0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

researchgateで文献調査 の参考文献一覧。Wi-Fi(無線網) Antenna(空中線)(4)

Last updated at Posted at 2019-03-11

Wi-FI Antennaでresearchgateで文献調査
https://qiita.com/kaizen_nagoya/items/2cff082e2ef214f2b377

の参考文献一覧

<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words in order.
##15.
Reconfigurable multiband bowtie antenna for Wi-FI, WiMax, and WLAN applications
Oct 2017Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017 IEEE International Symposium on, Ali Mansoul

REFERENCES
[1] A. Gangi , ”The active adaptive antenna array system”, IEEE Transactions
on Antennas and Propagation, vol. 11, pp. 405.414, July 1963.
[2] A. Mansoul, F. Ghanem, M. R. Hamid and M. Trabelsi, ”A Selective
Frequency Recongurable Antenna for Cognitive Radio Applications”,
IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 515.518,
March 2014.
[3] A. Mansoul, F. Ghanem, M. R. Hamid, E. Salonen and M. Berg,
”Bandwidth reconfigurable antenna with a fixed lower and a variable
upper limit”, IET Microwaves, Antennas & Propagations, vol. 10, pp.
1725.1733, 2016.
[4] Yunfei Cao , Sing Wai Cheung and Tung Ip Yuk , ”Frequency reconfigurable
multiple input multiple output monopole antenna with wide
continuous tuning range”, IET Microwaves, Antennas & Propagations,
vol. 10, pp. 1322.1331 , 2016.
[5] Muzammil Jusoh, Tamer Aboufoul and Thennarasan Sabapathy , ”Pattern-
Reconfigurable Microstrip Patch Antenna With Multidirectional Beam for
WiMAX Application”, IEEE Antennas and Wireless Propagation Letters
, vol. 13, pp. 860.863, 2014.
[6] Behrouz Babakhani, Satish Kumar Sharma and Nathan R. Labadie , ”A
Frequency Agile Microstrip Patch Phased Array Antenna With Polarization
Reconfiguration”, IEEE Transactions on Antennas and Propagation,
vol. 64, N 10, pp. 4316.4327, 2016.
[7] Peng Kai Li, Zhen Hai Shao and Quan Wang , ”Frequency and Pattern
Reconfigurable Antenna for Multi-standard Wireless Applications”, IEEE
Antennas and Wireless Propagation Letters, vol. 14, pp. 333.336, 2014.
1148

##18
Wi-FI-Friendly Building to Enable Wi-FI Signal Indoor
Mar 2018, Suherman Suherman

REFERENCES

[1] Shidik G F, bin Muhamad Noh Z. A. Performance Evaluation of Bonding Techniques at Wireless 802.11n.
TELKOMNIKA (Telecommunication Computing Electronics and Control), 2013; 11(1), 181-190.
[2] Bahaweres R B, Karya O T, and Alaydrus M. Transmission of Real-time Video Signal with Interference Density
and Human Traffic. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2015; 13(4), 1352-
1360.
[3] Gu Y, Ren F, and Li J. PAWS: Passive Human Activity Recognition Based on Wi-FI Ambient Signals. IEEE
Internet of Things Journal. 2016; 3(5), 796-805.
[4] Bulut E, Szymanski B K. Wi-FI access point deployment for efficient mobile data offloading. ACM SIGMOBILE
Mobile Computing and Communications Review. 2013; 17(1), 71-78.
[5] Lee G. 3D coverage location modeling of Wi-Fi access point placement in indoor environment. Computers,
Environment and Urban Systems. 2015; 54, 326-335.
[6] Farsi A, Achir N, Boussetta, K. WLAN planning: Separate and joint optimization of both access point placement
and channel assignment. Annuals of telecommunications-annales des telecommunications. 2015; 70(5-6), 263-274.
[7] Varzandian S, Zakeri H, Ozgoli S. Locating Wi-FI access points in indoor environments using non-monotonic signal
propagation model. IEEE Asian Control Conference (ASCC). 2013; pp. 1-5.
[8] Ma R, Guo Q, Hu C, Xue J. An improved Wi-FI indoor positioning algorithm by weighted fusion. Sensors. 2015;
15(9), 21824-21843.
[9] Retscher G, Moser E, Vredeveld D, Heberling D, Pamp J. Performance and accuracy test of a Wi-FI indoor
positioning system. Journal of Applied Geodesy jag. 2007; 1(2), 103-110.
[10] Barcelo-Arroyo F, Martin-Escalona I, Ciurana-Adell M. Positioning Terminals in Mobile Computing
Networks.Mobile Computing. 2013; 11.
[11] Sangogboye F C, Droegehorn O, Porras J. Analyzing the Payback Time of Investments in Building Automation. In
Sustainable Ecological Engineering Design. 2016; pp. 367-381.
[12] Rec. ITU-R P.2040-1, ITU-R Recommendation, Vol.1, P Series, ITU, Geneva, 2015.
[13] Rappaport T S, Seidel S Y, Takamizawa K. Statistical channel impulse response models for factory and open plan
building radio communication system design. IEEE Trans. Communication. 1999; 39(5), pp.794-807.
[14] Hashemi H. The indoor radio propagation channel. Proceedings of the IEEE. 1993; 81(7), 943-968.
[15] Weiner J. The physics of light transmission through subwavelength apertures and aperture arrays. Reports on
progress in physics. 2009; 72(6), 064401.k

##52
Multiband reconfigurable Bowtie slot antenna using switchable slot extensions for Wi-FI, WiMAX, and WLAN applications, Feb 2018, Ali Mansoul, Seddiki Mohamed Lamine

REFERENCES
[1] Hall PS, Gardner P, Kelly J, et al. Reconfigurable antenna challenges
for future radio systems. In: Proceedings of the 3th European
Conference on Antennas and Propagation (EuCAP), 2009:
949.955.
[2] Haupt RL, Lanagan M. Reconfigurable antennas. IEEE Antennas
Propag Mag. 2013;55(1):49.61.
[3] Brown ER. RF-MEMS switches for reconfigurable integrated
circuits. IEEE Trans Microw Theory Tech. 1998;46(11):1868.
1880.
[4] Balanis CA. Modern Antenna Handbook. New York: John Wiley
and Sons; 2008.
[5] Bernhard JT. Reconfigurable Antennas. Morgan & Claypool;
2007.
[6] Mansoul A, Ghanem F, Hamid MR, Trabelsi M. A selective frequency
reconfigurable antenna for cognitive radio applications.
IEEE Antennas Wireless Propag Lett. 2014;13:515.518.
[7] Hamid MR, Hall PS, Gardner P, Ghanem F. Antenna with integrated
switchable band pass resonator. IEEE Trans Antennas
Propag. 2011;59(11):4008.4015.
[8] Mansoul A, Ghanem F, Hamid MR, Salonen E, Berg M. Bandwidth
reconfigurable antenna with a fixed lower and a variable
upper limit. IET Microw Antennas Propag. 2016;10(15):1725.
1733.
[9] Rodrigo D, Cetiner BA, Jofre LS. Frequency radiation pattern
and polarization reconfigurable antenna using a parasitic pixel
layer. IEEE Trans Antennas Propag. 2014;62(6):3422.3427.
[10] Bai Y-Y, Xiao S, Tang MC, Liu C, Wang BZ. Pattern reconfigurable
antenna with wide angle coverage. Electron Lett. 2011;47
(21):1163.1164.
[11] Lee D-H, Pyo S. Dual-reconfigurable microstrip antenna for
polarisation agility and diversity. Electron Lett. 2015;51(16):
1226.1227.
[12] Fries MK, Grani M, Vahldieck R. A reconfigurable slot antenna
with switchable polarization. IEEE Microw Wireless Comp Lett.
2003;13(11):490.492.

##81
Stacked rectangular ring slot microstrip antenna with parasitic load for UMTS, LTE and Wi-FI applications, Oct 2017, International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)
Indra Surjati, Yuli K. Ningsih, Syah Alam

REFERENCES
[1] Ditjen Postel, “Structuring the Radio Frequency-Based Service
Broadband Wireless Access”. Jakarta , 2006.
[2] I. Surjati, Y. K. Ningsih, and S. Alam, “Stacked Ultra Wide Band ring
rectangular microstrip antenna fed by coplanar waveguide”. In, 2016
22nd Asia-Pacific Conference on Communications (APCC),
Yogyakarta, Indonesia, pp. 62-65, Oct. 2016.
[3] Z. Manzoor and G. Moradi, “Optimization of impedance bandwidth of
a stacked microstrip patch antenna with the shape of parasitic patch's
slots,” Applied Computational Electromagnetics Society Journal, vol.
30, no. 9, 2015.
[4] D. K. Singh, B. K. Kanaujia, S. Dwari, G. P. Pandey, and S. Kumar,
“Multiband circularly polarized stacked microstrip antenna,” Progress
In Electromagnetics Research C, vol. 56, pp. 55-64, 2015.
[5] R. K. Vishwakarma and S. Tiwari, “Experimental study of stacked
rectangular microstrip antenna for dual-band,” Engineering, vol. 2,
no.2, pp. 85-90, 2010.
[6] K. Sharma and O. P. Sharma. “Comparative analysis of stack shaped
microstrip patch antenna,” International Journal of Computer
Applications, vol. 109, no. 17, 2015.
[7] I. Surjati and J. Haidi, “Increasing bandwidth triangular microstrip
antenna using parasitic patch,” in 2015 IEEE-APS Topical Conference
on Antennas and Propagation in Wireless Communications (APWC),
Turin, Italy, 2015, pp. 809-812.
[8] S. M. Abbas, I. Saleem, B. Ahmed, and H. Khurshid, “UWB antenna
with parasitic patch and asymmetric feed,” Information Science Letters,
vol. 2, pp. 27-33, 2013.
[9] R. K. Verma and P. K. Singhal, “Wideband rectangular microstrip
antenna with directly coupled and two gap coupled parasitic patches,”
International Journal of Engineering Science and Technology, vol. 5,
no. 3, pp. 649-653, Mar. 2013.
[10] A. Abdelaziz, “Bandwidth enhancement of microstrip antenna,”
Progress In Electromagnetics Research, vol. 63, pp. 311-317, 2006.
[11] M. M. Gadag, L. F. Shaikh, K. Aahaladika, and K. Kumar, ”
Rectangular microstrip antenna using air-coupled parasitic patches for
bandwidth improvement,”. IJESS, vol.2, pp. 6-8, 2012.
[12] Y. Sung, “Bandwidth enhancement of a microstrip line-fed printed
wide-slot antenna with a parasitic center patch,” IEEE Transactions on
Antennas and Propagation, vol. 60, no. 4, pp. 1712-1716, Apr. 2012.
[13] J. W. Kim, et al,”Compact multiband microstrip antenna using
inverted-L-and T-shaped parasitic elements,” IEEE Antennas and
Wireless Propagation Letters, vol. 12, pp. 1299-1302, Sept. 2013.

114 Hybrid Analog-Digital Processing System for Amplitude-Monopulse RSSI-based MiMo Wi-FI Direction-of-Arrival Estimation Apr-18 , Josテゥ Luis Gテウmez Tornero, David Caテアete Rebenaque, Jose A Lopez Pastor, Alejandro Martinez-Salas

REFERENCES
[1] R. Zekavat, and R.M. Buehrer. Handbook of position location: Theory,
practice and advances. vol. 27. John Wiley & Sons, 2011.
[2] K. W. Kolodziej, J. Hjelm, Local Positioning Systems: LBS Applications
and Services, ed. CRC, 2006
[3] H. Celebi, and H. Arslan. "Utilization of location information in cognitive
wireless networks." IEEE Wireless Communications 14.4 (2007).
[4] D. Macagnano, G. Destino, and G. Abreu, "Indoor positioning: A key
enabling technology for IoT applications." Internet of Things (WF-IoT),
2014 IEEE World Forum on. IEEE, 2014.
[5] M. Koivisto, et al. "High-efficiency device positioning and locationaware
communications in dense 5G networks." IEEE Communications
Magazine, 2017.
[6] A. Bensky, Wireless positioning technologies and applications. Artech
House, 2016.
[7] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems”, IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 6,
pp. 1067-1080, 2007.
[8] S. He, andS. H. G. Chan, “Wi-Fi fingerprint-based indoor positioning:
Recent advances and comparisons”, IEEE Communications Surveys &
Tutorials, vol.18, no.1, pp. 466-490, 2016.
[9] R. Guzm.n-Quir.s, A.J. Mart.nez-Salas, J. L. G.mez-Tornero, and J.
Garc.a-Haro, "Integration of directional antennas in an RSS
fingerprinting-based indoor localization system," in Sensors, Special
Issue Sensors for Indoor Mapping and Navigation, vol. 16, no. 4, pp. 1-
23, December 2015.
[10] Q.D. Vo, and P. De, "A survey of fingerprint-based outdoor
localization." IEEE Communications Surveys & Tutorials vol.18, no.1,
pp. 491-506, 2016.
[11] A. Yassin, et al. "Recent advances in indoor localization: A survey on
theoretical approaches and applications." IEEE Communications Surveys
& Tutorials, vo.19, no.2, pp. 1327-1346, 2016.
[12] L. Br.s, N. Borges-Carvalho, P. Pinho, L. Kulas, and K. Nyka, “A review
of antennas for indoor positioning systems,” International Journal of
Antennas and Propagation, vol. 2012.
[13] J. Werner, J. Wang, A. Hakkarainen, N. Gulati, D. Patron, D. Pfeil, K.R.
Dandekar, D. Cabric, M. Valkama “Sectorized Antenna-based DoA
Estimation and Localization: Advanced Algorithms and Measurements,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 11, pp.
2272-2286 2015.
[14] R. O. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no.
3, pp. 276.280, 1986.
[15] A. Y. J. Chan and J. Litva, “MUSIC and maximum likelihood techniques
on two-dimensional DOA estimation with uniform circular
array,” IEE Proceedings, vol. 142, no. 3, pp. 105.114, 1995.
[16] R. Roy, A. Paulraj, and T. Kailath, “ESPRIT—a subspace rotation
approach to estimation of parameters of sinusoids in noise,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 5,
pp. 1340.1342, 1986.
[17] E. Mosca, “Angle estimation in amplitude comparison monopulse
systems,” IEEE Transactions on Aerospace and Electronic Systems, vol.
AES-5, no. 2, pp. 205.212, Mar. 1969.
[18] S.M. Sherman and D.K. Barton, Monopulse Principles and Techniques,
Artech House Radar Library. Artech House, 2011
[19] J. C.Wu, C. C. Chang, T. Y. Chin, S. H. Chang,M. C. Chiu, C. Y. Hsu,
and R. H. Lee, “Wireless indoor localization using dynamic monopulse
receiver,” in EURAD 2010, pp. 69.72.
[20] M. Del Prete, D. Masotti, N. Arbizzani and A. Costanzo, "Remotely
identify and detect by a compact reader with mono-pulse scanning
capabilities," in IEEE Trans. on Microwave Theory and Techn., vol. 61,
no. 1, pp. 641-650, Jan. 2013.
[21] B. Denis, B. Uguen, F. Mani, R. D'errico, N. Amiot, "Joint orientation and
position estimation from differential RSS measurements at on-body
nodes", IEEE 27th Annual International Symposium on Personal Indoor
and Mobile Radio Communications (PIMRC) pp. 1-6, 2016.
[22] S. Gogineni, A. Nehorai, "Target tracking using monopulse MIMO radar
with distributed antennas", Radar Conference 2010 IEEE, pp. 194-199,
2010
[23] S. Gogineni and A. Nehorai, "Monopulse MIMO Radar for Target
Tracking," in IEEE Transactions on Aerospace and Electronic Systems,
vol. 47, no. 1, pp. 755-768, Jan. 2011.
[24] S. Jardak, S. Ahmed, M.-S. Alouini, "Two target localization using
passive monopulse radar", Radar Conference 2015 IEEE, pp. 191-196,
2015.
[25] L. Pang, F-B. Mao, Y.-Z. Xie, H. Chen, "A high performance digital
signal processor for monopulse tracking radar", Signal Processing (ICSP)
2016 IEEE 13th International Conference on, pp. 1485-1488, 2016
[26] Q. He, R.S. Blum, "Noncoherent versus coherent MIMO radar:
Performance and simplicity analysis", Signal Processing, vol. 92, pp.
2454, 2012.
[27] C. Wu, et al. "Mitigating large errors in Wi-FI-based indoor localization for
smartphones." IEEE Transactions on Vehicular Technology 66.7 (2017):
6246-6257.
[28] Y. Chapre, et al. "Received signal strength indicator and its analysis in a
typical WLAN system (short paper)." Local Computer Networks (LCN),
2013 IEEE 38th Conference on. IEEE, 2013.
[29] K. Kaemarungsi, and P. Krishnamurthy, “Analysis of WLAN’s
received signal strength indication for indoor location fingerprinting”.
Pervasive and Mobile Computing. 2012, 8, 292.316.
[30] J. Luo, J.; Zhan, X. “Characterization of Smart Phone Received Signal
Strength Indication for WLAN Indoor Positioning Accuracy
Improvement”. Journal of Networks. 2014, 9, 739.746.
[31] Interline 14dB panel antenna IP-G14-F2425-H, datasheet available online
at: http://www.interline.pl/antennas/PANEL-14-2.4GHz
[32] Atheros AR9380 chipset datasheet, available online at:
https://wikidevi.com/files/Atheros/specsheets/AR9380.pdf
[33] IEEE 802.11.g-2003 standard, available online at:
http://standards.ieee.org/getieee802/download/802.11g-2003.pdf
[34] Rodhe&Schwarz ZVL6 Vector Network Analyzer, available online at:
http://www.testequipmenthq.com/datasheets/Rohde-Schwarz-ZVL6-
Datasheet.pdf
[35] P. Bahl, and V.N. Padmanabhan, “RADAR: an in-building RF-based
user location and tracking system”, In Proceedings IEEE INFOCOM,
vol. 2, pp. 775.784, 2000.
[36] P. Bahl, V.N. Padmanabhan, and A. Balachandran. "Enhancements to
the RADAR user location and tracking system." Microsoft Research
2. MSR-TR-2000-12. pp.775-784, 2000
[37] P. M.ller, M. Raitoharju, and R. Pich., “A field test of parametric
WLAN-fingerprint-positioning methods,” in Proc. 17th Int Conf. Inf.
Fusion, pp. 1.8, 2014.

[38] A. Khalajmehrabadi, N. Gatsis, And D. Akopian, "Modern WLAN
Fingerprinting Indoor Positioning Methods and Deployment
Challenges”, IEEE Communications Surveys & Tutorials, 19(3), pp.
1974.2002. 2017
[39] P. Davidson, and R.A. Piche, R. "A Survey of Selected Indoor
Positioning Methods for Smartphones", IEEE Communications
Surveys & Tutorials, 19(2), 1347.1370, 2017.
[40] Q.D. Vo, and P. De, "A Survey of Fingerprint-Based Outdoor
Localization", IEEE Communications Surveys & Tutorials, 18(1),
491.506, 2016.
[41] Y. Feng et al., “An improved indoor localization of Wi-FI based on
support vector machines,” Int. J. Future Gener. Commun. Netw.,vol.7,
no. 5, pp. 191.206, 2014.
[42] J. Xiong, and K. Jamieson, ArrayTrack: A Fine-Grained Indoor
Location System", USENIX Symposium on Networked Systems Design
and Implementation, pp .71.84, 2013
[43] J. Gjengset, J. Xiong, G. McPhillips, and K. Jamieson, "Phaser:
Enabling Phased Array Signal Processing on Commodity Wi-FI Access
Points", in Proceedings of the 20th annual international conference on
Mobile computing and networking - MobiCom ’14, pp. 153.164, 2014.
[44] M- Kotaru, K. Joshi, D. Bharadia, and S. Katti, "Spotfi: Decimeter
level localization using Wi-FI". In ACM SIGCOMM Computer
Communication Review (Vol. 45, No. 4, pp. 269-282). ACM. 2015.
[45] C. Chen, Y. Chen, Y. Han, H.-Q. Lai, H.-Q., and K.J.R. Liu,
"Achieving Centimeter Accuracy Indoor Localization on Wi-FI
Platforms: A Frequency Hopping Approach", IEEE Internet of Things
Journal, vol 4, pp. 111-121., 2017
[46] C. Chen, Y. Chen, Y. Han, H.-Q. Lai, H.-Q., and K.J.R. Liu,
"Achieving Centimeter Accuracy Indoor Localization on Wi-FI
Platforms: An Multi-Antenna Approach", IEEE Internet of Things
Journal, vol 4, pp 122-134. 2016.
[47] A. Hirata, T. Morimoto, and Z. Kawasaki, "DOA estimation of ultrawideband
EM waves with MUSIC and interferometry ", IEEE
Antennas and Wireless Propagation Letters, pp 190.193. 2003
[48] M. Wang, S., Yang, S. Wu, and F. Luo, F.. "A RBFNN approach for
DoA estimation of ultra wideband antenna array”, Neurocomputing,
pp. 631.640. 2008
[49] S. Mishra, R.N., Yadav, and R.P. Singh, "A Survey on Applications of
Multi Layer Perceptron Neural Networks in DOA Estimation for Smart
Antennas”, International Journal of Computer Application, pp. 22.28.
2013.
[50] M. Laaraiedh, S. Avrillon and B. Uguen, "Enhancing Positioning
Accuracy through Direct Position Estimators Based on Hybrid RSS
Data Fusion," VTC Spring 2009 - IEEE 69th Vehicular Technology
Conference, pp. 1-5, 2009.
[51] A. Yassine, Y. Nasser, M. Awad, and B. Uguen, "Hybrid positioning
data fusion in heterogeneous networks with critical hearability",
Eurasip Journal on Wireless Communications and Networking, pp. 1.
16. 2014.

##119

Improving Multipath TCP Performance over Wi-FI and Cellular Networks: an Analytical Approach Shiva Raj Pokhrel and Michel Mandjes
REFERENCES
[1] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion control
for multipath transport protocols, IETF RFC 6356,” 2011.
[2] Y.-C. Chen and D. Towsley, “On bufferbloat and delay analysis of
multipath TCP in wireless networks,” in Proc. Networking, IFIP. IEEE,
2014, pp. 1.9.
[3] V. Sharma, K. Kar, K. Ramakrishnan, and S. Kalyanaraman, “A transport
protocol to exploit multipath diversity in wireless networks,” Networking,
IEEE/ACM Transactions on, vol. 20, no. 4, pp. 1024.1039, 2012.
[4] F. H. Mirani, M. A. Tran, and N. Boukhatem, “Intelligent data-striping:
A predictive scheduling mechanism,” in Proc. 6th International Wireless
Communications and Mobile Computing Conference. ACM, 2010, pp.
949.953.
[5] M. Li, A. Lukyanenko, S. Tarkoma, Y. Cui, and A. Yl.-J..ski, “Tolerating
path heterogeneity in multipath TCP with bounded receive buffers,”
Computer Networks, vol. 64, pp. 1.14, 2014.
[6] C. Xu, P. Wang, C. Xiong, X. Wei, and G.-M. Muntean, “Pipeline
network coding-based multipath data transfer in heterogeneous wireless
networks,” IEEE Transactions on Broadcasting, 2016.
[7] M. Panda, H. Vu, M. Mandjes, and S. R. Pokhrel, “Performance analysis
of TCP NewReno over a cellular last-mile: Buffer and channel losses,”
Mobile Computing, IEEE Transactions on, vol. 21, no. 5, pp. 1629 .
1643, 2015.
[8] S. R. Pokhrel, M. Panda, H. Vu, and M. Mandjes, “TCP performance over
Wi-Fi: Joint impact of buffer and channel losses,” Mobile Computing,
IEEE Transactions on, vol. 15, no. 5, pp. 1279.1291, 2016.
[9] S. R. Pokhrel, M. Panda, and H. Vu, “Analytical modeling of multipath
TCP over last-mile wireless,” Networking, IEEE/ACM Transactions on,
p. accepted for publication, 2017.
[10] S. H. Baidya and R. Prakash, “Improving the performance of multipath
TCP over heterogeneous paths using slow path adaptation,” in ICC.
IEEE, 2014, pp. 3222.3227.
[11] S. Ferlin, .. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revisiting
congestion control for multipath TCP with shared bottleneck detection,”
in INFOCOM. IEEE, 2016, pp. 1.9.
[12] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing
and rate control,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 2, pp. 5.12, 2005.
[13] T. Voice, “Stability of multi-path dual congestion control algorithms,” in
Proc. 1st international conference on Performance evaluation methodolgies
and tools. ACM, 2006, p. 56.
[14] H. Han, S. Shakkottai, C. Hollot, R. Srikant, and D. Towsley, “Multipath
TCP: a joint congestion control and routing scheme to exploit
path diversity in the internet,” Networking , IEEE/ACM Transactions on,
vol. 14, no. 6, pp. 1260.1271, 2006.
[15] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multIPath TCP.”
in Proc. USENIX NSDI Conference, vol. 11, 2011, pp. 8.8.
[16] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
Pareto-optimal: performance issues and a possible solution,” Networking,
IEEE/ACM Transactions on,, vol. 21, no. 5, pp. 1651.1665, 2013.
[17] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis,
design, and implementation,” Networking, IEEE/ACM Transactions on,
pp. 596.609, 2016.
[18] C. Xu, J. Zhao, and G.-M. Muntean, “Congestion control design for
multipath transport protocols: a survey,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 4, pp. 2948.2969, 2016.
[19] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen, “Accelerating
multipath transport through balanced subflow completion,” in Proc. 23rd
Annual International Conference on Mobile Computing and Networking.
ACM, 2017, pp. 141.153.
[20] A. Balasubramanian and L. Ma, “Detecting shared congested router for
mobile communication using multiple-interface devices,” in GLOBECOM.
IEEE, 2015, pp. 1.6.
[21] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of multipath TCP performance
over wireless networks,” in Proc. Internet Measurement Conference.
ACM, 2013, pp. 455.468.
[22] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path transport over
heterogeneous wireless networks: Does it really pay off?” in GLOBECOM.
IEEE, 2014, pp. 4807.4813.
[23] M. Kuehlewind, G. Hazel, S. Shalunov, and J. Iyengar, “RFC 6817-low
extra delay background transport (LEDBAT),” 2012.
[24] S. McCanne and S. Floyd., “The ns Network Simulator.”
http://www.isi.edu/nsnam/ns/, 2015.
[25] A. Ford, C. Raiciu, M. Handley, O. Bonaventure et al., “TCP extensions
for multipath operation with multiple addresses, IETF RFC 6824,” IETF
MPTCP proposal, 2011.
[26] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “Wi-FI, LTE,
or Both?: measuring multi-homed wireless internet performance,” in
Proc. Internet Measurement Conference. ACM, 2014, pp. 181.194.
[27] M. Pittoni, “Online identification of last-mile throughput bottlenecks on
home routers,” Ph.D. dissertation, UPMC, 2016.
[28] S. Sundaresan, N. Feamster, and R. Teixeira, “Home network or
access link? locating last-mile downstream throughput bottlenecks,” in
International Conference on Passive and Active Network Measurement.
Springer, 2016, pp. 111.123.
[29] “Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, IEEE Std 802.11-2007,” June 2007.
[30] S. Ferlin-Oliveira, T. Dreibholz, and O. Alay, “Tackling the challenge of
bufferbloat in multi-path transport over heterogeneous wireless networks,”
in IWQoS, 2014.
[31] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” Selected Areas in Communications, IEEE Journal
on, vol. 18, no. 3, pp. 535.547, 2000.
[32] D. Moltchanov, “A study of TCP performance in wireless environment
using fixed-point approximation,” Computer Networks, vol. 56, no. 4, pp.
1263.1285, 2012.
[33] R. Gibbens, S. Sargood, C. V. Eijl, F. Kelly, H. Azmoodeh, R. Macfadyen,
and N. Macfadyen, “Fixed-point models for the end-to-end performance
analysis of IP networks,” in 13th ITC Specialist Seminar: IP Traffic
Measurement, Modeling and Management, 2000.
[34] D. Abendroth, H. van den Berg, and M. Mandjes, “A verstaile model
for TCP bandwidth sharing in networks with heterogeneous users,” AE.
International Journal of Electronics and Communications, vol. 64, pp.
717.728, 2006.
[35] S. H. Low, “A duality model of TCP and queue management algorithms,”
Networking, IEEE/ACM Transactions on, vol. 11, no. 4, pp. 525.536,
2003.
[36] K. Nakagawa, “On the series expansion for the stationary probabilities of
an M/D/1 queue,” Journal of the Operations Research Society of Japan,
vol. 48, no. 2, pp. 111.122, 2005.

[37] R. Bruno, M. Conti, and E. Gregori, “Throughput analysis and measurements
in IEEE 802.11 WLANs with TCP and UDP traffic flows,” Mobile
Computing, IEEE Transactions on, vol. 7, no. 2, pp. 171.186, 2008.
[38] F. Cal., M. Conti, and E. Gregori, “Dynamic tuning of the IEEE
802.11 protocol to achieve a theoretical throughput limit,” Networking,
IEEE/ACM Transactions on, vol. 8, no. 6, pp. 785.799, 2000.
[39] M. Zorzi, R. R. Rao, and L. B. Milstein, “ARQ error control for fading
mobile radio channels,” IEEE Transactions on Vehicular Technology,
vol. 46, no. 2, pp. 445.455, 1997.
[40] S. McCanne and S. Floyd., “[online] www.isi.edu/nsnam/ns/,” 2015.
View publication stats

参考資料(reference)

Wi-FI(無線網) Antenna(空中線)(3)でresearchgateで文献調査
https://qiita.com/kaizen_nagoya/items/2cff082e2ef214f2b377

Wi-FI(無線網) Antenna(空中線)(4) researchgateで文献調査 の参考文献一覧
https://qiita.com/kaizen_nagoya/items/e7474ca67842565334b1

無線網(Wi-FI)空中線(antenna)(5) 設置(install)設計(design)
https://qiita.com/kaizen_nagoya/items/d71eece182768e97039a

Wi-FI(無線網) Antenna(空中線)(6) 空中線(antenna)の特性
https://qiita.com/kaizen_nagoya/items/4cd18795fbb5eb79896c

無線網(Wi-FI)空中線(antenna) (7) 障害物と反射物
https://qiita.com/kaizen_nagoya/items/e1a8123094c1d1d836a9

無線網(Wi-FI)と空中線(antenna)(8) 仰角(elevation) 方位(azimuth)
https://qiita.com/kaizen_nagoya/items/3553ed48e1b03c7340a3

無線網(Wi-FI)空中線(antenna)(1) 検索論文拝読
https://qiita.com/kaizen_nagoya/items/d6db5de2628a8ebfed94

無線網(Wi-FI)空中線(antenna)(2) 802.11 Wireless LAN Fundamentals を拝読
https://qiita.com/kaizen_nagoya/items/1ff8e127b52902d34cfd

無線網(Wi-FI)空中線(antenna)(21) 無料無線網(Wi-FI)利用で便利なこと、不便なこと
https://qiita.com/kaizen_nagoya/items/9244aa0906cbedec83aa

無線網(Wi-FI)空中線(antenna)(22) Wi-FI Related document
https://qiita.com/kaizen_nagoya/items/c484c9f21b9d6fc5481e

無線網(Wi-FI)空中線(antenna)(31) 災害時のWi-FI-bluetooth網の構築
https://qiita.com/kaizen_nagoya/items/2d82637301650c202715

無線網(Wi-FI)空中線(antenna)(32) 災害時のWi-FIおよびbluetooth系の安全分析<予定>
https://qiita.com/kaizen_nagoya/items/c8c679beae7082df47bf

RFCを読む、翻訳する、整理する
https://qiita.com/kaizen_nagoya/items/97212ce0a21bc28faa6a

RadiusのRFCを読む。
https://qiita.com/kaizen_nagoya/items/2d17342b9abfac945a1c

AAAのRFCを読む
https://qiita.com/kaizen_nagoya/items/dab6ecf20ca742789124

プログラマが知っているとよい無線通信(WLAN)<書きかけ>
https://qiita.com/kaizen_nagoya/items/0f09d0b42028aca93bdf

通信入門<書きかけ>
https://qiita.com/kaizen_nagoya/items/bdfd74d6ac0ee7317fa5

無線LAN調査ツール
https://researchmap.jp/jos8u6830-1826017/#_1826017

blue backs サイバー攻撃 ネット世界の裏側で起きていること 中島明日香
https://qiita.com/kaizen_nagoya/items/9570e4378def5e9434ea

電波防護指針
https://qiita.com//kaizen_nagoya/items/e19beab62b063f0be3e9

Macintosh対応「基礎からわかるTCP/IP アナライザ作成とパケット解析 Linux/FreeBSD対応」小高知宏 オーム社
https://qiita.com/kaizen_nagoya/items/517411b42fc5ceabd581

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on the individual's experience. It has nothing to do with the organization or business to which I currently belong.

文書履歴(document history)

ver. 0.01 初稿 20190311
ver. 0.02 表題統一 20190312

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?