0
1

# Acoustics, ボッシュ自動車handbook 11版(6)＜エンジニア夏休み企画>【読書感想文】

Last updated at Posted at 2022-09-04

＜エンジニア夏休み企画>【読書感想文】
https://qiita.com/official-events/6d31965c499a69377c0b

<この項は書きかけです。順次追記します。>

https://qiita.com/kaizen_nagoya/items/16af53acbb147a94172e

に掲載した本のうち、「新人プログラマ応援」企画で「私の推薦書３３冊」として３３冊紹介した。

https://qiita.com/kaizen_nagoya/items/98c62f051dbdb4f8aca2

# ボッシュ自動車ハンドブック version 11, 2022

Automotive Handbook May 2, 2022

ボッシュ自動車handbook(英語)11版(0)＜エンジニア夏休み企画>【読書感想文】
https://qiita.com/kaizen_nagoya/items/dfa35aa6f669e5df983e

# Acoustics, p.66

Table 1. Quantities and units

## General terminology

### Velocity of sound

Table 2 Sound velocities and wavelengths in different materials

## Measured quantities for noise emissions

### Interaction of two or more sound sources

Table 3, Overall sound level with superimposition of independent sound fields

## Measured quantities for noise immissions

### Energy-equivalent continuous sound level

Table 4, Guide values for parmissible noise pollution as per TL Noise

## Perceived sound level

Figure 1. Frequency-dependent correction values for the sound level to take into account human hearing

### Phon

Figure 2 Isophone curve inacc with DIN ISO 226 with an allocation of noises(examples)

# Reference

### [1] DIN 1320, Accoustics - Terminology

IEC 60050-801:1994/AMD4:2021 Amendment 4 - International Electrotechnical Vocabulary (IEV) - Part 801: Acoustics and electroacoustics

### [2] DIN EN ISO 80000-8 Quantities and units Part8: Acoustics

2007年版を参照していないか確認するとよい。

### [3] DIN EN 61260 Electroacoustics Octave band and fractional octave band filters

IEC 61260-1:2014 Electroacoustics - Octave-band and fractional-octave-band filters - Part 1: Specifications

### [9] DIN ISO 226 Acoustics - Normal equal loudness level contours

ISO 226:2003 Acoustics — Normal equal-loudness-level contours

DIS 226

Bibliography

[9]-[1] ISO 532-1, Acoustics — Methods for calculating loudness — Part 1: Zwicker method

Bibliography
[9]-[1]-[1] ISO 226:1987,1 Acoustics — Normal equal-loudness-level contours
[9]-[1]-[2] ISO 226:2003, Acoustics — Normal equal-loudness-level contours
[9]-[1]-[3] ISO 532:1975,2 Acoustics — Method for calculating loudness level
[9]-[1]-[4] ISO 1996-1, Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures
[9]-[1]-[5] ISO 3740, Acoustics — Determination of sound power levels of noise sources — Guidelines for the use of basic standards
[9]-[1]-[6] ISO 9612, Acoustics — Determination of occupational noise exposure — Engineering method

[9]-[1]-[6]-[1] ISO 4869-2, Acoustics — Hearing protectors — Part 2: Estimation of effective A-weighted sound pressure levels when hearing protectors are worn
[9]-[1]-[6]-[2] ISO 11200, Acoustics — Noise emitted by machinery and equipment — Guidelines for the use of basic standards for the determination of emission sound pressure levels at a work station and at other specified positions
[9]-[1]-[6]-[3] ISO 11201, Acoustics — Noise emitted by machinery and equipment — Measurement of emission sound pressure levels at a work station and at other specified positions in an essentially free field over a reflecting plane with negligible environmental corrections
[9]-[1]-[6]-[4] ISO 11202, Acoustics — Noise emitted by machinery and equipment — Measurement of emission sound pressure levels at a work station and at other specified positions applying approximate environmental corrections
[9]-[1]-[6]-[5] ISO 11203, Acoustics — Noise emitted by machinery and equipment — Determination of emission sound pressure levels at a work station and at other specified positions from the sound power level
[9]-[1]-[6]-[6] ISO 11205, Acoustics — Noise emitted by machinery and equipment – Engineering method for the determination of emission sound pressure levels in situ at the work station and at other specified positions using sound intensity
[9]-[1]-[6]-[7] ISO 11904-1, Acoustics — Determination of sound immission from sound sources placed close to the ear — Part 1: Technique using a microphone in a real ear (MIRE technique)
[9]-[1]-[6]-[8] ISO 11904-2, Acoustics — Determination of sound immission from sound sources placed close to the ear — Part 2: Technique using a manikin
[9]-[1]-[6]-[9] ISO/TR 25417:2007, Acoustics — Definitions of basic quantities and terms
[9]-[1]-[6]-[10] IEC 60651:2001 2), Sound level meters
[9]-[1]-[6]-[11] IEC 60804:2000 2), Integrating-averaging sound level meters
[9]-[1]-[6]-[12] EN 458:2004, Hearing protectors — Recommendations for selection, use, care and maintenance — Guidance document
[9]-[1]-[6]-[13] Grzebyk, M., Thiéry, L. Confidence intervals for the mean of sound exposure levels. Am. Indust. Hyg. Assoc. J. 2003, 64, pp 640-645
[9]-[1]-[6]-[14] Thiéry, L., Ognedal, T. Note about the statistical background of the methods used in ISO/DIS 9612 to estimate the uncertainty of occupational noise exposure measurements. Acta Acust. Acust. 2008, 94, pp 331-334

[9]-[2] ISO 532-2, Acoustics — Methods for calculating loudness — Part 2: Moore-Glasberg method

Bibliography

[9]-[2]-[1] ISO 226:2003, Acoustics — Normal equal-loudness-level contours
[9]-[2]-[2] ISO 389-7:2005, Acoustics — Reference zero for the calibration of audiometric equipment — Part 7: Reference threshold of hearing under free-field and diffuse-field listening conditions
[9]-[2]-[3] ISO 532:1975,1 Acoustics — Method for calculating loudness level
[9]-[2]-[4] ISO 1996-1, Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures
[9]-[2]-[5] ISO 3740, Acoustics — Determination of sound power levels of noise sources — Guidelines for the use of basic standards
[9]-[2]-[6] ISO 9612, Acoustics — Determination of occupational noise exposure — Engineering method
[9]-[2]-[7] ISO 11200, Acoustics — Noise emitted by machinery and equipment — Guidelines for the use of basic standards for the determination of emission sound pressure levels at a work station and at other specified positions
[9]-[2]-[8] ISO 11904-1:2002, Acoustics — Determination of sound immission from sound sources placed close to the ear — Part 1: Technique using a microphone in a real ear (MIRE technique)
[9]-[2]-[9] ISO 80000-8:2007, Quantities and units — Part 8: Acoustics
[9]-[2]-[10] ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
[9]-[2]-[11] IEC 60050-702:1992, International electrotechnical vocabulary; chapter 702: oscillations, signals and related devices
[9]-[2]-[12] ANSI S3.4-2007, Procedure for the computation of loudness of steady sounds
[9]-[2]-[13] DIN 45631:1991, Berechnung des Lautstärkepegels und der Lautheit aus dem Geräuschspektrum; Verfahren nach E. Zwicker (Calculation of loudness level and loudness from the sound spectrum; Zwicker method)
[9]-[2]-[14] GLASBERG. B. R., MOORE, B. C. J. Derivation of auditory filter shapes from notched-noise data. Hear. Res. 1990, 47 pp. 103–138
[9]-[2]-[15] GLASBERG. B. R., MOORE, B. C. J. Prediction of absolute thresholds and equal-loudness contours using a modified loudness model. J. Acoust. Soc. Am. 2006, 120 pp. 585–588
[9]-[2]-[16] MOORE. B. C. J., GLASBERG, B. R. Modeling binaural loudness. J. Acoust. Soc. Am. 2007, 121 pp. 1604–1612
[9]-[2]-[17] MOORE. B. C. J., GLASBERG, B. R., BAER, T. A model for the prediction of thresholds, loudness and partial loudness. J. Audio Eng. Soc. 1997, 45 pp. 224–240
[9]-[2]-[18] STEVENS. S. S. Procedure for calculating loudness: Mark VI. J. Acoust. Soc. Am. 1981, 33 pp. 1577–1585
[9]-[2]-[19] SHAW. E. A. G. Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J. Acoust. Soc. Am. 1974, 56 pp. 1848–1861
[9]-[2]-[20] KUHN. G. The pressure transformation from a diffuse field to the external ear and to the body and head surface. J. Acoust. Soc. Am. 1979, 65 pp. 991–1000
[9]-[2]-[21] KILLION. M. C., BERGER, E. H., NUSS, R. A. Diffuse field response of the ear. J. Acoust. Soc. Am. 1987, 81 p. S75
[9]-[2]-[22] CHARBONNEAU, J., NOVAK, C., ULE, H. Comparison of loudness calculation procedure results to equal loudness contours. Proceedings of Inter-Noise 2009, Ottawa, Canada, 2009, pp. 4730-4736
[9]-[2]-[23] DEFOE. J., NOVAK, C., Evaluation of loudness calculation techniques with application to product evaluation. Master’s Thesis. University of Windsor, Ottawa, Canada, 2007
[9]-[2]-[24] HELLMAN. R. P. Predicting the loudness and annoyance of low frequency spectra. Proceedings of the Sound Quality Symposium SQS 2002, Dearborn (MI), 2002
[9]-[2]-[25] HELLMAN. R. P. Standards News: A new ANSI loudness standard. Acoust. Today. 2007, 3 (1) pp. 41–44
[9]-[2]-[26] IVERSON. G. J., PAVEL, M. Invariant properties of masking phenomena in psychoacoustics and their theoretical consequences. In: S. Grossberg (Ed), Symposium in Applied Mathematics of AMS-SIAM, 13, pp. 17-24. Providence (RI): American Mathematical Society, 1981
[9]-[2]-[27] KUWANO. S., HATOH, T., KATO, T., NAMBA, S. Application of loudness level to temporarily varying sounds in the case of sounds of musical performance. Acoust. Sci. Technol. 2011, 32 (1) pp. 43–46
[9]-[2]-[28] ZWICKER. E. Über psychologische und methodische Grundlagen der Lautheit. Acustica. 1958, 8 pp. 237–258
[9]-[2]-[29] ZWICKER. E., SCHARF, B. A model of loudness summation. Psychol. Rev. 1965, 72 pp. 3–26
[9]-[2]-[30] MONTGOMERY. A. A., PROSEK, R. A., WALDEN, B. E., CORD, M. T. The effects of increasing consonant/vowel intensity ratio on speech loudness. J. Rehabil. Res. Dev. 1987, 24 (4) pp. 221–228
[9]-[2]-[31] SKOVENBORG. E., QUESNEL, R., NIELSEN, S. H. Loudness assessment of music and speech. Proceedings of the 116th Audio Engineering Convention, Berlin (Germany), 2004.
[9]-[2]-[32] SKOVENBORG. E., NIELSEN, S. H. Evaluation of different loudness models with music and speech material. Proceedings of the 117th Audio Engineering Convention, San Francisco (CA), 2004.
[9]-[2]-[33] EDMONDS. B. A., CULLING, J. F. Interaural correlation and the binaural summation of loudness. J. Acoust. Soc. Am. 2009, 125 (6) pp. 3865–3870
[9]-[2]-[34] SIVONEN. V. P., ELLERMEIER, W. Directional loudness in an anechoic sound field, head-related transfer functions, and binaural summation. J. Acoust. Soc. Am. 2006, 119 pp. 2965–2980
[9]-[2]-[35] MULLIGAN. B. E. Binaural loudness summation: Better and less than “perfect”. J. Acoust. Soc. Am. 1991, 91 (4) p. 2380
[9]-[2]-[36] EPSTEIN. M., FLORENTINE, M. Binaural loudness summation for speech and tones presented via earphones and loudspeakers. Ear Hear. 2009, 30 pp. 234–237
[9]-[2]-[37] SIVONEN. V. P., ELLERMEIER, W. Binaural loudness for artificial-head measurements in directional sound fields. J. Audio Eng. Soc. 2008, 56 (6) pp. 452–461
[9]-[2]-[38] SIVONEN. V. P. Directional loudness and binaural summation for wideband and reverberant sounds. J. Acoust. Soc. Am. 2007, 121 (5) pp. 2852–2861

[9]-[3] ECMA-418-2, Psychoacoustic metrics for ITT equipment —Part 2 (models based on human perception)

Bibliography
[9]-[3]-[1] R. Sottek: A Hearing Model Approach to Time-Varying Loudness, Acta Acustica united with Acustica, vol. 102, no. 4, pp. 725-744, 2016.
[9]-[3]-[2] M. Slaney: Auditory toolbox. Interval Research Corporation, Tech. Rep 10 (1998), 1998.
[9]-[3]-[3] ISO 532-1: Acoustics – Methods for calculating loudness, Part 1: Zwicker method
[9]-[3]-[4] DIN 45631/A1:2010: Calculation of loudness level and loudness from the sound spectrum - Zwicker method - Amendment 1: Calculation of the loudness of time-variant sound, Beuth Verlag, 2010.
[9]-[3]-[5] J. Chalupper, H. Fastl: Dynamic loudness model (DLM) for normal and hearing-impaired listeners, Acta Acustica united with Acustica 88(3), pp. 378-386, 2002.
[9]-[3]-[6] B.R. Glasberg, B.C.J. Moore: A model of loudness applicable to time-varying sounds, Journal of the Audio Engineering Society 50, pp. 331-341, 2002.
[9]-[3]-[7] ISO 532-2, Acoustics — Methods for calculating loudness — Part 2: Moore-Glasberg method
[9]-[3]-[8] J. Rennies, J.L. Verhey, J.E. Appell, B. Kollmeier: Loudness of complex time-varying sounds? A challenge for current loudness models. Proceedings of Meetings on Acoustics, vol. 19, 050189, 2013.
[9]-[3]-[9] J. Rennies, M. Wächtler, J. Hots, J.L. Verhey.: Spectro-temporal characteristics affecting the loudness of technical sounds: data and model predictions, Acta Acustica united with Acustica, vol. 101(6), pp. 1145–1156, 2015.
[9]-[3]-[10] ISO 389-7, Acoustics — Reference zero for the calibration of audiometric equipment — Part 7: Reference threshold of hearing under free-field and diffuse-field listening conditions
[9]-[3]-[11] A. M. H. J. Aertsen and P. I. M. Johannesma: Spectro-Temporal Receptive-Fields of Auditory Neurons in the Grassfrog .1. Characterization of Tonal and Natural Stimuli, Biological Cybernetics, vol. 38, no. 4, pp. 223-234, 1980.
[9]-[3]-[12] H. Fastl, E. Zwicker: Psychoacoustics. Facts and Models, Springer, Berlin, Heidelberg, New York, 2006.
[9]-[3]-[13] B. C. Moore: Basic auditory processes involved in the analysis of speech sounds. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363. Jg., Nr. 1493, S. 947-963, 2008.
[9]-[3]-[14] T. Bierbaums, R. Sottek: Modellierung der zeitvarianten Lautheit mit einem Gehörmodel, Proc. DAGA 2012, Darmstadt, pp. 591-592, 2012.
[9]-[3]-[15] S. Buus, M. Florentine: Modifications to the power function for loudness. In: E. Summerfield, R. Kompass, T. Lachmann (eds), Fechner Day 2001. Proceedings of the 17th Annual Meeting of the International Society for Psychophysics. Berlin: Pabst, pp. 236-241, 2001.
[9]-[3]-[16] M. Epstein, M. Florentine: A test of the Equal-Loudness-Ratio hypothesis using cross-modality matching functions, J. Acoust. Soc. Am., vol. 118(2), pp. 907-913, 2005.
[9]-[3]-[17] R. Sottek: Improvements in calculating the loudness of time varying sounds. Proc. Inter-Noise 2014, Melbourne, 2014.
[9]-[3]-[18] R. Sottek: Modelle zur Signalverarbeitung im menschlichen Gehör, dissertation, RWTH Aachen, 1993.
[9]-[3]-[19] R. Sottek, F. Kamp, A. Fiebig: A new hearing model approach to tonality, Proc. Inter-Noise 2013, Innsbruck, 2013.
[9]-[3]-[20] R. Sottek: Progress in calculating tonality of technical sounds, Proc. Inter-Noise 2014, Melbourne, 2014.
[9]-[3]-[21] R. Sottek: Calculating tonality of IT product sounds using a psychoacoustically-based model, Proc. Inter-
Noise 2015, San Francisco, 2015.
[9]-[9]-[3]-[22] H. Hansen, J.L. Verhey, R. Weber: The Magnitude of Tonal Content. A Review, Acta Acustica united with Acustica, 97(3), pp. 355-363, 2011.
[9]-[3]-[23] H. Hansen, R. Weber: Zum Verhältnis von Tonhaltigkeit und der partiellen Lautheit der tonalen Komponenten in Rauschen, Proc. DAGA 2010, Berlin, pp. 597-598, 2010.
[9]-[3]-[24] J.L. Verhey, S. Stefanowicz: Binaurale Tonhaltigkeit, Proc. DAGA 2011, Düsseldorf, pp. 827-828, 2011.
[9]-[3]-[25] J.C.R. Licklider: A Duplex Theory of Pitch Perception, Cellular and Molecular Life Sciences, vol. 7(4), pp. 128-134, 1951.
[9]-[3]-[26] R. Sottek: Gehörgerechte Rauhigkeitsberechnung, Proc. DAGA 1994, Dresden, pp. 1197-1200, 1994.
[9]-[3]-[27] R. Sottek, P. Vranken, H.-J. Kaiser: Anwendung der gehörgerechten Rauhigkeitsberechnung, Proc. DAGA 1994, Dresden, pp. 1201-1204, 1994.
[9]-[3]-[28] R. N. Bracewell: The Fourier transform and its applications. McGraw-Hill, New York,1986.
[9]-[3]-[29] J. Becker, R. Sottek: Psychoacoustic Tonality Analysis, Proc. Inter-Noise 2018, Chicago, 2018.
[9]-[3]-[30] R. Sottek, J. Becker, T. Lobato: Progress in Roughness Calculation, Proc. Inter-Noise 2020, Seoul, 2020.
[9]-[3]-[31] Moore B C, Glasberg B R, Varathanathan A, Schlittenlacher, J. A loudness model for time-varying sounds incorporating binaural inhibition. Trends in hearing, 20, 2331216516682698, 2016.
[9]-[3]-[32] HEAD Acoustics GmbH: Using the new psychoacoustic tonality analyses Tonality (Hearing Model), Application Note, 2018.

[9]-[4] Suzuki Y., Takeshima H., Equal-loudness-level contours for pure tones. J. Acoust. Soc. Am., 116, 2004, pp. 918-933

REFERENCES

1. Allen, J. B.(1996). “Harvey Fletcher’s role in the creation of communication acoustics,” J. Acoust. Soc. Am. 99, 1825–1839.
2. Allen, J. B., and Neely, S. T.(1997). “Modeling the relation between the intensity JND and loudness for pure tones and wide-band noise,” J. Acoust. Soc. Am. 102, 3628–3646.
3. Atteneave, F. (1962). “Perception and related areas,” in Psychology: A Study of Science Vol. 4, edited by S. Koch (McGraw–Hill, New York), pp. 619–659.
4. Bellmann, M. A., Mellert, V., Reckhardt, C., and Remmers, H. (1999). “Perception of sound and vibration at low frequencies,” Joint meeting of ASA and EAA: Forum Acusticum integrating German Acoustics DAGA Conference 1999, Berlin, Germany. Google Scholar
5. Betke, K.(1991). “New hearing threshold measurements for pure tones under free-field listening conditions,” J. Acoust. Soc. Am. 89, 2400–2403.
6. Betke, K., and Mellert, V. (1989). “New measurements of equal-loudness level contours,” Proc. Inter-noise 89, pp. 793–796.
7. Borg, E.(1968). “A quantitative study of the effect of the acoustic stapedius reflex on sound transmission through the middle ear of man,” Acta Oto-Laryngol. 66, 461–472.
8. Brinkmann, K.(1973). “Audiometer-Bezugsschwelle und Freifeld-Hörschwelle (Audiometer reference threshold and free field hearing threshold),” Acustica 28, 147–154.
9. Buus, S., and Florentine, M.(2001a). “Growth of loudness in listeners with cochlear hearing losses: Recruitment reconsidered,” J. Asso. Res. Otolaryn. 3, 120–139 (online publication: 2001, paper publication: 2002).
10. Buus, S., and Florentine, M. (2001b). “Modifications to the power function for loudness,” in Fechner Day 2001, edited by E. Sommerfeld, R. Kompass, and T. Lachmann (Pabst, Berlin), pp. 236–241.
11. Buus, S., Müsch, H., and Florentine, M.(1998). “On loudness at threshold,” J. Acoust. Soc. Am. 104, 399–410.
12. Churcher, B. G., and King, A. J.(1937). “The performance of noise meters in terms of the primary standard,” J. Inst. Electr. Eng. 81, 57–90.
13. Collins, A. A., and Gescheider, G. A.(1989). “The measurement of loudness in individual children and adults by absolute magnitude estimation and cross-modality matching,” J. Acoust. Soc. Am. 85, 2012–2021.
14. Delgutte, B.(1990). “Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level,” Hear. Res. 49, 225–246.
15. Ekman, G.(1959). “Weber’s law and related functions,” J. Psychol. 47, 343–352.
16. Elliott, E.(1958). “A ripple effect in the audiogram,” Nature (London) 181, 1079.
17. Fastl, H., and Zwicker, E. (1987). “Lautstärkepegel bei 400 Hz; Psychoakustische Messung und Berechnung nach ISO 532B (Loudness level at 400 Hz: Psychoacoustical measurement and calculation by ISO 532B),” Fortschritte der Akustik, DAGA ’87, pp. 189–193.
18. Fastl, H., Jaroszewski, A., Schorer, E., and Zwicker, E.(1990). “Equal loudness contours between 100 and 1000 Hz for 30, 50, and 70 phon,” Acustica 70, 197–201.
19. Feldtkeller, R., Zwicker, E., and Port, E.(1959). “Lautstärke, Verhältnislautheit und Summenlautheit (Loudness, loudness ratio and summed loudness),” Frequenz 4, 108.
20. Fletcher, H. (1995). Speech and Hearing in Communication, edited by J. B. Allen (Acoustical Society of America, Woodbury, NY), Chap. 11, pp. 176–209 [original: (Krieger Huntington, NY, 1953)].
21. Fletcher, H., and Munson, W. A.(1933). “Loudness, its definition, measurement and calculation,” J. Acoust. Soc. Am. 5, 82–108.
22. Fletcher, H., and Munson, W. A.(1937). “Relation between loudness and masking,” J. Acoust. Soc. Am. 9, 1–10.
23. Florentine, M., Buus, S., and Poulsen, T.(1996). “Temporal integration
24. Gabriel, B., Kollmeier, B., and Mellert, V.(1997). “Influence of individual listener, measurement room and choice of test-tone levels on the shape of equal-loudness level contours,” Acustica 83, 670–683.
25. Gescheider, G. A. (1997). Psychophysics: The Fundamentals (Erlbaum, Mahwah, NJ), Chap. 10, pp. 207–230. Google Scholar
26. Hellman, R. P.(1976). “Growth of loudness at 1000 and 3000 Hz,” J. Acoust. Soc. Am. 60, 672–679.
27. Hellman, R. P.(1994). “Relation between the growth of loudness and high-frequency excitation,” J. Acoust. Soc. Am. 96, 2655–2663.
28. Hellman, R. P. (1997). “Growth of loudness in sensorineural impariment: Experimental results and modeling implications” in Modeling Sensorineural Hearing Loss, edited by W. Jesteadt (Lawrence Erlbaum, Mahwah, NJ), Chap. 12, pp. 199–212.
29. Hellman, R. P., and Meiselman, C. H.(1990). “Loudness relations for individuals and groups in normal and impaired hearing,” J. Acoust. Soc. Am. 88, 2596–2606.
30. Hellman, R. P., and Scharf, B. (1984). “Acoustic reflex and loudness,” in The Acoustic Reflex: Basic Principles and Clinical Applications, edited by S. Silman (Academic, New York), pp. 469–516.
31. Hellman, R. P., and Zwislocki, J. J.(1961). “Some factors affecting the estimation of loudness,” J. Acoust. Soc. Am. 33, 687–694.
32. Hellman, R. P., and Zwislocki, J. J.(1963). “Monaural loudness function at 1000 cps and interaural summation,” J. Acoust. Soc. Am. 35, 856–865.
33. Hellman, R. P., and Zwislocki, J. J.(1964). “Loudness function of a 1000 cps tone in the presence of masking noise,” J. Acoust. Soc. Am. 36, 1618–1627.
34. Hellman, R. P., and Zwislocki, J. J.(1968). “Loudness determination at low sound frequencies,” J. Acoust. Soc. Am. 43, 60–64.
35. Hellman, R. P., Takeshima, H., Suzuki, Y., Ozawa, K., and Sone, T. (2000). “Equal-loudness contours at high frequencies,” Proc. Inter-noise 2000, pp. 3653–3658.
36. Hellman, R. P., Takeshima, H., Suzuki, Y., Ozawa, K., and Sone, T. (2001). “Determination of equal-loudness relations at high frequencies,” in Proceedings of the 17th Annual Meeting of the International Society for Psychophysics, Leipzig, Germany, pp. 225–230.
37. Humes, L. E., and Jesteadt, W.(1991). “Models of the effects of threshold on loudness growth and summation,” J. Acoust. Soc. Am. 90, 1933–1943.
38. International Organization for Standardization (1961). Normal equal-loudness contours for pure tones and normal threshold of hearing under free field listening conditions [ISO R/226:1961] (International Organization for Standardization, Geneva).
39. International Organization for Standardization (1987). Acoustics—Normal Equal-Loudness Contours [ISO 226:1987] (International Organization for Standardization, Geneva).
40. Killion, M. C.(1978). “Revised estimate of minimum audible pressure: Where is the ‘missing 6 dB?’” J. Acoust. Soc. Am. 63, 1501–1508.
41. Kingsbury, B. A.(1927). “A direct comparison of the loudness of pure tones,” Phys. Rev. 29, 588–600.
42. Kirk, B. (1983). “Hørestyrke og genevirkning af infralyd (Loudness and annoyance from infrasound),” Institute of Electronic Systems, Aalborg University, Aalborg, Denmark, pp. 1–111.
43. Lochner, J. P. A., and Burger, J. F.(1961). “Form of the loudness function in the presence of masking noise,” J. Acoust. Soc. Am. 33, 1705–1707.
44. Luce, R. D.(1959). “On the possible psychophysical laws,” Psychol. Rev. 66, 81–95.
45. Lydolf, M., and Møller, H. (1997). “New measurements of the threshold of hearing and equal-loudness contours at low frequencies,” in Proceedings of the 8th International Meeting on Low Frequency Noise and Vibration, Gothenburg, Sweden, pp. 76–84.
46. Mauermann, M., Long, G., and Kollmeier, B. (2000a). “Comparison of fine structure in isophone contours, threshold in quiet and otoacoustic emissions,” in Abstracts of the 23th ARO Midwinter Research Meeting #984, p. 284.
47. Mauermann, M., Long G., and Kollmeier, B. (2000b). “Vergleich der Feinstruktur von Isophonen, Ruhehorschwelle und otoakustischen Emissionen (Comparison of the fine structure of the equal loudness level contours, absolute hearing threshold and otoacoustic emission),” Fortschritte der Akustik—DAGA 2000, Oldenburg, Deutsche Gesellschaft für Akustik e.V., pp. 292–293.
48. Møller, H., and Andresen, J.(1984). “Loudness at Pure Tones at Low and Infrasonic Frequencies,” J. Low Freq. Noise. Vib. 3, 78–87.
49. Møller, H., and Lydolf, M. (1996). “Equal loudness contours, literature overview” (Letter to ISO/TC 43/WG 1, Document N232).
50. Moore, B. C. J., and Glasberg, B. R.(1996). “A revision of Zwicker’s loudness model,” Acust. Acta Acust. 82, 335–345.
51. Moore, B. C. J., Glasberg, B. R., and Baer, T.(1997). “A model for the prediction of thresholds, loudness, and partial loudness,” J. Audio Eng. Soc. 45, 224–240.
52. Müller, F., and Fichtl, E. (1994). “The measurement of equal loudness contours using a direct scaling procedure and validation by equal time contours,” Proc. Inter-noise 94, pp. 1069–1072. Google Scholar
53. Munson, W. A.(1947). “The growth of auditory sensation,” J. Acoust. Soc. Am. 19, 584–591.
54. Nakagawa, T., and Oyanagi, Y. (1980). “Program system SALS for nonlinear least-squares fitting in experimental sciences,” in Recent Developments in Statistical Inference and Data Analysis, edited by K. Matusita (North Holland, Amsterdam), pp. 221–225.
55. Neely, S. T., and Allen, J. B. (1997). “Relation between the rate of growth of loudness and the intensity DL,” in Modeling Sensorineural Hearing Loss, edited by W. Jesteadt (Erlbaum, Mahwah, NJ), pp. 213–222.
56. Poulsen, T., and Han, L. A.(2000). “The binaural free field hearing threshold for pure tones from 125 Hz to 16 kHz,” Acust. Acta Acust. 86, 333–337.
57. Poulsen, T., and Thøgersen, L. (1994). “Hearing threshold and equal loudness level contours in a free sound field for pure tones from 1 kHz to 16 kHz,” Proc. Nordic Acoust. Meeting, pp. 195–198.
58. Puria, S., Rosowski, J. J., and Peake, W. T.(1997). “Sound-pressure measurements in the cochlear vestibule of human-cadaver ears,” J. Acoust. Soc. Am. 101, 2754–2770. Google ScholarScitation, ISI
59. Robinson, D. W.(1953). “The relation between the sone and phon scales of loudness,” Acustica 3, 344–358.
60. Robinson, D. W.(1957). “The subjective loudness scale,” Acustica 7, 217–233.
61. Robinson, D. W., and Dadson, R. S.(1956). “A re-determination of the equal-loudness relations for pure tones,” Br. J. Appl. Phys. 7, 166–181. , ISI
62. Rowley, R. R., and Studebaker, G. A.(1969). “Monaural loudness-intensity relationships for a 1000-Hz tone,” J. Acoust. Soc. Am. 45, 1186–1192.
63. Rudmose, W.(1982). “The case of the missing 6 dB,” J. Acoust. Soc. Am. 71, 650–659. ISI
64. Scharf, B., and Stevens, J. C. (1961). “The form of the loudness function near threshold,” Proc. Int. Congress on Acoustics, 3rd, Stuttgard, 1959, edited by L. Cremer (Elsevier, Amsterdam), pp. 80–82.
65. Schlauch, R. S., DiGiovanni, J. J., and Ries, D. T.(1998). “Basilar membrane nonlinearity and loudness,” J. Acoust. Soc. Am. 103, 2010–2020. , ISI
66. Schloth, E.(1983). “Relation between spectral composition of spontaneous oto-acoustic emission and fine-structure of threshold in quiet,” Acustica 53, 251–256.
67. Shaw, E. A. G.(1965). “Earcanal pressure generated by a free sound field,” J. Acoust. Soc. Am. 39, 465–470.
68. Smurzynski, J., and Probst, R.(1998). “The influence of disappearing and reappearing spontaneous otoacoustic emition on one subject’s threshold of hearing,” Hear. Res. 115, 197–205.
69. Stevens, S. S.(1953). “On the brightness of lights and loudness of sounds,” Science 118, 576.
70. Stevens, S. S.(1955). “The measurement of loudness,” J. Acoust. Soc. Am. 27, 815–829.
71. Stevens, S. S.(1957). “On the psychophysical law,” Psychol. Rev. 64, 153–181.
72. Stevens, S. S.(1959). “Tactile vibration: Dynamics of sensory intensity,” J. Exp. Psychol. 59, 210–218.
73. Suzuki, S., Suzuki, Y., Kono, S., Sone, T., Kumagai, M., Miura, H., and Kado, H.(1989). “Equal-loudness level contours for pure tone under free field listening condition (I)—Some data and considerations on experimental conditions,” J. Acoust. Soc. Jpn. (E) 10, 329–338.
74. Takeshima, H., Suzuki, Y., Ozawa, K., Kumagai, M., and Sone, T.(2003). “Comparison of loudness functions suitable for drawing equal-loudness-level contours,” Acoust. Sci. Tech. 24, 61–68.
75. Takeshima, H., Suzuki, Y., Ashihara, K., and Fujimori, T.(2002). “Equal-loudness contours between 1 kHz and 12.5 kHz for 60 and 80 phons,” Acoust. Sci. Tech. 23, 106–109.
76. Takeshima, H., Suzuki, Y., Fujii, H., Kumagai, M., Ashihara, K., Fujimori, T., and Sone, T.(2001). “Equal-loudness contours measured by the randomized maximum likelihood sequential procedure,” Acust. Acta Acust. 87, 389–399.
77. Takeshima, H., Suzuki, Y., Kumagai, M., Sone, T., Fujimori, T., and Miura, H.(1997). “Equal-loudness level measured with the method of constant stimuli—Equal-loudness level contours for pure tone under free-field listening condition (II),” J. Acoust. Soc. Jpn. (E) 18, 337–340.
78. Takeshima, H., Suzuki, Y., Kumagai, M., Sone, T., Fujimori, T., and Miura, H.(1994). “Threshold of hearing for pure tone under free-field listening conditions,” J. Acoust. Soc. Jpn. (E) 15, 159–169.
79. Takeshima, H., Suzuki, Y., Kono, S., and Sone, T.(1988). “Growth of the loudness of a tone burst with a duration up to 10 seconds,” J. Acoust. Soc. Jpn. (E) 9, 295–300.
80. Teranishi, R. (1965). “Oto no ôkisa Keiryô ni kansuru kenkyû—Saisyô Katyôti ni tuite;” “Study about measurement of loudness—On the problems of minimum audible sound,” Researches of the Electrotechnical Laboratory, No. 658.
81. Vorländer, M. (1991). “Freifeld-Horshwellen von 8 kHz–16 kHz, (Free field hearing threshold from 8 kHz to 16 kHz),” Fortschritte der Akustik—DAGA ’91, Bad Honnef, DPG-GmbH, pp. 533–536.
82. Watanabe, T., and Møller, H.(1990). “Hearing threshold and equal loudness contours in free field at frequencies below 1 kHz,” J. Low Freq. Noise Vib. 9, 135–148.
83. Whittle, L. S., Collins, S. J., and Robinson, D. W.(1972). “The audibility of low frequency sounds,” J. Sound Vib. 21, 431–448.
84. Yates, G. K. (1990). “The basilar membrane input-output function,” in The Mechanics and Biophysics of Hearing, edited by P. Dallos, C. D. Geisler, J. M. Matthews, M. A. Ruggero, and C. R. Steele (Springer-Verlag, New York), pp. 106–113.
85. Zwicker, E.(1958). “Über Psychologische und Methodische Grundlagen der Lautheit (On psychological and methodological bases of loudness),” Acustica 8, 237–258.
86. Zwicker, E.(1963). “Über die Lautheit von Ungedrosselten und Gedrosselthen Schallen,” Acustica 13, 194–211.
87. Zwicker, E., and Fastl, H. (1990). Psychoacoustics—Facts and Models (Springer-Verlag, Berlin), Chap. 8, pp. 181–214.
88. Zwicker, E., and Feldtkeller, R.(1955). “Über die Lautstärke von Gleichförmigen Geräuschen (On the loudness of stationary noises),” Acustica 5, 303–316.
89. Zwicker, E., and Feldtkeller, R. (1967). Das Ohr als Nachrichtenempfänger (Hirzel-Verlag, Stuttgart, Germany). English translation by H. Müsch, S. Buus, and M. Florentine, The Ear as a Communication Receiver (Acoustical Society of America, Woodbury, NY, 1999).
90. Zwislocki, J. J. (1965). “Analysis of some auditory characteristics,” in Handbook of Mathematical Psychology, edited by R. D. Luce, R. R. Bush, and E. Galanter (Wiley, New York), pp. 1–97.
91. Zwislocki, J. J.(1983). “Group and individual relations between sensation magnitudes and their numerical estimates,” Percept. Psychophys. 33, 460–468.
92. Zwislocki, J. J., and Hellman, R. P.(1960). “On the psychophysical law,” J. Acoust. Soc. Am. 32, 924.

[9]-[5] Kirk B., Hørestyrke og genevirkning af infralyd. Institute of Electronic Systems, Aalborg University, Aalborg, Denmark, 1983, pp. 1-111 (in Danish) ISSN 0106-0791
[9]-[6] Møller H., Andresen J., Loudness of pure tones at low and infrasonic frequencies. J. Low Freq. Noise and Vib., 3, 1984, pp. 78-87
[9]-[7] Betke K., Mellert V., New measurements of equal-loudness level contours. Proc. Inter-noise 89. 1989, pp. 793-796
[9]-[8] Suzuki S., Suzuki Y., Kono S., Sone T., Kumagai M., Miura H., Kado H., Equal-loudness level contours for pure tone under free field listening condition (I) — Some data and considerations on experimental conditions. J. Acoust. Soc. Jpn. (E), 10, 1989, pp. 329-338
[9]-[9] Fastl H., Jaroszewski A., Shorer E., Zwicker E., Equal loudness contours between 100 and 1000 Hz for 30, 50, and 70 phon. Acustica, 70, 1990, pp. 197-201
[9]-[10] Watanabe T., Møller H., Hearing threshold and equal loudness contours in free field at frequencies below 1 kHz. J. Low Freq. Noise and Vib., 9, 1990, pp. 135-148; Watanabe, T, Møller, H. Low frequency hearing thresholds in pressure field and in free field. J. Low Freq. Noise Vibr., 9, 1990, pp. 106-115
[9]-[11] Poulsen T., Thøgersen L., Hearing threshold and equal loudness level contours in a free sound field for pure tones from 1 kHz to 16 kHz. Proc. Nordic Acoust. Meeting, 1994, pp. 195-198
[9]-[12] Lydolf M., Møller H., New measurements of the threshold of hearing and equal-loudness contours at low frequencies. Proceedings of the 8th International meeting on Low Frequency Noise and Vibration, Gothenburg, Sweden, 1997, pp. 76-84
[9]-[13] Takeshima H., Suzuki Y., Kumagai M., Sone T., Fujimori T., Miura H., Equal-loudness level measured with the method of constant stimuli — Equal-loudness level contours for pure tone under free-field listening condition (II). J. Acoust. Soc. Jpn. (E), 18, 1997, pp. 337-340
[9]-[14] Bellmann M.A., Mellert V., Reckhardt C., Remmers H., Sound and vibration at low frequencies. Joint meeting of ASA, EAA and DAGA, 1999, Berlin, Germany. J. Acoust. Soc. Am., 105, 1999, p. 1297
[9]-[15] Takeshima H., Suzuki Y., Fujii H., Kumagai M., Ashihara K., Fujimori T., Sone T., Equal-loudness contours measured by the randomized maximum likelihood sequential procedure. Acustica — acta acustica, 87, 2001, pp. 389-399
[9]-[16] Takeshima H., Suzuki Y., Ashihara K., Fujimori T., Equal-loudness contours between 1 kHz and 12.5 kHz for 60 and 80 phons. Acoust. Sci. Tech., 23, 2002, pp. 106-109
[9]-[17] ISO/TC 43/WG 1 Threshold of hearing, Preferred test conditions for determining hearing thresholds for standardization. Scand. Audiol., 25, 1996, pp. 45-52
[9]-[18] Zwislocki J.J., Hellman R.P., On the psychophysical law. J. Acoust. Soc. Am., 32, 1960, p. 924
[9]-[19] Lochner J.P.A., Burger J.F., Form of the loudness function in the presence of masking noise. J. Acoust. Soc. Am., 33, 1961, pp. 1705-1707
[9]-[20] Humes L.E., Jesteadt W., Models of the effects of threshold on loudness growth and summation. J. Acoust. Soc. Am., 90, 1991, pp. 1933-1943
[9]-[21] Atteneave F., Perception and related areas. A study of science. Vol. 4, Koch S., (ed.), McGraw Hill, New York, 1962
[9]-[22] Zwislocki J.J., Group and individual relations between sensation magnitudes and their numerical estimates. Perception Psychophysics, 33, 1983, pp. 460-468
[9]-[23] Robinson D.W., Dadson M.A., A re-determination of the equal-loudness relations for pure tones. British J. Appl. Phy., 7, 1956, pp. 166-181
[9]-[24] Teranishi R., Study about measurement of loudness on the problems of minimum audible sound. Researches of the Electrotechnical laboratory, No. 658, Tokyo, Japan, 1965
[9]-[25] Brinkmann K., Audiometer-Bezugsschwelle und Freifeld-Hörschwelle. Acustica, 28, 1973, pp. 147-154
[9]-[26] Vorländer M., Freifeld-Hörschwellen von 8 kHz -16 kHz. Fortschritte der Akustik — DAGA '91, Bad Honnef, DPG-GmbH, 1991, pp. 533-536
[9]-[27] Poulsen T., Han L.A., The binaural free field hearing threshold for pure tones from 125 Hz to 16 kHz. Acustica — acta acustica, 86, 2000, pp. 333-337
[9]-[28] Zwicker E., Psychoakustik. Hochschultext, Springer, Berlin 1982
[9]-[29] Takeshima H., Suzuki Y., Kumagai M., Sone T., Fujimori T., Miura H., Threshold of hearing for pure tone under free-field listening conditions. J. Acoust. Soc. Jpn. (E), 15, 1994, pp. 159-169

### [10] DIN 45631 Calculation of loudness level and loudness from the sound spectrum - Zwicker method

ISO 532-1

[7] ISO 11200, Acoustics — Noise emitted by machinery and equipment — Guidelines for the use of basic standards for the determination of emission sound pressure levels at a work station and at other specified positions

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 3741, Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Precision methods for reverberation test rooms
ISO 3743-1, Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Engineering methods for small movable sources in reverberant fields — Part 1: Comparison method for a hard-walled test room
ISO 3743-2, Acoustics — Determination of sound power levels of noise sources using sound pressure — Engineering methods for small, movable sources in reverberant fields — Part 2: Methods for special reverberation test rooms
ISO 3744, Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Engineering methods for an essentially free field over a reflecting plane
ISO 3745, Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Precision methods for anechoic rooms and hemi-anechoic rooms
ISO 3746, Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Survey method using an enveloping measurement surface over a reflecting plane
ISO 3747, Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Engineering/survey methods for use in situ in a reverberant environment
ISO 9614-1, Acoustics — Determination of sound power levels of noise sources using sound intensity — Part 1: Measurement at discrete points
ISO 9614-2, Acoustics — Determination of sound power levels of noise sources using sound intensity — Part 2: Measurement by scanning
ISO 9614-3, Acoustics — Determination of sound power levels of noise sources using sound intensity — Part 3: Precision method for measurement by scanning
ISO 11201:2010, Acoustics — Noise emitted by machinery and equipment — Determination of emission sound pressure levels at a work station and at other specified positions in an essentially free field over a reflecting plane with negligible environmental corrections
ISO 11202:2010, Acoustics — Noise emitted by machinery and equipment — Determination of emission sound pressure levels at a work station and at other specified positions applying approximate environmental corrections
ISO 11203, Acoustics — Noise emitted by machinery and equipment — Determination of emission sound pressure levels at a work station and at other specified positions from the sound power level
ISO 11204:2010, Acoustics — Noise emitted by machinery and equipment — Determination of emission sound pressure levels at a work station and at other specified positions applying accurate environmental corrections
ISO 11205, Acoustics — Noise emitted by machinery and equipment — Engineering method for the determination of emission sound pressure levels in situ at the work station and at other specified positions using sound intensity
ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
IEC 60942, Electroacoustics — Sound calibrators
IEC 61043, Electroacoustics — Instruments for the measurement of sound intensity — Measurement with pairs of pressure sensing microphones
IEC 61260, Electroacoustics — Octave-band and fractional-octave-band filters
IEC 61672-1, Electroacoustics — Sound level meters — Part 1: Specifications

Bibliography

[7]-[1] ISO 1996-1, Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures
[7]-[2] ISO 3740, Acoustics — Determination of sound power levels of noise sources — Guidelines for the use of basic standards
[7]-[3] ISO 4871, Acoustics — Declaration and verification of noise emission values of machinery and equipment
[7]-[4] ISO 9612, Acoustics — Determination of occupational noise exposure — Engineering method
[7]-[5] ISO/TR 11690-3, Acoustics — Recommended practice for the design of low-noise workplaces containing machinery — Part 3: Sound propagation and noise prediction in workrooms
[7]-[6] ISO 12001, Acoustics — Noise emitted by machinery and equipment — Rules for the drafting and presentation of a noise test code

[8] ISO 80000-8:2007, Quantities and units — Part 8: Acoustics
[9] ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
[10] IEC 60050-702:1992, International Electrotechnical Vocabulary — Chapter 702: Oscillations, signals and related devices
[11] IEC/TS 60318-7, Electroacoustics – Simulators of human head and ear – Part 7: Head and torso simulator for the measurement of hearing
[12] DIN 45631:1991, Berechnung des Lautstärkepegels und der Lautheit aus dem Geräuschspektrum; Verfahren nach E. Zwicker (Calculation of loudness level and loudness from the sound spectrum; Zwicker method)
[13] DIN 45631/A1:2010, Berechnung des Lautstärkepegels und der Lautheit aus dem Geräuschspektrum – Verfahren nach E. Zwicker – Änderung 1: Berechnung der Lautheit zeitvarianter Geräusche (Calculation of loudness level and loudness from the sound spectrum – Zwicker method – Amendment 1: Calculation of the loudness of time-variant sound)
[14] Fastl H., Zwicker E., Psychoacoustics – Facts and Models. Springer, Berlin, Third Edition, 2007
[15] Sottek R., Genuit K., Progresses in standardizing loudness of time-variant sounds. Fortschritte der Akustik – DAGA ’13, Merano, 2013
[16] Schlittenlacher J., Hashimoto T., Kuwano S., Namba S., Overall loudness of short time-varying sounds. Internoise 2014, Melbourne, Australia, 2014
[17] Fiebig A., Sottek R., Contribution of peak events to overall loudness. Acta Acust. United Acust. 2015, 101 pp. 1116–1129
[18] German patent DE 3709397C2, 1987
[19] Ellermeier W., Sivonen V.P., Richtungsabhängigkeit binauraler Lautheit. Fortschritte der Akustik – DAGA ’06. Braunschweig, 2006
[20] Schlittenlacher J., Hashimoto T., Fastl H., Namba S., Kuwano S., Hatano S., Loudness of pink noise and stationary technical sounds. Proc. Internoise 2011, Osaka, Japan, 2011, pp. 2314–2318
[21] Sottek R., Psychoakustische Bewertung von Fahrzeuggeräuschen. Fortschritte der Akustik – DAGA ’14, Oldenburg, 2014
[22] Zwicker E., Subdivision of the audible frequency range into critical bands (Frequenzgruppen). J. Acoust. Soc. Am. 1961, 33 (2) p. 248

# 個人開発

## 箱庭

その他のアプリ、部品について、シリーズで記述して入力とできるといいかもしれない。

## 自己参考資料(self reference)

ボッシュ自動車ハンドブック

ボッシュ自動車ハンドブック 日本語【第3版】

# Countdown Calendar 2022

AUTOSAR Countdown Calendar 2022

AUTOSAR References to ISO, IEC, ITU, IEEE, RFC and SEA etc.

Automotive Handbook Countdown Calendar 2022

Basic principles, ボッシュ自動車handbook(英語)11版まとめ<2>

2022 いいねをいただいた記事ランキング(O.K.版) Countdown Calendar 2022

2022年１月下旬　いいねをいただいた記事　16

CDCale(O.K.) Countdown Calendar 2022

「会議は15分未満」に。小耳にはさんだ話。

ABC language (O.K.版） Advent Calendar 2022

LLVMソースコードのコンパイルをしようと思ってハマった罠とそこから脱出するための努力

JAXA/IPA クリティカルソフトウェアワークショップ WOCS言語関連発表(改定版)

CountdownCalendar2022 報告

# 関連文書(Related document)

AUTOSAR Abstract Platformへの道（詳細編）

2023年1月　記事数一覧

2023 書き初め

「はじめてのCAN/CANFD 」 ベクタージャパン ＜エンジニア夏休み企画>【読書感想文】

AUTOSAR Abstract Platform User Group Weekly Report(1) 2022.1.8

AUTOSAR Abstract Platform User Group Weekly Report(2) 2022.1.15

overlapped definition in AUTOSAR short name. over 50.:英語(49)

# 更新資料　Abstract Platform, Vehicle Modelへの対応版

Acoustics, p.66 ボッシュ自動車handbook 11版(6)新

https://qiita.com/kaizen_nagoya/items/5a4c16b2aeb11f97c368
＜この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。＞

# 文書履歴(document history)

ver. 0.01 初稿 20220904
ver. 0.03 表4つ追記 20221017 午後10時
ver. 0.04 ISO 532-1:2017追記。国際規格Bibliography２つ追記 20221017 午後11時
ver. 0.05 参考文献、参考規格およびその参考文献追記 20221017 午後12時
ver. 0.06 URL追記　20230217

### 最後までおよみいただきありがとうございました。

いいね　💚、フォローをお願いします。