(金属部門・総合技術監理部門) 小柳 拓央

参考資料(reference)

プロセス改善に関して、個人的に有益な情報
https://qiita.com/kazuo_reve/items/2c9a2d13bd57282bec1f#_reference-c91e4090b6e13daa37a2

ワークショップ「ソフトウェア開発におけるHAZOP入門」の結果
https://qiita.com/kazuo_reve/items/c1c1d32baed5d60d55c7

あなたもdocker, 私もdocker
https://qiita.com/kaizen_nagoya/items/8f2746f10f30b575d0a8
今まで書いてよかった技術書を紹介しよう!
https://qiita.com/kaizen_nagoya/items/d31b7c158541d345a7ef
開発環境を豊かにする開発事例 過去・現在・未来
https://qiita.com/kaizen_nagoya/items/d9bf0c2c671fe7f1c749
Microsoftとの歴史 Cコンパイラを中心に
https://qiita.com/kaizen_nagoya/items/d7c0cc257e99de0573cf

投稿予定 ACM, IEEE and arXiv
https://qiita.com/kaizen_nagoya/items/34530481571a4ef11745

arXivに投稿しようと思い、見出しを英語にしてみようと思いました。
まだ投稿するまでに、いろいろ推敲予定です。

ご意見をお待ちしています。
ご意見をいただいた方から、先着3名まで、連名権を献上予定。

@e99h2121 育児していたからこそエンジニアのお仕事に役立ったこと10選
https://qiita.com/e99h2121/items/db7e54c111ffcd3c3957

@e99h2121 「女性こそエンジニアになるべきだ?」デブサミウーマン登壇記録
https://qiita.com/e99h2121/items/7c69be1b2c2f305f6a4c

@kazuo_reve 新人の方によく展開している有益な情報
https://qiita.com/kazuo_reve/items/d1a3f0ee48e24bba38f1

@kazuo_reve マネージャ・リーダーの私にとって有益な知見が得られた書籍
https://qiita.com/kazuo_reve/items/6976029e72763ea73245

@kazuo_reve 私が効果を確認した「小川メソッド」
https://qiita.com/kazuo_reve/items/a3ea1d9171deeccc04da

@torifukukaiou 私のAdvent Calendar 2022 ーー はじめたきっかけ、1月のふりかえり、今後の展望
https://qiita.com/torifukukaiou/items/891db4e40a7f6194af56

@torifukukaiou Qiita 10周年記念イベント LGTMランキング!
https://qiita.com/torifukukaiou/items/69980bf263d20eab1988

@ohakutsu 新卒2年目から見た達人プログラマーの振る舞い
https://qiita.com/ohakutsu/items/387ff8d8c09f592f124f

WSL上にnxtOSEKの開発環境を構築する方法
https://qiita.com/TsuneoNakanishi/items/76999b2e6b4e9cd30117

Raspberry Pi 3 Model B+ 向けにリアルタイムOSを実装してみた話
https://qiita.com/tenkoh2/items/baa8e0b6c09669793b4f

[メモ] TrampolineRTOSでLチカ (OSEK/VDX & AUTOSAR APIにあわせたRTOS)
https://qiita.com/mt08/items/65f2ac9bbdae09a34470

MacでLego Mindstorms NXT環境構築 in 2018
https://qiita.com/vivid344/items/2f23f846cd3b135c5a74

ETロボコン開発環境構築 for Mac
https://qiita.com/tac0x2a/items/b1d82050c660935765ef

[メモ] ERIKA様でLチカ (Arduino)
https://qiita.com/mt08/items/adc90efbbfc938be7cc4

COFEを使って水-エタノールの分離シミュレーションを行う
https://qiita.com/kijuky/items/0979327cf7e7c091da02

<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words in order.

自己参照

「5さいじがわかるcyber security(サイバセキュリティ)」のかんがえかた
https://qiita.com/kaizen_nagoya/items/f83394e4916760e2bae1

「三方よし」への三つの視点
https://qiita.com/kaizen_nagoya/items/ad4ffd6d8a4045d1117a

データサイエンティストの気づき「勉強だけして仕事に役立てない人。大嫌い!」。『それ自分かも ? 』ってなった。
https://qiita.com/kaizen_nagoya/items/d85830d58d8dd7f71d07

プログラマにも読んでほしい「QC検定にも役立つ!QCべからず集」
https://qiita.com/kaizen_nagoya/items/d8ada7b7fceafe2e5f0e

時間外は子育て。「 10年後のために今勉強しておきたい技術」は勤務時間内だけで。
https://qiita.com/kaizen_nagoya/items/0ad5c118a5be4d36b4d8

プログラムは音楽だ (A program is a music.) 仮説(54)
https://qiita.com/kaizen_nagoya/items/33c9f33581e6886f8ad8

作詞:松本隆。作曲:細野晴臣「風をあつめて」を計画書として事業展開, 現在「coverを集めて」 AUTOSAR(40)
https://qiita.com/kaizen_nagoya/items/92365c542714f27e5658

プログラムは詩のように描こう。仮説(110)
https://qiita.com/kaizen_nagoya/items/07ed8747f0811d070070

programming like making a poem.
https://qiita.com/kaizen_nagoya/items/07ed8747f0811d070070

QC検定1級 答え合わせ
https://qiita.com/kaizen_nagoya/items/51741ffa7b1422d9be50

kazuo_revのQiita記事の分析
https://qiita.com/kaizen_nagoya/items/81e3519e3740fa766d6a

views が12000になりました。ありがとうございます。

qc.png

画像が大きすぎた。下の記事を参考にwidth="400"にして、小さくしてみた。

Qiita(28)画像の大きさ調整
https://qiita.com/kaizen_nagoya/items/cef6ae1fcbdbec9e7be2

OSEKはもう流行らないのでしょうか。AUTOSAR(64)OSEK(1) https://qiita.com/kaizen_nagoya/items/b87687254b11f30cc2ee
OSEKを図から理解 OSEK(2) https://qiita.com/kaizen_nagoya/items/f87a7ff5aeb63803a022
OSEK OS(AUTOSAR OS)をざっくり理解するには OSEK(3) https://qiita.com/kaizen_nagoya/items/c68c0b86b97d4a90e6e2
calloutとcallback, OSEK/VDX OS and AUTOSAR OSEK(4) https://qiita.com/kaizen_nagoya/items/b95b81354d07b9172a56
OSEK/VDX ISO and 2.23 OSEK(5) https://qiita.com/kaizen_nagoya/items/4d6bcec01e0132f9c41c
OSEK/VDX OSEK(6) https://qiita.com/kaizen_nagoya/items/a7720994f2178a15be81
ISO OSEK/VDX and ISO Linux OS 同梱ソースをC++またはRUSTで書く企画 OSEK(7) https://qiita.com/kaizen_nagoya/items/27899e936c90b415d700
OSEK 記事で views 100,000を目指して OSEK(8) https://qiita.com/kaizen_nagoya/items/ff45ee55566eeff5f62e
自動車用OSを網羅する OSEK(9) https://qiita.com/kaizen_nagoya/items/a61144daf500a3f2b4f4
Smallest Set Profile and Automotive Profile, OSEK(10) https://qiita.com/kaizen_nagoya/items/0c5484f6562cc259e7f0
Exclusive Area, OSEK(11) https://qiita.com/kaizen_nagoya/items/d87ff4e08378dbcf68a7
自動車のソフトウェア、例えばAUTOSAR の仕事を始めてする方に, OSEK(12) https://qiita.com/kaizen_nagoya/items/1832634788c23498e054
名古屋で自動車関係のソフトウェア設計する際にあるといいかもしれない知識, OSEK(13) https://qiita.com/kaizen_nagoya/items/9f01d55e4bd0bd931c96
single task os and data, OSEK(14) https://qiita.com/kaizen_nagoya/items/6acbd5d2cfd3ed8bca60
AUTOSARといえば O で始まる用語は? OSEK(15) https://qiita.com/kaizen_nagoya/items/06c969fe5c4b3e7319e0
Automotive Software Expert Examination Exercise, Examples or Extract. OSEK(16) https://qiita.com/kaizen_nagoya/items/1762e0612ef01e036efb
自動運転資料集(1) OSEK(17) https://qiita.com/kaizen_nagoya/items/42eb2129e281f25eaab8
TOPPERS of the YearとAUTOSAR, AUTOSAR(39), OSEK(18) https://qiita.com/kaizen_nagoya/items/f241bb4a819733110b7a
Autosar 2.0を読む, AUTOSAR(25), OSEK(19) https://qiita.com/kaizen_nagoya/items/b44a1047c2c517d522fe
IT関連技術でお世話になった方々, OSEK(20) https://qiita.com/kaizen_nagoya/items/8a5bf487594cd106e8b8
AUTOSARの4つの入力, OSEK(21) https://qiita.com/kaizen_nagoya/items/72cef6028b9697f7968e
AUTOSAR これだけ知っていればなんとかなる。OSEK(22) https://qiita.com/kaizen_nagoya/items/7a63e706bfb8f331cfe4
AUTOSAR based on ISO, OSEK(23) https://qiita.com/kaizen_nagoya/items/867a709cdf6f4dbdecc6
AUTOSARと国際規格。AUTOSAR(65), OSEK(24) https://qiita.com/kaizen_nagoya/items/4ddba03efb942969b125
AUTOSAR入門, AUTOSAR(16), OSEK(25) https://qiita.com/kaizen_nagoya/items/5e43b8ef0935c32ee11d
AUTOSAR 記事1000までの道, OSEK(26) https://qiita.com/kaizen_nagoya/items/785473512f5f7f85a6bf
Autosarの課題, OSEK(27) https://qiita.com/kaizen_nagoya/items/617d10b0e34143030600
AUTOSAR: The past 20 years and he next 10 years, OSEK(28) https://qiita.com/kaizen_nagoya/items/2dab0707c01059c152c4
Autosar文書を読む(準備), OSEK(29) https://qiita.com/kaizen_nagoya/items/5f547173544703d267aa
AUTOSARが手に取るように分かるようになる。AUTOSAR(29), OSEK(30) https://qiita.com/kaizen_nagoya/items/ae092ea6aef89cdc15df
posixとethernet, osekとTCP/IP, osek(31) https://qiita.com/kaizen_nagoya/items/73b79a4a56f433bd53c0
斉藤直希「組み込み向けリアルタイムOSの基礎知識を整理する」を整理する, OSEK(32) https://qiita.com/kaizen_nagoya/items/d305e83b37d0c57dceb3
TOPPERS活用アイデア・アプリケーション開発コンテスト受賞作品紹介 まとめ作成中, OSEK(33) https://qiita.com/kaizen_nagoya/items/72b882d96b2841f25faf
はじめてのAUTOSAR(classic platform) <エンジニア夏休み企画>【読書感想文】, OSEK(34) https://qiita.com/kaizen_nagoya/items/696ad320f76f284664d7
AUTOSARとSimulink: Adaptive Platform, Classic Platformとマルチコア・共通化, OSEK(35) https://qiita.com/kaizen_nagoya/items/d613b0b14bfd91989a13
AUTOSAR Abstract Platformへの道(詳細編), OSEK(36) https://qiita.com/kaizen_nagoya/items/cb217133884fa0a2c704
building block:AUTOSAR Abstruct Platform , OSEK(37), https://qiita.com/kaizen_nagoya/items/bf7c17624f648fb9f392
系建築家(system architect)になるには, OSEK(38) https://qiita.com/kaizen_nagoya/items/8c341e69233cb32f6275
自己紹介 OSEK(39) https://qiita.com/kaizen_nagoya/items/90aa368f296613ec93b5
AUTOSAR 「完全に理解した」, OSEK(40) https://qiita.com/kaizen_nagoya/items/51983798ad7902b33cb1
Architecture 「toaster model」を出発点として, OSEK(41) https://qiita.com/kaizen_nagoya/items/9ab8b4bea3ff4e94b192
AUTOSAR Q&A。 AUTOSAR(30), OSEK(42) https://qiita.com/kaizen_nagoya/items/ba6c02b772e9617dc138
「人生で影響を受けた本100冊」に28冊足す計画(18冊), OSEK(43) https://qiita.com/kaizen_nagoya/items/3ae6633725df77261df8
Bosch Automotive Handbook and so on. OSEK(44) https://qiita.com/kaizen_nagoya/items/8e330ce57880f04d71d9
動車 記事 100, OSEK(45) https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5
何故、今、国際規格なのか。OSEK(46) https://qiita.com/kaizen_nagoya/items/6970577e3e94e5b51ccc
名古屋のIoTは名古屋のOSで。仮説(186)OSEK(47) https://qiita.com/kaizen_nagoya/items/fa6694bbec50723ea90a
AUTOSAR一覧作っていて気が付いたこと順位(ranking) osek(48) https://qiita.com/kaizen_nagoya/items/2c800548690dd9fb9f53
AUTOSAR教材作成3年計画, AUTOSAR(19) OSEK(49) https://qiita.com/kaizen_nagoya/items/84d8f1ecbbe7af7803af
AUTOSARの利点と方向性, OSEK(50) https://qiita.com/kaizen_nagoya/items/681902476520cccf3c3e
TOPPERS のAUTOSARへの貢献(更新中), AUTOSAR(15), OSEK(51) https://qiita.com/kaizen_nagoya/items/d363cf06e2176207b391
TOPPERS の AUTOSAR への貢献 II (改定中), OSEK(52) https://qiita.com/kaizen_nagoya/items/4614c04cfff70a241f77
A big wrapping cloth with the miniature garden, OSEK53) https://qiita.com/kaizen_nagoya/items/96411f20632e7f3ff73a
AUTOSAR R23-11 資料整理の計画(年越し懇親会遠隔開催時間投票含む)OSEK(54) https://qiita.com/kaizen_nagoya/items/6b939e2373e0e6047ae8
自動車用(車載)ソフトウェアの基本設計提案を作る。OSEK(55) https://qiita.com/kaizen_nagoya/items/9c218e65d98084b24dfe
自動車用(車載)ソフトウェアの基本設計提案を作る(2), OSEK(56) https://qiita.com/kaizen_nagoya/items/38cb4710410a0d51e7a0
マルチコアの壁, OSEK(57) https://qiita.com/kaizen_nagoya/items/f38e47574905c80c0706
実時間処理, OESK(58) https://qiita.com/kaizen_nagoya/items/1e36077736d11960bb64
CPU マルチコア マルチOS, OSEK(59) https://qiita.com/kaizen_nagoya/items/6bdb6116f0aa50c5372a
AUTOSAR related Standard, OSEK(60)
https://qiita.com/kaizen_nagoya/items/13b163f8515615ecc648
「あなたがAUTOSARのEditorだったらどの文書をどう書き換えたいか」選手権(0), OSEK(61)
https://qiita.com/kaizen_nagoya/items/0055bb88f43f98a61739
Call back, OSEK(62)
https://qiita.com/kaizen_nagoya/items/8c76f5e05cbd9125f86d
C言語教育はCコンパイラの写経で, OSEK(63)
https://qiita.com/kaizen_nagoya/items/088a9906797559cd8b8a
Reentrant とRecursive, OESK(64) 
https://qiita.com/kaizen_nagoya/items/cdc028f73fe2dea3090f
AUTOSARの基礎の仮説, OSEK(65)
https://qiita.com/kaizen_nagoya/items/ceaf360e69f81c332677
Linuxを学ばずに使う, OSK(66) 
https://qiita.com/kaizen_nagoya/items/b9859782bab0cf6c78a4
AUTOSAR わかりにくいこと12, AUTOSAR(27), OSEK(67)
https://qiita.com/kaizen_nagoya/items/68b0da5bee1421200a11
お盆には「箱庭」記事を書きましょう「もくもく会」の題材になる(1), OSEK(68)
https://qiita.com/kaizen_nagoya/items/a22bf2b1dab0ad3258d4
逆も真:社会人が最初に確かめるとよいこと。OSEK(69)
https://qiita.com/kaizen_nagoya/items/39afe4a728a31b903ddc
プログラマが安全工学シンポジウムで発表する動機、題材、技法。安全(22)OSEK(70)
https://qiita.com/kaizen_nagoya/items/b7adf3001eb325166e52
プログラマにも読んでほしい「QC検定にも役立つ!QCべからず集」OSEK(81) 
https://qiita.com/kaizen_nagoya/items/d8ada7b7fceafe2e5f0e
AUTOSAR文書の読み方(文書番号と発行年), AUTOSAR(23), OSEK(72)
https://qiita.com/kaizen_nagoya/items/daa3f7de7e86b89bcc33
計算機系事故記録(computer system trouble record), OSEK(73)
https://qiita.com/kaizen_nagoya/items/910847f01379903e40c8
basic: プログラムジェネレータジェネレータ。構造屋(architect)としての成功事例3失敗事例6, OESK(74)
https://qiita.com/kaizen_nagoya/items/117c7a1b6dad97470ae9
AUTOSAR記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869
AUTOSAR 文書番号, OSEK(76)
https://qiita.com/kaizen_nagoya/items/8b894228a0b76c2265c7
参考文献の参考文献は参考文献だ。清水吉男「「派生開発」を成功させるプロセス改善の技術と極意」を超えて, OSEK(77)
https://qiita.com/kaizen_nagoya/items/562a0cf784cf92bc0ebb
ボッシュ自動車handbook(英語)11版(0-1) 課題と記事一覧new, OSEK(78)
https://qiita.com/kaizen_nagoya/items/a9d2887bf2a7598dc8e5
プログラマの「プログラムが書ける」思い込みは強みだ。3つの理由。仮説(168)統計と確率(17) , OSEK(79)
https://qiita.com/kaizen_nagoya/items/bc5dd86e414de402ec29
最新規格のコンパイル, OSEK(80)
https://qiita.com/kaizen_nagoya/items/4e23544a7ee8a8f19b68

一覧

物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff

量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4

数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d

統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba

言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6

医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82

自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5

通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7

日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68

英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d

転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe

仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df

Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6

鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/26bda595f341a27901a0

安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3

Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

「はじめての」シリーズ  ベクタージャパン 
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb

AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

LaTeX(0) 一覧 
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

Rust(0) 一覧 
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927

小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on my individual experience. It has nothing to do with the organization or business to which I currently belong.

文書履歴(document history)

ver. 0.01 初稿  20240616

最後までおよみいただきありがとう4ざいました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

文書履歴(document history)

ver. 0.01 初稿。4項目 20210304 2000
ver. 0.02 8項目 20210304 2100 いいね1つ
ver. 0.03 12項目 20210304 2200 いいね2つ
ver. 0.04 16項目 20210304 2300 いいね3つ
ver. 0.05 20項目 20210305 0000 いいね4つ
いいねが増えるたびに4項目増やす予定。
ver. 0.06 項目数を増やすのは、3/21 QC検定が終わってからにさせてください。ごめんなさい。今のところ、1級も2級も落ちそうです。 20210307
ver. 0.07 24項目 20210308 いいねが100超えたのを機に、4項目追加。目次作成。
ver. 0.08 いいねが増えたら項目追加しようと思ったら、いいねが増えすぎて全項目書かざるをえなくなり、著作権者に引用許可を申請する文面を検討中。背景追記。優先順位順に並べ替え。20210404
ver. 0.09 views 12000記念 20210419
ver. 0.10 5.5.3 飛び離れたプロットを無視するべからず 追記 20210420
ver. 0.11 参考資料追記、画像を小さくしてみた。 20210424
ver. 0.12 たかたか分析追記 20210426
ver. 0.13 入手が困難そうで、復刊.comに登録しました。清き一票をお願いします。20210502 昼
ver. 0.14 カーリルで図書館の所蔵を調べた。国会図書館以外は10公共図書館。愛知県は三箇所。名古屋、安城、豊橋。20210502 夕
ver. 0.15 「QC検定にも役立つ!QCべからず集」四分類と逆が真な事例 URL追記 20210502 夜
ver. 0.16 あのね
訓練って
直感力の
磨き上げなんだよ
たくを 追記 20210611
ver. 0.17 arXive投稿のためみだし英文化 20210712
ver. 0.18 QCの基本はデータ解析。データ解析ばかりしていて、仕事に役立てない人をいっぱいみてきた。ある日、ある人の言葉から、筋書きを考えていたら、それ自分かもってなった。
データサイエンティストの気づき『勉強だけして仕事に役立てない人。大嫌い』それ自分かもってなった。20210918
ver. 0.39 参考資料追記 20220306
ver. 0.40 ありがとう追記 20230311

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

174
191
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
174
191

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?