LoginSignup
0

More than 1 year has passed since last update.

WiFi-Friendly Building to Enable WiFi Signal Indoor。Wi-Fi(無線網) antenna(空中線)(1) 検索論文拝読

Last updated at Posted at 2019-03-07

無線網(Wi-Fi) と 空中線(antenna)

「WiFi」 と 「antenna」で検索した論文を拝読

https://researchgate.net
で「 wifi antenna 」で検索して出てきた論文で,download可能な次の文献を起点に、参考文献の参考文献を一覧
WiFi-Friendly Building to Enable WiFi Signal Indoor
Article · March 2018
Suherman Suherman
University of Sumatera Utara
http://journal.portalgaruda.org/index.php/EEI/article/view/871
http://iopscience.iop.org/article/10.1088/1755-1315/126/1/012022
を拝読。

<この項は書きかけです。順次追記します。>

REFERENCES

[1] Shidik G F, bin Muhamad Noh Z. A. Performance Evaluation of Bonding Techniques at Wireless 802.11n. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2013; 11(1), 181-190. www.indjst.org/index.php/indjst/article/download/93565/71624

[2] Bahaweres R B, Karya O T, and Alaydrus M. Transmission of Real-time Video Signal with Interference Density and Human Traffic. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2015; 13(4), 1352-1360. https://bit.ly/2C9OITF

[3] Gu Y, Ren F, and Li J. PAWS: Passive Human Activity Recognition Based on WiFi Ambient Signals. IEEE Internet of Things Journal. 2016; 3(5), 796-805. https://ieeexplore.ieee.org/document/7364159

[4] Bulut E, Szymanski B K. WiFi access point deployment for efficient mobile data offloading. ACM SIGMOBILE Mobile Computing and Communications Review. 2013; 17(1), 71-78. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.438.3619&rep=rep1&type=pdf

[5] Lee G. 3D coverage location modeling of Wi-Fi access point placement in indoor environment. Computers, Environment and Urban Systems. 2015; 54, 326-335. https://www.sciencedirect.com/science/article/pii/S0198971515000551

[6] Farsi A, Achir N, Boussetta, K. WLAN planning: Separate and joint optimization of both access point placement and channel assignment. Annuals of telecommunications-annales des telecommunications. 2015; 70(5-6), 263-274. https://link.springer.com/article/10.1007/s12243-014-0447-2

[7] Varzandian S, Zakeri H, Ozgoli S. Locating WiFi access points in indoor environments using non-monotonic signal propagation model. IEEE Asian Control Conference (ASCC). 2013; pp. 1-5. https://ieeexplore.ieee.org/document/6606157

[8] Ma R, Guo Q, Hu C, Xue J. An improved WiFi indoor positioning algorithm by weighted fusion. Sensors. 2015; 15(9), 21824-21843. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610424/

[9] Retscher G, Moser E, Vredeveld D, Heberling D, Pamp J. Performance and accuracy test of a WiFi indoor positioning system. Journal of Applied Geodesy jag. 2007; 1(2), 103-110. https://www.degruyter.com/view/j/jag.2007.1.issue-2/jag.2007.013/jag.2007.013.xml

[10] Barcelo-Arroyo F, Martin-Escalona I, Ciurana-Adell M. Positioning Terminals in Mobile Computing Networks.Mobile Computing. 2013; 11. https://upcommons.upc.edu/bitstream/handle/2117/19420/Positioning+Terminals+in+Mobile+Computing.pdf;jsessionid=4E0DD303B59D0FB320E37A24B9B6ADF7?sequence=1

[11] Sangogboye F C, Droegehorn O, Porras J. Analyzing the Payback Time of Investments in Building Automation. In Sustainable Ecological Engineering Design. 2016; pp. 367-381.

[12] Rec. ITU-R P.2040-1, ITU-R Recommendation, Vol.1, Effects of building materials and structures on radiowave propagation above about 100 MHz, P Series, ITU, Geneva, 2015. https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2040-1-201507-I!!PDF-E.pdf

[13] Rappaport T S, Seidel S Y, Takamizawa K. Statistical channel impulse response models for factory and open plan building radio communication system design. IEEE Trans. Communication. 1999; 39(5), pp.794-807. https://ieeexplore.ieee.org/document/87142

[14] Hashemi H. The indoor radio propagation channel. Proceedings of the IEEE. 1993; 81(7), 943-968. https://wsl.stanford.edu/~ee359/hashemi_indoor.pdf

[15] Weiner J. The physics of light transmission through subwavelength apertures and aperture arrays. Reports on progress in physics. 2009; 72(6), 064401.k https://ieeexplore.ieee.org/document/5031731

cited

  1. Underground Radio Propagation on Frequency Band 97 Mhz–130 Mhz, S Suherman, AH Rambe, AW Tanjung - 2018 https://www.sciencepubco.com/index.php/ijet/article/view/15352

  2. Optimizing the 802.11 hotspot performances by using load and resource balancing method, CJ Napitupulu, P Sihombing… - IOP Conference Series …, 2018 http://iopscience.iop.org/article/10.1088/1757-899X/420/1/012128

  3. Application of Information and Communication Technology in Libraries: Prospects and Challenges, TAAM Shaikh, http://www.ijern.com/journal/2014/December-2014/36.pdf

  4. State and Duration Model of Energy Consumption in A Wimax Mobile Device, S Suherman, N Mubarakah - 2018 https://www.sciencepubco.com/index.php/ijet/article/view/15351

  5. The Effects of Housing Environments on the Performance of Activity-Recognition Systems Using Wi-Fi Channel State Information: An Exploratory Study, H Lee, CR Ahn, N Choi, T Kim, H Lee - Sensors, 2019

reference on the cited papers

1)

[1] M. C. Akyildiz, I. F., Sun, Z., & Vuran, “Signal propagation techniques for wireless underground communication networks,” Phys. Commun., vol. 2, no. 3, p. 167–183., 2009.https://www.sciencedirect.com/science/article/pii/S1874490709000408

[2] S. Suherman, “WiFi-Friendly Building to Enable WiFi Signal Indoor,” Bull. Electr. Eng. Informatics, vol. 7, no. 2, 2018.(this top paper)

[3] I. F. Vuran, M. C., & Akyildiz, “Channel model and analysis for wireless underground sensor networks in soil medium,” Phys. Commun., vol. 3, no. 4, p. 245–254., 2010.https://bwn.ece.gatech.edu/papers/2010/j3.pdf

[4] D. Subramaniam et al., “A Stacked Planar Antenna with Switchable Small Grid Pixel Structure for Directive High Beam Steering Broadside Radiation,” Int. J. Eng. Technol., vol. 7, no. 2.5, pp. 122–127, Mar. 2018. https://www.sciencepubco.com/index.php/ijet/article/view/13966

[5] Z. S. and M. C. V. Ian F.Akyildiz, Signal propagation techniques for wireless underground communication networks. United States: Elsevier., 2009.([1]と同じ)

[6] S. Takahashi, K., Igel, J., Preetz, H., & Kuroda, “Basics and application of ground-penetrating radar as a tool for monitoring irrigation process,” Probl. Perspect. challenges Agric. water Manag., 2012. https://www.intechopen.com/books/problems-perspectives-and-challenges-of-agricultural-water-management/basics-and-application-of-ground-penetrating-radar-as-a-tool-for-monitoring-irrigation-process

[7] G. Mietzner, J., Nickel, P., Meusling, A., Loos, P., & Bauch, “Responsive communications jamming against radio-controlled improvised explosive devices,” IEEE Commun. Mag., vol. 50, no.10, p. 38–46., 2012. https://ieeexplore.ieee.org/document/6316774

[8] A. H. R. and R. F. A IM Dunia, Suherman, “Measuring the power consumption of social media applications on a mobile device,” J. Phys. Conf. Ser., vol. 978, no. 1, p. 012104, 2018.http://iopscience.iop.org/article/10.1088/1742-6596/978/1/012104

[9] C. J. Sadeghioon, A. M., Chapman, D. N., Metje, N., & Anthony, “A New Approach to Estimating the Path Loss in Underground Wireless Sensor Networks,” J. Sens. Actuator Networks, vol. 6, no. 3, p. 18, 2017.https://www.semanticscholar.org/paper/A-New-Approach-to-Estimating-the-Path-Loss-in-Sadeghioon-Chapman/466a0a628a813ba7ecb5ab61fcfe0a543ae654f2

2)

[1] Suherman S. 2018 WiFi-Friendly Building to Enable WiFi Signal Indoor Bull. Electr. Eng. Informatics 7

[2] Al-Akaidi M. 2017 A review on transport layer protocol performance for delivering video on an adhoc network IOP Conference Series: Materials Science and Engineering 237 012018

[3] Magade Krishnanjali A. and Patankar Abhijit 2014 Techniques for Load Balancing in Wireless LAN’s International Conference on Communication and Signal Processing, ICCSP 2014 - Proceedings 2248 1831-36 https://doi.org/10.1109/ICCSP.2014.695016

[4] Velayos H., Aleo V. and Karlsson G. 2004 Load balancing in overlapping wireless LAN cells 2004 IEEE Int. Conf. Commun. (IEEE Cat. No. 04CH37577) 7 3833-3836

[5] Balachandran A., Bahl P. and Voelker G. M. 2002 Hot-spot congestion relief in public-area wireless networks Proc. - 4th IEEE Work. Mob. Comput. Syst. Appl. WMCSA 2002 70-80

[6] Veeravalli O. K. V. 1997 A Locally Optimal Handoff Algorithms for Cellular Communication IEEE Trans. Veh. Technol. 46 603-609

[7] Wang S., Huang J., Cheng X. and Chen B. 2014 Coverage adjustment for load balancing with an AP service availability guarantee in WLANs Wirel. Networks 20 475-491

3)

  1. Information Communication Technology (ICT) Challenges for Library Professional: A Professional Approach May 2014, Manoj Kumar Verma

  2. The Convergence Theory on ICT, Society and Human Beings – towards the Good ICT society, Jul 2010, TripleC, Gunilla Bradley

  3. WiFi-Friendly Building to Enable WiFi Signal IndoorMar 2018, Suherman Suherman

  4. Impact of Entrepreneurship Education on the Career Aspirations of Nigerian Para-Professional Librarians-in-Training, Jul 2013 Chuma Opara NnadozieChuma Opara NnadoziePearl C. AkanwaPearl C. AkanwaChizoba Doris NnadozieChizoba Doris Nnadozie

  5. Report on the elinor electronic library pilot, Jan 1995, D.G. ZhaoD.G. ZhaoA. RamsdenA. Ramsden

  6. Challenges of using Information and Communication Technologies (ICTs) in university libraries and special libraries in Sri Lanka, Sep 2015, R.M.Nadeeka RathnabahuR.M.Nadeeka Rathnabahu

  7. Application of information and computer technology in modern libraries, Jan 2013, Aparna GunjalAparna GunjalSangeeta DhamdhereSangeeta Dhamdhere

  8. The application of Information and Communication Technology (I.C.T.) in Nigerian academic libraries prospects and problems, Sep 2008, Elisha MakoriElisha Makori

  9. An evaluation of internet connectivity of information technology firms in Minna Metropolis, Sep 2007, John AlhassanJohn AlhassanSolomon A. AdepojuSolomon A. Adepoju

  10. ICT Resources for Educational Purposes, María Luz Cacheiro-GonzálezMaría Luz Cacheiro-González

  11. ICT and Collection Management in Public Libraries: A Survey of South-South Zone of Nigeria, Jan 2011, Library Philosophy and Practice, Daniel EmojorhoDaniel Emojorho

  12. Impact of information and communication technology (ICT) on library staff training: A comparative study, Mar 2012, Seyed MohammadSeyed MohammadGhaemi TalabGhaemi TalabMasoumeh TajafariMasoumeh Tajafari

  13. The State of ICT Implementation and Training at the University of Khartoum Library System, Sep 2009, Omer Hassan AbdelrahmanOmer Hassan Abdelrahman

  14. The application of information technology and its relationship with organizational intelligence, Dec 2012, Fereydoon azmaFereydoon azmaMohammad ali mostafapourMohammad ali mostafapourHamid RezaeiHamid Rezaei

  15. The Electronic Library : An Indian Scenario, Jul 2005, V. FranklinV. FranklinDavid JebarajDavid JebarajM. DeivasigamaniM. Deivasigamani

  16. ICT Skills for Information Professionals in Developing Countries: Perspectives from a study of the electronic information environment in Nigeria, Mar 2005IFLA Journal, Linda AshcroftLinda AshcroftChris WattsChris Watts

  17. Communication and Information Technology in Literacy for Rural Development, Jun 2006, vasudeva rao b.svasudeva rao b.s

  18. Digital libraries: Development and challenges, Feb 2001, Library Review, R.K. SharmaR.K. SharmaK.R. VishwanathanK.R. Vishwanathan

  19. A Longitudinal Study of Undergraduates’ Academic Library Experiences, Sep 2001The Journal of Academic Librarianship, Ethelene Whitmire

  20. Digital libraries: An overview, Nov 2000, The Journal of Academic Librarianship, Candy Schwartz

  21. Use of information and communication technology in libraries and information centres: An Indian scenario, Aug 2004, The Electronic Library, Anjali Gulati

  22. Speaking Into The Air: A History of The Idea of Communication, Jan 1999, John Durham Peters

  23. Technology-Enhanced Learning in Developing Nations: A review, Feb 2008, International Review of Research in Open and Distance Learning, Gulati Shalni

  24. Aina, L. O. (2004). Coping with the Challenges of Library and Information Services: The Need for Institutionalized Professional Development. Nigerian Library Association Conference Proceedings, (p. 4).

  25. Beal, V. (n.d.). Wi-Fi (wireless networking). Retrieved December 23, 2018, from Webopedia: https://www.webopedia.com/TERM/W/Wi_Fi.html

  26. Chauhan, B. P. (2004). ICT enabled library and information services. Workshop of winter school ICT enabled library and information services. Patiala: Thapar Institute of Engineering and Technology.

  27. Dale, B., Uniogbokhai, A., & Nwadioha, E. N. (2010, November). Challenges of applying information communication technology (ICT) in the use of academic libraries in Nigeria. The Nigerian Academic Forum, 19(2), 3.

  28. Dunmill, M., & Arslanagic, A. (2006). ICT in Arts Education A Literature Review. Te Puna Puoru National Centre for Research in Music Education and Sound Arts., Commissioned by the New Zealand Ministry of Education. New Zealand: University of Canterbury. Retrieved December 25, 2018, from https://docplayer.net/8428005-Ict-in-arts-education-a-literature-review.html

  29. Ebijuwa, A. A. (2005). Information and Communication Technology in University Libraries: The Nigeria Experience. Journal of Library and Information Science, 17(1-2), 23-30.

  30. Ebunuwele, E. G., Ola, O. S., & Uduebor, E. A. (2014, December). Application of Information Communication Technology in academic libraries in Nigeria. International Journal of Education and Research, 2(12), 423-425.

  31. Gaddagimath, R., & Jange, S. (2006). Transformation of Role of Librarian in the Web Environment. 4th International Convention CALIBER 2006. (pp. 71014). Gulbarga, India: Gulbarga University.

  32. Oketunji, I. (2000). Application of information technologies in Nigerian libraries: problems and prospects. In P. O. Fayose, & K. Nwalo (Eds.), Information technology in library and information science education in Nigeria. (pp. 720). Ibadan: National Association of Library and Information Science Educators.

  33. Okomanyi, R. O. (2016, May). The prospect of academic libraries in the 21st century: challenges for information and communication technology in distance education. International Journal of Academia, 1(1), 128-128. Retrieved from http://www.globalacademicgroup.com/journals/academia/RAMATU%20O. pdf

  34. Patil, D. B., & Kooganurmath, M. M. (1994). Library and Information Science. New Delhi: Ashish.

  35. Paul, S., & Singh, S. P. (2012). ICT in Libraries: Prospects and Challenges. In T. Ashraf, & P. A. Gulati, Design, Development, and Management of Resources for Digital Library Services (pp. 342-358). Hershey, PA: IGI Global.

  36. Reitz, J. M. (2014). Online Dictionary for Library and Information Science (ODLIS). Santa Barbara, CA: ABC-CLIO, LLC. Retrieved from https://www.abc-clio.com/ODLIS/odlis_about.aspx#authorship

  37. Ridwan, S. M. (2015, February). Application of information and communication technology in the management of information resources and services in Kaduna state tertiary institutions libraries Kaduna-Nigeria. European Scientific Journal, 1(Special Edition), 10-18.

  38. Stokes, A. V. (1985). Concise Encyclopaedia of Information Technology. 2nd ed. London: (2nd ed.). London, England: Gower.

  39. Tiwari, S. K. (2016, February). A Study on the Impact of ICT on Library and Information Services. International Journal of Recent Advances in Engineering & Technology, 4(1 Special Issue), 26-31. Retrieved December 25, 2018, from https://pdfs.semanticscholar.org/ac12/ad54ce7b2933a2b2266685772c47647

  40. Vijayakumar, A., & Vijayan, S. S. (2011, Oct-Dec). Application of Information Technology in Libraries: An Overview. International Journal of Digital Library Services, 1(2), 144-147..

4)

[1] S. Marwan Al-Akaidi, “A transport layer protocol for uplink WiMAX video streaming,” Int. J. Multimed. Ubiquittous Eng., vol. 10, no. 1, pp. 19–32, 2015.

[2] M. Suherman, S., & Al-Akaidi, “Increasing uplink broadband video streaming protocol performance in WiMAX network.,” Int. J. Internet Protoc. Technol., vol. 7, no. 3, pp. 176–185, 2013.

[3] S. Suherman, “WiFi-Friendly Building to Enable WiFi Signal Indoor,” Bull. Electr. Eng. Informatics, vol. 7, no. 2, 2018.

[4] L. A. L. Hai Vu, S. Chan, “Performance Analysis of Best-Effort Service in Saturated IEEE 802.16 Networks,” EEE Trans. Veh. Technol., vol. 59, no. 1, p. 460–472., 2010.

[5] E. Mubarakah, N., Al-Hakim, M. Y., & Warman, “Energy consumption model on WiMAX subscriber station.(2018, February). Energy consumption model on WiMAX subscriber station. In IOP Conference Series: Materials Science and Engineering (Vol. 309, No. 1, p. 012002). IOP Publishing,” Energy Consum. Model WiMAX Subscr. Station. IOP Conf. Ser. Mater. Sci. Eng., vol. 309, no. 1, p. 012002, 2018.

[6] S. R. AV. Wale, “WIMAX Performance Analysis Using Different Antenna Configurations with MIMO-OFDM.,” 2017.

[7] M. S. KL. Huang, VC. Gaudet, “A hybrid ARQ scheme using LDPC codes with stochastic decoding.,” in 49th Annual Conference on In Information Sciences and Systems (CISS), 2015, pp. 1–4.

[8] M. Fakhrizal, S. R., & Al-Akaidi, “A subjective scheduler for subjective dedicated networks,” IOP Conf. Ser. Mater. Sci. Eng., vol. 237, no. 1, p. 012019, 2017.

[9] R. A. R. Al-Hiti, A. S., Latip, R., Sahbudin, R. K., & Mahmood, “Comparative Analysis of Routing Protocols Over WiMAX,” Adv. Sci. Lett., vol. 24, no. 2, pp. 1303–1306, 2018.

[10] D. Subramaniam et al., “A Stacked Planar Antenna with Switchable Small Grid Pixel Structure for Directive High Beam Steering Broadside Radiation,” Int. J. Eng. Technol., vol. 7, no. 2.5, pp. 122–127, Mar. 2018.

[11] M. O. A. Belghith, A. Walha, B. Cousin, “Synchronized power saving mechanism for WiMAX networks,” in IEEE International Conference on Communications (ICC), 2017, pp. 1–6.

[12] N. Mubarakah, “Reducing mobile device energy consumption in transmitting multimedia content by arranging transport protocol load,” in Technology of Information and Communication (ISemantic), International Seminar on Application for, 2016.

[13] N. S. Bezerra, “Modelling Power Consumption in IEEE 802.16e WiMAX Mobile Nodes,” in The 7th International Telecommunications Symposium, 2010.

[14] U. Khair, H. Fahmi, S. Al Hakim, and R. Rahim, “Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error,” J. Phys. Conf. Ser., vol. 930, no. 1, p. 012002, Dec. 2017.

[15] R. Rahim, “Man-in-the-middle-attack prevention using interlock protocol method,” ARPN J. Eng. Appl. Sci., vol. 12, no. 22, pp. 6483–6487, 2017.

[16] Suherman, “Reducing Transmission Control Protocol Delay in 802.11 Network by Prioritizing the Acknowledgement Packets,” in The 6th International Conference on Information Technology for Cyber and IT Service Management (CITSM ), 2018.

5)

  1. Tan, B.; Chen, Q.; Chetty, K.; Woodbridge, K.; Li, W.; Piechocki, R. Exploiting WiFi Channel State Information for Residential Healthcare Informatics. IEEE Commun. Mag. 2018, 56, 130–137.

  2. Yousefi, S.; Narui, H.; Dayal, S.; Ermon, S.; Valaee, S. A survey on behavior recognition using wifi channel state information. IEEE Commun. Mag. 2017, 55, 98–104.

  3. Wang, H.; Zhang, D.; Wang, Y.; Ma, J.; Wang, Y.; Li, S. RT-Fall: A Real-Time and Contactless Fall Detection System with Commodity WiFi Devices. IEEE Trans. Mob. Comput. 2017, 16, 511–526.

  4. Ali, K.; Liu, A.X.; Wang, W.; Shahzad, M. Keystroke recognition using wifi signals. In Proceedings of the Annual International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 90–102.

  5. Bahl, P.; Padmanabhan, V.N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 26–30 March 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 2, pp. 775–784.

  6. Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Manand Cybern. Part C (Appl. Rev.) 2007, 37, 1067–1080.

  7. Chang, H.; Tian, J.; Lai, T.-T.; Chu, H.-H.; Huang, P. Spinning beacons for precise indoor localization. In Proceedings of the ACM Conference on Embedded Network Sensor Systems, Raleigh, NC, USA, 5–7 November 2008; ACM: New York, NY, USA, 2008; pp. 127–140.

  8. Azizyan, M.; Constandache, I.; Roy Choudhury, R. SurroundSense: Mobile phone localization via ambience fingerprinting. In Proceedings of the Annual International Conference on Mobile Computing and Networking, Beijing, China, 20–25 September 2009; ACM: New York, NY, USA, 2009; pp. 261–272.

  9. Xiong, J.; Jamieson, K. ArrayTrack: A fine-grained indoor location system. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation, Lombard, IL, USA, 2–5 April 2013; USENIX: Berkeley, CA, USA, 2013.

  10. Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor localization via channel response. ACM Comput. Surv. (CSUR) 2013, 46, 25.

  11. Au, A.W.S.; Feng, C.; Valaee, S.; Reyes, S.; Sorour, S.; Markowitz, S.N.; Gold, D.; Gordon, K.; Eizenman, M. Indoor tracking and navigation using received signal strength and compressive sensing on a mobile device. IEEE Trans. Mob. Comput. 2013, 12, 2050–2062.

  12. Tahat, A.; Kaddoum, G.; Yousefi, S.; Valaee, S.; Gagnon, F. A look at the recent wireless positioning techniques with a focus on algorithms for moving receivers. IEEE Access 2016, 4, 6652–6680.

  13. Orphomma, S.; Swangmuang, N. Exploiting the wireless RF fading for human activity recognition. In Proceedings of the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, 15–17 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5.

  14. Adib, F.; Kabelac, Z.; Katabi, D.; Miller, R.C. 3D Tracking via Body Radio Reflections. In Proceedings of the NSDI 2014, Seattle, WA, USA, 2–4 April 2014; USENIX: Berkeley, CA, USA, 2014; Volume 14, pp. 317–329.

  15. Arshad, S.; Feng, C.; Liu, Y.; Hu, Y.; Yu, R.; Zhou, S.; Li, H. Wi-chase: A WiFi based human activity recognition system for sensorless environments. In Proceedings of the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

  16. Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. Tool release: Gathering 802.11 n traces with channel state information. ACM Sigcomm Comput. Commun. Rev. 2011, 41, 53.

  17. Liu, X.; Cao, J.; Tang, S.; Wen, J. Wi-Sleep: Contactless sleep monitoring via WiFi signals. In Proceedings of the 2014 IEEE Real-Time Systems Symposium (RTSS), Rome, Italy, 2–5 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 346–355.

  18. Wang, Y.; Liu, J.; Chen, Y.; Gruteser, M.; Yang, J.; Liu, H. E-eyes: Device-free location-oriented activity identification using fine-grained wifi signatures. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; ACM: New York, NY, USA, 2014; pp. 617–628.

  19. Wang, X.; Gao, L.; Mao, S.; Pandey, S. DeepFi: Deep learning for indoor fingerprinting using channel state information. In Proceedings of the Wireless Communications and Networking Conference, New Orleans, LA, USA, 9–12 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1666–1671.

  20. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based fingerprinting for indoor localization: A deep learning approach. IEEE Trans. Veh. Technol. 2017, 66, 763–776.

  21. Wang, W.; Liu, A.X.; Shahzad, M. Gait recognition using wifi signals. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–15 September 2016; ACM: New York, NY, USA, 2016; pp. 363–373.

  22. Wang, Y.; Wu, K.; Ni, L.M. Wifall: Device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. 2017, 16, 581–594.

  23. Adib, F.; Katabi, D. See through Walls with WiFi! ACM: Hong Kong, China, 2013; Volume 43.

  24. Tesserault, G.; Malhouroux, N.; Pajusco, P. Determination of material characteristics for optimizing WLAN radio. In Proceedings of the European Conference on Wireless Technologies, Munich, Germany, 8–10 October 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 225–228.

  25. UmaMaheswararao, M.; Kadaru, B.B. Seeing Through Walls Using Wi-Vi. Int. Res. J. Eng. Technol. 2017, 4, 2088–2091.

  26. Pu, Q.; Gupta, S.; Gollakota, S.; Patel, S. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, Miami, FL, USA, 30 September–4 October 2013; ACM: New York, NY, USA, 2013; pp. 27–38.

  27. Wu, K.; Xiao, J.; Yi, Y.; Chen, D.; Luo, X.; Ni, L.M. CSI-based indoor localization. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1300–1309.

  28. Youssef, M.; Agrawala, A. The Horus location determination system. Wirel. Netw. 2008, 14, 357–374.

  29. Borhani, A.; Pätzold, M. A Non-Stationary Channel Model for the Development of Non-Wearable Radio Fall Detection Systems. IEEE Trans. Wirel. Commun. 2018, 17, 7718–7730.

  30. Wang, X.; Yang, C.; Mao, S. PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In Proceedings of the IEEE 37th International Conference on Distributed Computing Systems, Atlanta, GA, USA, 5–8 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1230–1239.

  31. Nandakumar, R.; Kellogg, B.; Gollakota, S. Wi-fi gesture recognition on existing devices. arXiv, 2014; arXiv:1411.5394.

  32. Keerativoranan, N.; Haniz, A.; Saito, K.; Takada, J. Mitigation of CSI Temporal Phase Rotation with B2B Calibration Method for Fine-Grained Motion Detection Analysis on Commodity Wi-Fi Devices. Sensors 2018, 18, 3795.

  33. Pele, O.; Werman, M. Fast and robust Earth Mover’s Distances. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 460–467.

  34. Lee, H.; Ahn, C.R.; Choi, N. Frequency-domain analysis for wi-fi based human activity recognition systems in smart homes. In Proceedings of the 18th International Conference on Construction Applications of Virtual Reality, Auckland, New Zealand, 22–23 November 2018.

  35. Zheng, Y.; Yang, Z.; Yin, J.; Wu, C.; Qian, K.; Xiao, F.; Liu, Y. Combating Cross-Technology Interference for Robust Wireless Sensing with COTS WiFi. In Proceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9.

  36. Rudd, R.; Craig, K.; Ganley, M.; Hartless, R. Building Materials and Propagation; Final Report; Ofcom: London, UK, 2014; Volume 2604.

  37. Namai, A.; Sakurai, S.; Nakajima, M.; Suemoto, T.; Matsumoto, K.; Goto, M.; Sasaki, S.; Ohkoshi, S. Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J. Am. Chem. Soc. 2008, 131, 1170–1173.

  38. Suherman, S. WiFi-Friendly Building to Enable WiFi Signal Indoor. Bull. Electr. Eng. Inform. 2018, 7, 264–271.

  39. Jowitt, T. New paint promises low-cost Wi-Fi shielding. Netw. World Can. 2009, 25, N_A. [Google Scholar]

reference on the reference on the cited papers

1-1

  1. Cross-layer packet size optimization for wireless terrestrial, underwater, and underground sensor networks, Jan 2008, M.C. VuranM.C. VuranIan F. AkyildizIan F. Akyildiz

  2. RADIO PROPAGATION IN HALLWAYS AND STREETS FOR UHF COMMUNICATIONS, Dana Porrat, Donald C. Cox, Antony C. Fraser-smith, Andrea Goldsmith

  3. Geometrical Optical Approach for Electromagnetic Wave Propagation in Rectangular Mine Tunnels, Dec 1974, Radio Science, S.F. MahmoudS.F. MahmoudJames R. WaitJames R. Wait

  4. Characteristics of Underground Channel for Wireless Underground Sensor Networks, May 2012, Li LiyLi LiyMehmet C. VuranMehmet C. VuranIan F. AkyildizIan F. Akyildiz

  5. Excitation of UHF radio waves in tunnels, Sep 1999, Microwave and Optical Technology Letters, YP ZhangYP ZhangG. X. ZhengG. X. ZhengJ. H. ShengJ. H. Sheng

  6. Underground Wireless Communication Using Magnetic Induction, Jul 2009, Zhi SunZhi SunIan F. AkyildizIan F. Akyildiz

  7. Channel Modeling and Analysis for Wireless Networks in Underground Mines and Road Tunnels, Jul 2010, IEEE Transactions on Communications, Zhi SunZhi SunIan F. AkyildizIan F. Akyildiz

  8. Wireless underground sensor networks: Research challenges, Nov 2006, Ad Hoc Networks, Ian F. AkyildizIan F. AkyildizErich P. StuntebeckErich P. Stuntebeck

  9. NeXt Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey, Sep 2006, Computer Networks, Ian F. AkyildizIan F. AkyildizWon-Yeol LeeWon-Yeol LeeMehmet C. VuranMehmet C. VuranShantidev MohantyShantidev Mohanty

  10. Channel model and analysis for wireless underground sensor networks in soil medium, Dec 2010, Physical Communication, Mehmet C. VuranMehmet C. VuranIan F. AkyildizIan F. Akyildiz

  11. Channel Modeling of Wireless Networks in Tunnels, Jan 2008, Zhi SunZhi SunIan F. AkyildizIan F. Akyildiz

  12. Cross-Layer Packet Size Optimization for Wireless Terrestrial, Underwater, and Underground Sensor Networks, Apr 2008, Proceedings - IEEE INFOCOM, Mehmet C. VuranMehmet C. VuranIan F. AkyildizIan F. Akyildiz

  13. Empirical Evaluation of Wireless Underground-to-Underground Communication in Wireless Underground Sensor Networks, Jun 2009, Agnelo R SilvaAgnelo R SilvaMehmet Can VuranMehmet Can Vuran

  14. Principles of Mobile Communication, Jan 1996, Microelectronics Journal, Gordon L. StüberGordon L. Stüber

  15. Waveguides: characteristic modes of hollow rectangular dielectric waveguides, May 1976, Applied Optics, Katherine D. LaakmannKatherine D. LaakmannWilliam H. SteierWilliam H. Steier

  16. Magnetic Induction IC for Wireless Communication in RF-Impenetrable Media, May 2007, Nathan JackNathan JackKrishna ShenaiKrishna Shenai

  17. RF propagation in tunnel enviroments, Jan 2004, Carmen CerasoliCarmen Cerasoli

  18. Magneto-inductive (MI) communications, Feb 2001, John J. SojdeheiJohn J. SojdeheiPaul N. WrathallPaul N. WrathallDonald F. DinnDonald F. Dinn

  19. Wireless propagation in tunnels, May 2007, IEEE Antennas and Propagation Magazine, Donald G. DudleyDonald G. DudleyMartine LienardMartine LienardS.F. MahmoudS.F. MahmoudPierre DegauquePierre Degauque

  20. Near-field magnetic communication, May 2004, IEEE Antennas and Propagation Magazine, Rajeev BansalRajeev Bansal

  21. Corrections to Dielectric Properties of Soils in the 0.3-1.3-GHz Range, Dec 1995, IEEE Transactions on Geoscience and Remote Sensing, N.R. PeplinskiN.R. PeplinskiF.T. UlabyF.T. UlabyM.C. DobsonM.C. Dobson

  22. Dielectric properties of soils in the 0.3-1.3-GHz range, Jun 1995, IEEE Transactions on Geoscience and Remote Sensing, Neil R. PeplinskiNeil R. PeplinskiFawwaz T. UlabyFawwaz T. UlabyMyron C. DobsonMyron C. Dobson

  23. Interpretation of MIMO Channel Characteristics in Rectangular Tunnels From Modal Theory, Jun 2008, IEEE Transactions on Vehicular Technology, Jose-Maria Molina-Garcia-PardoJose-Maria Molina-Garcia-PardoMartine LienardMartine LienardPierre DegauquePierre Degauque[...]Leandro Juan-LlacerLeandro Juan-Llacer

  24. Estimation of the number of frequencies and bandwidth for the surface measurement of soil moisture as a function of depth, Nov 2000, IEEE Transactions on Instrumentation and Measurement, John R. HoldemJohn R. HoldemRichard B. KeamRichard B. KeamJohann SchooneesJohann Schoonees

  25. Theory of the Propagation of UHF Radio Waves in Coal Mine Tunnels, Apr 1975, IEEE Transactions on Antennas and Propagation, Alfred G. EmslieAlfred G. EmslieRobert L. LagaceRobert L. LagacePeter F. StrongPeter F. Strong

  26. Natural wave propagation in mine environments, Oct 2000, IEEE Transactions on Antennas and Propagation, Martine LiénardMartine LiénardPierre DegauquePierre Degauque

  27. H. Li, Z. Dong, L. Wang, Research on temporal and spatial variety of soil moistures of shifting sand dune and four main plant communities on otindag sandy land, Journal of Arid Land Resources and Environment 20 (3) (2006).

  28. K. Zhang, W. Peng, L. Wang, A. Fu, X. Xu, Variation of soil temperature and soil moisture on black soil profile in seasonal frozen area of northeast China, Georgraphical Research 26 (2) (2007).

  29. Z. Sun, I.F. Akyildiz, Magnetic induction waveguide: A new propagation technique for underground wireless communication, 2008 (submitted for publication).

  30. P. Delogne, Leaky Feeders and Subsurface Radio Communications, P. Peregrinus, New York, 1982, Stevenage, Herts.

  31. R.E. Gertsch, R.L. Bullock, Techniques in underground mining: Selections from Underground mining methods handbook, Littleton, CO: Society for Mining, Metallurgy, and Exploration, 1998.

  32. C. Bunszel, Magnetic induction: A low-power wireless alternative, RF Design 24 (11) (2001) 78–80.

###1-3

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Computer Networks Journal 38 (4) (2002) 393–422.

[2] I.F. Akyildiz, E.P. Stuntebeck, Wireless underground sensor net- works: research challenges, Ad Hoc Networks Journal 4 (2006) 669–686.

[3] I.F. Akyildiz, Z. Sun, M.C. Vuran, Signal propagation techniques for wireless underground communication networks, Physical Commu- nication Journal 2 (3) (2009) 167–183.

[4] A. Chehri, P. Fortier, P.M. Tardif, Security monitoring using wireless sensor networks, in: Communication Networks and Services Research, 2007—CNSR’07, May 2007, pp. 13–17.

[5] G.A. Kennedy, P.J. Foster, High resilience networks and microwave propagation in underground mines, in: The 9th European Confer- ence on Wireless Technology 2006, September 2006, pp. 193–196.

[6] Z. Sun, I.F. Akyildiz, Channel modeling and analysis for wireless networks in underground mines and road tunnels, IEEE Transactions on Communications 58 (6) (2010).

[7] A.R. Silva, M.C. Vuran, Empirical evaluation of wireless underground-to-underground communication in wireless un- derground sensor networks, in: Proc. IEEE DCOSS’09, Marina Del Rey, CA, June 2009.

[8] A.R. Silva, M.C. Vuran, Communication with aboveground devices in wireless underground sensor networks: an empirical study, in: IEEE ICC’10, Cape Town, South Africa, May 2010.

[9] E. Stuntebeck, D. Pompili, T. Melodia, Underground wireless sensor networks using commodity terrestrial motes, poster presentation at IEEE SECON 2006, September 2006.

[10] A.Sheth,etal.,Senslide:a sensor network basedl and slide prediction system, in: Proc. SenSys’05, 2005, pp. 280–281.

[11] G. Werner-Allen, et al., Deploying a wireless sensor network on an active volcano, IEEE Internet Computing 10 (2) (2006) 18–25.

[12] J. Paek, K. Chintalapudi, R. Govindan, J. Caffrey, S. Masri, A wireless sensor network for structural health monitoring: performance and experience, in: Proc. IEEE Workshop on Embedded Networked Sensors, EmNetS-II, May 2005.

[13] N. Xu, et al., A wireless sensor network for structural monitoring, in: Proc. ACM Conference on Embedded Networked Sensor Systems, Baltimore, MD, November 2004.

[14] C.Park,Q.Xie,P.Chou,M.Shinozuka,Duranode:wirelessnetworked sensor for structural health monitoring, Proc. IEEE Sensors 2005 (2005) 277–280.

[15] Z. Sun, I.F. Akyildiz, Channel modeling of wireless networks in tunnels, in: Proc. IEEE Globecom’08, New Orleans, USA, November 2008.

[16] N. Elkmann, et al., Development of fully automatic inspection systems for large underground concrete pipes partially filled with wastewater, Robotics and Automation 2007 (2007) 130–135.

[17] J.F. Mastarone, W.J. Chappell, Urban sensor networking using thick slots in manhole covers, in: Antennas and Propagation Society International Symposium 2006, July 9–14, 2006, pp. 779–782.

[18] K. Martinez, R. Ong, J. Hart, Glacsweb, a sensor network for hostile environments, in: IEEE SECON’04, 2004, pp. 81–87.

[19] D.J. Daniels, Surface-penetrating radar, Electronics & Communica- tion Engineering Journal 8 (4) (1996) 165–182.

[20] T.W. Miller, et al., Effects of soil physical properties on GPR for landmine detection, in: Fifth International Symposium on Technology and the Mine Problem, April 2002.

[21] J. Wait, J. Fuller, On radio propagation through earth: antennas and propagation, IEEE Transactions on Antennas and Propagation 19 (6) (1971) 796–798.

[22] T.P.Weldon,A.Y.Rathore,Wavepropagationmodelandsimulations for landmine detection, Tech. Rep., Univ. of N. Carolina at Charlotte, 1999.

[23] G. Stuber, Principles of Mobile Communication, Kluwer Academic Publishers, 1996, 2/e 2001.

[24] N. Peplinski, F. Ulaby, M. Dobson, Dielectric properties of soils in the 0.3–1.3 GHz range, IEEE Transactions on Geoscience and Remote Sensing 33 (3) (1995) 803–807.

[25] L. Li, M.C. Vuran, I.F. Akyildiz, Characteristics of underground channel for wireless underground sensor networks, in: Proc. Med- Hoc-Net’07, Corfu, Greece, June 2007.

[26] J.R. Holdem, et al., Estimation of the number of frequencies and bandwidth for the surface measurement of soil moisture as a function of depth, IEEE Transactions on Instrumentation and Measurement 49 (5) (2000) 964–970.

[27] H. Li, Z. Dong, L. Wang, Research on temporal and spatial variety of soil moistures of shifting sand dune and four main plant communities on otindag sandy land, Journal of Arid Land Resources and Environment 20 (3) (2006).

[28] K.Zhang,W.Peng,L.Wang,A.Fu,X.Xu,Variationofsoiltemperature and soil moisture on black soil profile in seasonal frozen area of northeast China, Georgraphical Research 26 (2) (2007).

[29] T.R.H. Holmes, Measuring surface soil parameters using passive microwave reomte sensing. The ELBARA field campaign 2003, M.Sc. Thesis, Vrije Universiteit Amsterdam, 2003, 71 pp..

[30] Z. Sun, I.F. Akyildiz, Connectivity in Wireless Underground Sensor Networks, in: Proc. IEEE SECON’10, Boston, USA, June 2010.

[31] I.F. Akyildiz, W.Y. Lee, M.C. Vuran, S. Mohanty, NeXt genera- tion/dynamic spectrum access/cognitive radio wireless networks: a survey, Computer Networks Journal 50 (2006) 2127–2159.

[32] M.C. Vuran, I.F. Akyildiz, Packet size optimization for wireless terrestrial, underwater, and underground sensor networks, in: Proc. IEEE INFOCOM’08, Phoeniz, AZ, April 2008.

[33] Crossbow Mica2 node. http://www.xbow.com.

1-4

[1] C. G. Christodoulou, Y. Tawk, S. A. Lane, and S. R. Erwin, “Reconfigurable antennas for wireless and space applications,” in Proceedings of the IEEE, 2012, vol. 100, no. 7, pp. 2250–2261.

[2] J. T. Bernhard, “Reconfigurable Antennas,” Synth. Lect. Antennas, vol. 2, no. 1, pp. 1–66, Jan. 2007.

[3] D. Rodrigo, B. A. Cetiner, and L. Jofre, “Frequency, radiation pattern and polarization reconfigurable antenna using a parasitic pixel layer,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3422–3427, 2014.

[4] P. Lotfi, S. Soltani, and R. D. Murch, “Broadside Beam-Steerable Planar Parasitic Pixel Patch Antenna,” IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4519–4524, 2016.

[5] T. Sabapathy, M. Jusoh, R. B. Ahmad, M. R. Kamarudin, and P. J. Soh, “A Ground-Plane-Truncated, Broadly Steerable Yagi-Uda Patch Array Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1069–1072, 2016.

[6] X. Yuan et al., “A parasitic layer-based reconfigurable antenna design by multi-objective optimization,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2690–2701, 2012.

[7] M. Jusoh, T. Sabapathy, M. F. Jamlos, and M. R. Kamarudin, “Reconfigurable four-parasitic-elements patch antenna for high-gain beam switching application,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 79–82, 2014.

[8] Z. Li, E. Ahmed, A. M. Eltawil, and B. A. Cetiner, “A beam-steering reconfigurable antenna for WLAN applications,” IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 24–32, 2015.

1-6

Annan, A.P. (2005). Ground penetrating radar in near-surface geophysics, In: Near-Surface Geophysics, Investigations in Geophysics, No. 13, Society of Exploration Geophysics, Butler, D.K., pp.357-438, ISBN 1-56080-130-1, Tulsa, OK

Annan, A.P. (2009). Electromagnetic principles of ground penetrating radar, In: Ground Penetrating Radar: Theory and Applications, Jol, H.M., pp. 3-40, Elsevier, ISBN 978- 0-444-53348-7, Amsterdam, The Netherlands

Archie, G.E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Transactions of AIME, Vol. 146, pp. 54-62

Binley, A., Winship, P., Middleton, R., Pokar, M. & West, J. (2001). High-resolution characterization of vadose zone dynamics using cross-borehole radar. Water Resources Research, Vol. 37, pp. 2639-2652

Bradford, J.H. (2007). Frequency-dependent attenuation analysis of ground-penetrating radar data. Geophysics, Vol. 72, pp. J7-J16

Bradford, J.H. (2008). Measuring water content heterogeneity using multifold GPR with reflection tomography. Vadose Zone Journal, Vol. 7, pp. 184-193

Cassidy, N.J. (2009). Electrical and magnetic properties of rocks, soils, and fluids, In: Ground Penetrating Radar: Theory and Applications, Jol, H.M., pp. 41-72, Elsevier, ISBN 978-0-444-53348-7, Amsterdam, The Netherlands

Daniels, D.J. (Ed.). (2004). Ground Penetrating Radar (2nd Edition), IEE, ISBN 0-86341-360-9, London

Davis, J.L. & Annan, A.P. (1989). Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, Vol. 37, pp. 531-551

Dix, C.H. (1955). Seismic velocities from surface measurements. Geophysics, Vol. 20, pp. 68- 86

Du, S. (1996). Determination of Water Content in the Subsurface with the Ground Wave of Ground Penetrating Radar. Dissertation, Ludwig-Maximilians-Universität, München, Germany

Galagedara, L.W., Redman, J.D., Parkin, G.W., Annan, A.P. & Endres, A.L. (2005). Numerical modeling of GPR to determine the direct ground wave sampling depth. Vadose Zone Journal, Vol. 4, pp. 1096-1106

Greaves, R.J., Lesmes, D.P., Lee, J.M. & Toksoz, M.N. (1996). Velocity variations and water content estimated from multi-offset ground penetrating radar, Geophysics, Vol. 61, pp. 683-695

Grote, K., Hubbard, S. & Rubin, Y. (2003). Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques. Water Resources Research, Vol. 39, pp. 1321-1333

Huisman, J.A., Sperl, C., Bouten, W. & Verstaten, J.M. (2001). Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar. Journal of Hydrology, Vol. 245, pp. 48-58

Huisman, J.A., Hubbard, S.S., Redman, J.D. & Annan, A.P. (2003). Measuring soil water content with ground penetrating radar: a review. Vadose Zone Journal, Vol. 2, pp. 476-491

Igel, J., Schmalholz, J., Anschütz, H.R., Wilhelm, H., Breh, W., Hötzl, H. & Hübner C. (2001). Methods for determining soil moisture with the ground penetrating radar (GPR). Proceedings of the Fourth International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, Weimar, Germany.

Igel, J. (2007). On the Small-Scale Variability of Electrical Soil Properties and Its Influence on Geophysical Measurements. PhD Thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany

Kaatze, U. (1989). Complex permittivity of water as a function of frequency and temperature. Journal of Chemical and Engineering Data, Vol. 34, pp. 371-374

Knight, R.J. & Endres, A.L. (2005). An introduction to rock physics principles for near- surface geophysics, In: Near-Surface Geophysics, Investigations in Geophysics, No. 13, Society of Exploration Geophysics, Butler, D.K., pp.357-438, ISBN 1-56080-130-1, Tulsa, OK

Knödel, K., Lange, G., & Voigt, H.-J. (Eds.). (2007). Environmental Geology, Handbook of Field Methods and Case Studies, Springer, ISBN 978-3-540-74669-0, Berlin

Kuroda, S., Jang, H. & Kim, H.J. (2009). Time-lapse borehole radar monitoring of an infiltration experiment in the vadose zone. Journal of Applied Geophysics, Vol. 67, pp. 361-366

Lampe, B. & Holliger, K. (2003). Effects of fractal fluctuations in topographic relief, permittivity and conductivity on ground-penetrating radar antenna radiation. Geophysics, Vol. 68, pp. 1934-1944

Minet, J., Wahyudi, A., Bogaert, P., Vanclooster, M., & Lambot, S. (2011). Mapping shallow soil moisture profiles at the field scale using full-waveform. Geoderma, Vol. 161, pp. 225-237

Müller, M., Mohnke, O., Schmalholz, J. & Yaramanci, U. (2003). Moisture assessment with small-scale geophysics - the Interurban project. Near Surface Geophysics, Vol. 1, pp. 173-181

Noborio, K. (2001). Measurement of soil water content and electrical conductivity by time domainreflectometry: a review. Computers and electronics in agriculture, Vol. 31, 213-237

Overmeeren, R.A., Sariowan, S.V. & Gehrels, J.C. (1997). Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two test sites. Journal of Hydrology, Vol. 197, pp. 316-338

Preetz, H., Altfelder, S. & Igel, J. (2008). Tropical soils and landmine detection – an approach for a classification system. Soil Science Society of America Journal, Vol. 72, pp. 151- 159

Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D. & Friedmann, S.P. (2003). A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal, Vol. 2, pp. 444-475

Schmalholz, J., Stoffregen, H., Kemna, A. & Yaramanci, U. (2004). Imaging of Water Content Distributions inside a Lysimeter using GPR Tomography. Vadose Zone Journal, Vol. 3, pp. 1106-1115

Schmalholz, J. (2007). Georadar for small-scale high-resolution dielectric property and water content determination of soils. Dissertation, Technical University of Berlin, Germany

Serbin, G. & Or, D. (2003). Near-surface soil water content measurements using horn antenna radar: methodology and overview. Vadose Zone Journal, Vol. 2, pp. 500- 510

Shen, L.C., Savre, W.C., Price, J.M. & Athavale, K. (1985). Dielectric properties of reservoir rocks at ultra-high frequencies, Geophysics, Vol. 50, pp. 692-704

Stoffregen, H., Zenker, T., Wessolek, G. (2002). Accuracy of soil water content measurements using ground penetrating radar: Comparison of ground penetrating radar and lysimeter data. Journal of Hydrology, Vol. 267, pp. 201-206

Takahashi, K., Preetz, H. & Igel, J. (2011). Soil properties and performance of landmine detection by metal detector and ground-penetrating radar – Soil characterisation and its verification by a field test. Journal of Applied Geophysics, Vol. 73, pp. 368- 377

Topp, G.C., Davis, J.L. & Annan, A.P. (1980). Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resource Research, Vol. 16, pp.574-582

Tronicke, J., Tweeton, D.R., Dietrich, P. & Appel, E. (2001). Improved crosshole radar tomography by using direct and reflected arrival times. Journal of Applied Geophysics, Vol. 47, pp. 97-105

Ulaby, F.T., Moore, R.K. & Adrian, K.F. (1986). Microwave Remote Sensing: Active and Passive, volume 3: From Theory to Applications. Artech House, ISBN 0-89006-192- 0, Norwood, MA

van der Kruk, J., Jacob, R.W. & Vereecken, H. (2010). Properties of precipitation-induced multilayer surface waveguides derived from inversion of dispersive TE and TM GPR data. Geophysics, Vol. 75, pp. WA263-WA273

Yilmaz, O. (2000). Seismic data analysis - processing, inversion, and interpretation of seismic data (2nd edition). Society of Exploration Geophysicists, ISBN 978-0931830464, Tulsa, OK

1-7

  1. R. B. Miles, A. Dogariu, J. B. Michael, "Bringing Bombs to Light", IEEE Spectrum, vol. 49, no. 2, pp. 34-39, Feb. 2012.

  2. O. Holt, "Technology Survey: Sampling of Communications Jammers", AOC J. Electronic Defense, vol. 31, no. 2, pp. 43-46, Feb. 2008.

  3. S. Haykin, "Cognitive Radio: Brain-Empowered Wireless Communication", IEEE JSAC, vol. 23, no. 2, pp. 201-20, Feb. 2005.

  4. W. Tuttlebee, Software Defined Radio: Origins Drivers and International Perspectives, Wiley, 2002.

  5. S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice Hall PTR, 1998.

  6. J. Ma, G. Y. Li, B. H. Juang, "Signal Processing in Cognitive Radio", Proc. IEEE, vol. 97, pp. 805-23, 2009-May.

  7. S. Boyd, "Multitone Signals with Low Crest Factor", IEEE Trans. Circuits and Sys., vol. CAS-33, no. 10, pp. 1018-22, Oct. 1986.

  8. J. Mietzner, P. Nickel, A. Meusling, "Jam-Duration Optimization for Responsive Vehicle-Protection Jam-mers", Proc. IEEE MILCOM '10, pp. 488-93, 2010-Oct.

  9. P. Loos, "Design of a Multitone Firefly Time Synchronization Scheme for Responsive Vehicle-Protection Jam-mers", Proc. IEEE MILCOM '12, 2012-Oct.

  10. A. Tyrrell, G. Auer, C. Bettstetter, "Emergent Slot Synchronization in Wireless Networks", IEEE Trans. Mobile Computing, vol. 9, no. 5, pp. 719-32, May 2010.

1-8

[1] Suherman 2016 Impact of Window and Datagram Sizing on Mobile Device Power Consumption JiTEK 5 (2).

[2] Carroll A and Heiser 2010 G Proc. USENIXAT (Boston-USA) 10 21-2 3

[3] Longhao Z, Ali J and Muntean G M 2017 IEEE Broadband Multimedia Systems and Broadcasting 1-6.

[4] Jang S B and Kim YG 2010 IEEE Transactions on Consumer Electronics 56 (4).

[5] Zhu J and Wang X 2007 Model and Protocol for Energy Efficient Routing over Mobile Ad Hoc Networks, IEEE.

[6] Khalifa T 2014 IEEE Transactions on Smart Grid 5 (1), 381 –91.

[7] Chen S 2013 IEEE Conf. on Wireless Communications and Networking (WCNC), 1291 – 96.

[8] N Mubarakah and Suherman 2016 IEEE Isemantic, (1).

###1-9

  1. Design and Development of Wireless Underground Sensor Networks for Pipeline Monitoring, A. M. SadeghioonPh.D. Thesis, School of mechanical enginrring,2015

  2. Investigating the Seasonal Variability of Electromagnetic Soil Properties Using Field Monitoring Data from Time-Domain Reflectometry Probes, G. CurioniPh.D. Thesis,2013

  3. Hybrid Wireless Underground Sensor Networks: Quantification of Signal Attenuation in Soil, H. R. Bogena, J. A. Huisman, H. Meier, U. Rosenbaum, A. WeuthenVadose Zone J. ,2009

  4. Wireless underground sensor networks: Research challenges, Ian F. Akyildiz, Erich P. StuntebeckAd Hoc Networks2006

  5. Empirical Evaluation of Wireless Underground-to-Underground Communication in Wireless Underground Sensor Networks, Agnelo R. Silva, Mehmet Can VuranDCOSS2009

  6. Impacts of the real and imaginary components of relative permittivity on time domain reflectometry measurements in soils, G. Topp, S. Zegelin, I. WhiteSoil Sci. Soc. Am2000

  7. Path-Loss Modeling for Wireless Sensor Networks: A review of models and comparative evaluations., Sinan Kurt, Bulent TavliIEEE Antennas and Propagation Magazine2017

  8. An empirical path loss model for Wireless Sensor Network deployment in an artificial turf environment, Abdulaziz S. Alsayyari, Ivica Kostanic, Carlos E. OteroProceedings of the 11th IEEE International…2014

  9. An empirical path loss model for wireless sensor network deployment in a sand terrain environment, Abdulaziz S. Alsayyari, Ivica Kostanic, Carlos E. Otero, Mohammed Almeer, Kusay RukiehIEEE World Forum on Internet of Things (WF-IoT)2014

  10. Network based sensor localization in multi-media application of precision agriculture Part 1: Received signal strength, Herman Sahota, Ratnesh KumarProceedings of the 11th IEEE International…2014

  11. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines, Ali M. Sadeghioon, Nicole Metje, David N. Chapman, Carl J. AnthonyJ. Sensor and Actuator Networks2014

  12. RF propagation investigations in agricultural fields and gardens for wireless sensor communications, Dhanavanthan Balachander, T. Rama Rao, Govindaraju MaheshIEEE CONFERENCE ON INFORMATION AND COMMUNICATION…2013

  13. Wireless Signal Networks: A Proof of Concept for Subsurface Characterization and A System Design with Reconfigurable Radio, S. Yoon Ph.D. Thesis,2013

  14. Industrial wireless sensor networks: A selection of challenging applications, G. P. Hancke6th European Conference on Antennas and…2012

  15. Overview of wireless underground sensor networks for agriculture, X. Yu, P. Wu, W. Han, Z. ZhangAfrican J. Biotechnol 2012

  16. Channel Characterization for Wireless Underground Sensor Networks, Agnelo R. Silva2010

  17. Development of a Testbed for Wireless Underground Sensor Networks, Agnelo R. Silva, Mehmet Can VuranEURASIP J. Wireless Comm. and Networking2010

  18. Through Soil in Wireless Underground Sensor Networks – Theory and Practice, Mehmet Can Vuran, Agnelo R. Silva2010

  19. Wave propagation communication models for Wireless Underground Sensor Networks, Nchimunya Chaamwe, Wenyu Liu, Hongbo JiangIEEE 12th International Conference on…2010

  20. Characteristics of Underground Channel for Wireless Underground Sensor Networks, Li Li, Mehmet C. Vuran, Ian F. Akyildiz2007

  21. Advances in Soil Water Content Sensing, S. R. Evett, G. W. ParkinVadose Zone J. ,2005

  22. Methods for prediction of soil dielectric properties: a review, Remke L. Van Dam, Brian Borchersb, Jan M. H. Hendrickxa2005

  23. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry, Donald A Robinson, S. B. Jones, Jon M. Wraith, Dani Or, Shmulik P. Friedman 2003

  24. Generalized refractive mixing dielectric model for moist soils, Valery L. Mironov, M. Craig Dobson, Verne Kaupp, Sergey A. Komarov, Vladimir N. Kleshchenko IGARSS 2002

  25. Methods of Soil Analysis: Part 4; Soil Science Society of America, Inc.: Madison, J. H. Dane, C. ToppWI, USA,2002

  26. Wireless communications - principles and practice, Theodore Ted S. Rappaport1996

  27. Corrections to "Dielectric Properties of Soils in the 0.3-1.3-GHz Range", Neil R. Peplinski, Fawwaz T. Ulaby, M. Craig DobsonIEEE Trans. Geoscience and Remote Sensing1995

  28. Dielectric properties of soils in the 0.3-1.3-GHz range, Neil R. Peplinski, Fawwaz T. Ulaby, M. Craig DobsonIEEE Trans. Geoscience and Remote Sensing 1995

  29. A Note on a Simple Transmission Formula, H.T. Friis1946

reference on the reference papers

###[1] Reference

1] Andreas G, Savvides. Designing and Prototyping a Wireless Point to Point Link with Multimedia Application Support. Mediterranean Electrotechnical Conference, IEEE. 2000: 322-325. https://ieeexplore.ieee.org/document/880431

2] D Trinchero et al. An Independent, Low Cost and Open Source Solution for the Realization of Wireless Links over Huge Multikilometric Distance. IEEE. 2008: 495-498. https://ieeexplore.ieee.org/document/4463537

3] I Suharjo. Analisis Penggunaan Jaringan Kabel Listrik Sebagai Media Komunikasi Data Internet. TELKOMNIKA. 2009; 7(1). http://www.journal.uad.ac.id/index.php/TELKOMNIKA/article/view/573/382

4] Hendra Setiawan, Yuhei Nagao, Masayuki Kurosaki, and iroshi Ochi. IEEE 802.11n Physical Layer Implementation on Field Programmable Gate Array. TELKOMNIKA. 2011; 10(1): 67-74.https://www.researchgate.net/profile/Hendra_Setiawan9/publication/266482420_IEEE_80211n_Physical_Layer_Implementation_on_Field_Programmable_Gate_Array/links/56a738ef08ae860e025549be/IEEE-80211n-Physical-Layer-Implementation-on-Field-Programmable-Gate-Array.pdf

5] Thomas Paul and Tokunbo Ogunfumi. Wireless Lan Comes of Age: Understanding the IEEE 802.11n Amendment. IEEE Circuits and System Magazine. First Quarter. 2008: 28-54.https://ieeexplore.ieee.org/document/4460436

6] I Saris, A R Nix, and A Doufix. High-Throughput Multiple-input Multiple-output System for in Home Multimedia Streaming. IEEE Wireless Communications. 2006: 60-66. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.94&rep=rep1&type=pdf

7] IEEE P802.11n/D2.0. Draft STANDARD for Information Technology Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks Specific Requirements; 2007.https://ieeexplore.ieee.org/document/5307322/references#references

8] Liang Xu, Koji Yamamoto, and Susumu Yoshida. Performance Comparison between Channel - Bonding and Multi-Channel CSMA. IEEE. 2007: 406-410. https://ieeexplore.ieee.org/document/4224325

9] Marius-Constantin Popescu and Nikos E. Mastorakis. New Aspect on Wireless Communication Networks. International Journal of Communications IEEE. 2009: 34-43. http://www.naun.org/main/NAUN/communications/19-225.pdf

10] Fiehe Sandra, Riihijärvi Janne, and Mähönen Petri. Experimental Study on Performance of IEEE 802.11n and Impact of Interferers on the 2.4 GHz ISM Band. IWCMC’10. Caen, France. 2010: 47-51.https://www.inets.rwth-aachen.de/fileadmin/PublicationPdfs/2010/IEEE802.11n-Measurements-IWCMC2010.pdf

11] Sofie Polin and Ahmad Bahai. Performance Analysis Contending of Double-Channel 802.11n Contending with Single-Channel 802.11. International Conference Communication. Dresden, 2009: 1-6. https://ieeexplore.ieee.org/document/5199308

12] S Aust, Jong Ok Kim, P Davis, Yamaguchi, and A Obana. Evaluation of Linux Bonding Features. IEEE. 2006: 1-6. https://ieeexplore.ieee.org/document/4146536

13] M Seaman. Link Aggregation Control Protocol Scenarios. IEEE. 1998: 1-2. cs.uccs.edu/~chow/pub/contentsw/802ad/seaman_2_090198.pdf.gz

14] Jing Yang, Qiang Cao, Xu Li, Changsheng Xie, Qing Yang. ST-CDP: Snapshots in TRAP for Continuous Data Protection. IEEE Transactions on Computers. 2012; 61(6): 753-766.https://www.computer.org/csdl/journal/tc/2012/06/ttc2012060753/13rRUyfKIGX

15] Y Hasegawa, I Yamaguchi. T Hama, H Shimonishi, and T Murase. Improved Data Distribution for Multipath TCP Communication. IEEE Globecom. 2005: 271-275. https://ieeexplore.ieee.org/document/1577632

16] A C Snoeren. Adaptive Inverse Multiplexing for Wide Area Wireless Networks. IEEE Globcom' 09. Rio De Jeneiro, 1999: 16657-1672. https://ieeexplore.ieee.org/document/832447

17] D S Pathak and T Goff. A Novel Mechanism for Data Streaming Across Multiple IP Links for Improving Throughput and Reliability in Mobile Environments. IEEE INFOCOM. New York. 2002: 773-781.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.7562&rep=rep1&type=pdf

18] A Jayasuria, S Aust, A Yamaguchi and P Davis. Aggregation of Wifi Links: When Does it Works? IEEE. 2007: 318-32.

19] S Avallone, S Guadagno, D Emma, and A Pescap. D-ITG Distributed Internet Traffic Generator. International Conference on the Quantitative Evaluation of Systems (QEST’04). 2004: 316 - 317.https://ieeexplore.ieee.org/document/1348045

20] Pejman Roshan and Jonathan Leary. 802.11 Wireless LAN Fundamentals. Indianapolis, USA: Cisco Press. 2004.

21] Craig Hunt.TCP/IP.: O'Reilly Media.Inc. 2002.

22] TL Singal. Wireless Communication. Pondicherry, India: TATA McGrew Hill. 2010.

23] TechRepublic. 802.11 Wireless Networking Resources Guide. Louisville, KY: CNET Network. Inc., 2002.

24] Jong-Ok Kim. Feedback-Based Traffic Splitting for Wireless Terminals with Multi-Radio Devices. IEEE Transactions on Consumer Electronic. 2010: 476-482. https://ieeexplore.ieee.org/document/5505958

###[2] References

1] S Jana, A Pande, A Chan, and P Mohapatra. “Mobile video chat: Issues and challenges”. IEEE Commun. Mag. 2013; 51(6) 144–151.

2] I Prasetyo, M Anif and AS Nugroho. “Handover Analysis of Data and VoIP Services in 802.11b/g/n Wireless LAN”. TELKOMNIKA Indones. J. Electr. Eng. 2014; 12(11): 7832–7844.

3] Sarkar, Nurul I and O Mussa. “The Effect of People Movement on Wi-Fi Link Throughput in Indoor Propagation Environments”. Proceeding 2013 IEEE TENCON. 2013: 598–602.

4] JMG Stensen. “Evaluating QoS and QoE Dimensions in Adaptive Video Streaming”. Norwegian University of Science and Technology. 2012.

5] HJ Kim, KS Cho, HS Kim and SG Choi. “A Study on a QoS / QoE Correlation Model for QoE Evaluation on IPTV Service”. in Advanced Communication Technology (ICACT), 2010 The 12th International Conference. 2010: 1377, 1382.

6] A Wahab, RB Bahaweres, M Alaydrus and R Sarno. “Performance analysis of VoIP client with integrated encryption module”. 2013 1st Int. Conf. Commun. Signal Process. their Appl. 2013: 1–6.

7] KK Eudon and BR Petersen. “Video streaming over 802.11b in the presence of fading due to human traffic and bluetooth interference”. In Proceedings of the 7th Annual Communication Networks and Services Research Conference, CNSR 2009. 2009: 33–40.

8] E Masala, CF Chiasserini, M Meo and JC De Martin. “REAL-TIME TRANSMISSION OF H. 264 VIDEO OVER 802. 11B-BASED WIRELESS AD HOC”. DSP In-Vehicle Mob. Syst. 2005: 193–207.

9] C Fernández, J Saldana, J Fernández-Navajas, L Sequeira, and L Casadesus. “Video conferences through the internet: how to survive in a hostile environment”. Scientific World Journal. 2014; 2014.

10] VR Jonnalagadda. “Evaluation of Video Quality of Experience using EvalVid”. BTH-BELEKINGE TEKNISKA HOGSKOLA. 2012.

11] Y Xu, C Yu, J Li, and Y Liu. “Video telephony for end-consumers: Measurement study of Google+, iChat, and Skype”. IEEE/ACM Trans. Netw. 2014; 22(3): 826–839.

12] J Jansen, P Cesar, DCA Bulterman, T Stevens, I Kegel and J Issing. “Enabling Composition-Based Video-Conferencing for the Home”. Multimedia, IEEE Trans. 2011; 13(5): 869–881.

###[3] Reference

  1. F. Viani, M.D. Migliore, A. Polo, M. Salucci, A. Massa, "Iterative classification strategy for multi-resolution wireless sensing of passive targets", Electronics Letters, vol. 54, no. 2, pp. 101-103, 2018.

  2. Yu Gu, Jinhai Zhan, Yusheng Ji, Jie Li, Fuji Ren, Shangbing Gao, "MoSense: An RF-Based Motion Detection System via Off-the-Shelf WiFi Devices", Internet of Things Journal IEEE, vol. 4, no. 6, pp. 2326-2341, 2017.

  3. Christian Siebert, Mei Leng, Sirajudeen Gulam Razul, Chong Meng Samson See, Guohua Wang, "Human Motion Detection and Classification Using Ambient WiFi Signals", Sensor Signal Processing for Defence Conference (SSPD) 2017, pp. 1-5, 2017.

  4. Qinyi Xu, Zoltan Safar, Yi Han, Beibei Wang, K. J. Ray Liu, "Statistical Learning Over Time-Reversal Space for Indoor Monitoring System", Internet of Things Journal IEEE, vol. 5, no. 2, pp. 970-983, 2018.

  5. Yu Gu, Jinhai Zhan, Zhi Liu, Jie Li, Yusheng Ji, Xiaoyan Wang, "Sleepy: Adaptive sleep monitoring from afar with commodity WiFi infrastructures", Wireless Communications and Networking Conference (WCNC) 2018 IEEE, pp. 1-5, 2018.

  6. Yu Gu, Tao Liu, Jie Li, Fuji Ren, Zhi Liu, Xiaoyan Wang, Peng Li, "EmoSense: Data-Driven Emotion Sensing via Off-the-Shelf WiFi Devices", Communications (ICC) 2018 IEEE International Conference on, pp. 1-6, 2018. View Article Full Text: PDF (4290KB) Google Scholar

  7. Qinyi Xu, Yi Han, Beibei Wang, Min Wu, K.J. Ray Liu, "Real-Time Indoor Event Monitoring Using CSI Time Series", Acoustics Speech and Signal Processing (ICASSP) 2018 IEEE International Conference on, pp. 6393-6397, 2018.

  8. Varuna De Silva, Jamie Roche, Xiyu Shi, Ahmet Kondoz, "IoT Driven Ambient Intelligence Architecture for Indoor Intelligent Mobility", Dependable Autonomic and Secure Computing 16th Intl Conf on Pervasive Intelligence and Computing 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech) 2018 IEEE 16th Intl, pp. 451-456, 2018.

  9. Jianfei Yang, Han Zou, Hao Jiang, Lihua Xie, "Device-Free Occupant Activity Sensing Using WiFi-Enabled IoT Devices for Smart Homes", Internet of Things Journal IEEE, vol. 5, no. 5, pp. 3991-4002, 2018.

  10. Yu Gu, Xiang Zhang, Chao Li, Fuji Ren, Jie Li, Zhi Liu, "Your WiFi Knows How You Behave: Leveraging WiFi Channel Data for Behavior Analysis", Global Communications Conference (GLOBECOM) 2018 IEEE, pp. 1-6, 2018.

[4] REFERENCES

1] Cisco Visual Networking Index, http://www.cisco.com/en/US/netsol/ns827/networking solutions sub solution.html, Feb, 2012.

2] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, Taming the Mobile Data Deluge with Drop Zones, In IEEE/ACM Transactions on Networking, to appear, 2012.

3] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, Femtocell networks: A survey, IEEE Communications Magazine, vol. 46, no. 9, pp. 59-67, September 2008.

4] A. Balasubramanian, R. Mahajan, and A. Venkataramani, Augmenting Mobile 3G Using WiFi, in ACM MobiSys’10, Jun. 2010, pp. 209-222, 2010.

5] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi, Mobile data offloading: how much can wifi deliver? in Proc. of Co-NEXT Sˇ10, pp. 26:1-26:12, 2010.

6] S. Dimatteo, P. Hui, B. Han and V. O. K. Li, Cellular Traffic Offloading through WiFi Networks, in Proc. of IEEE MASS, 2011.

7] WBA Industry Report, Global developments in public WiFi, http://www.wballiance.com/ resource-centre/global-developments-wifi-report.html, last accessed, May, 2012.

8] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, M. C. Reed, Femtocells: Past, Present, and Future, IEEE Journal on Selected Areas in Communications, Vol. 30, No. 3, April 2012.

9] B. Han, P. Hui,A. Kumar, M. V. Marathe, J. Shao, and A. Srinivasan, Mobile Data Offloading through Opportunistic Communications and Social Participation, IEEE Transactions on Mobile Computing, Vol. 11, No. 5, May 2012.

10] P. Hui, J. Crowcroft, and E. Yoneki, Bubble rap: social based forwarding in delay tolerant networks, in Proc. of ACM MobiHoc, pp. 241-250, 2008.

11] N. Ristanovic, J.-Y. L. Boudec, A. Chaintreau, V. Erramilli, Energy Efficient Offloading of 3G Networks, in Proc. of IEEE MASS, 2011.

12] X. Zhuo, W. Gao, G. Cao, and Y. Dai, Win-Coupon: An Incentive Framework for 3G Traffic Offloading, in Proc. of IEEE ICNP, 2011.

13] L. Liao, W. Chen, C. Zhang, L. Zhang, D. Xuan, and W. Jia, Two Birds With One Stone: Wireless Access Point Deployment for Both Coverage and Localization, IEEE Transactions on Vehicular Technology, Vol. 60, No. 5, June 2011.

14] J. E. Beasley (editor), Advances in Linear and Integer Programming, Oxford Science, 1996.

15] IBM ILOG CPLEX Optimizer, http://www- 01.ibm.com/software/integration/optimization/cplex- optimizer/, accessed on 07/04/2012.

16] http://crawdad.cs.dartmouth.edu/meta.php?name= epfl/mobility, accessed on 07/04/2012.

17] B. O. Holzbauer, E. Bulut and B. K. Szymanski, Socially-Aware Market Mechanism for Participatory Sensing, accepted to appear in Proc. of the First ACM International Workshop on Mission-Oriented Wireless Sensor Networking (MiSeNet) in conjunction with Mobicom, Istanbul, 2012.

[5] Reference

  1. “The Location of Emergency Service Facilities.”, Jan 1971Operations Research Costis ToregasCostis ToregasR. SwainR. SwainC. ReVelleC. ReVelleL. BergmanL. Bergman

  2. The Maximal Covering Location Problem, Dec 1974, Richard L. ChurchRichard L. ChurchCharles ReVelleCharles ReVelle

  3. Enhanced 3D visualization techniques in support of indoor location planning, Nov 2014Computers Environment and Urban Systems, Yuhong Zhou, Diep Dao, Jean-Claude F. Thill, Eric Delmelle

  4. High frequency signal attenuation through materials, Jan 2009, Mihai ScutaruMihai ScutaruP. OgrutanP. Ogrutan

  5. Location Problems in the Public Sector, Jan 2002, Vladimir MarianovVladimir MarianovDaniel SerraDaniel Serra

  6. Adaptive Cell Tower Location Using Geostatistics, Jul 2010Geographical Analysis, Mohan R. AkellaMohan R. AkellaEric DelmelleEric DelmelleRajan BattaRajan Batta[...]Alan BlattAlan Blatt

  7. Coverage prediction and optimization algorithms for indoor environments, Dec 2012, EURASIP Journal on Wireless Communications and Networking, David PletsDavid PletsWout JosephWout JosephKris VanheckeKris Vanhecke[...]Luc MartensLuc Martens

  8. Spatio-temporal location modeling in a 3D indoor environment: The case of AEDs as emergency medical devices, Jan 2011, International Journal of Geographical Information Science, Diep DaoDiep DaoYuhong ZhouYuhong ZhouJean-Claude F. ThillJean-Claude F. ThillEric DelmelleEric Delmelle

  9. Traveling in the three-dimensional city: Applications in route planning, accessibility assessment, location analysis and beyond, May 2011Journal of Transport Geography, Jean-Claude F. ThillJean-Claude F. ThillDiep DaoDiep DaoYuhong ZhouYuhong Zhou

  10. SYMPOSIUM ON LOCATION PROBLEMS: IN MEMORY OF LEON COOPER.: THE PLANAR MAXIMAL COVERING LOCATION PROBLEM, May 1984Journal of Regional Science, Richard L. ChurchRichard L. Church

  11. The Location of Emergency Services, Oct 1971, Operations Research, Constantine ToregasConstantine ToregasCharles ReVelleCharles ReVelleLawrence BergmanLawrence Bergman

  12. Binary Logic Solutions to A Class of Location Problem, Sep 2010, Geographical Analysis, Constantine ToregasConstantine ToregasCharles RevelleCharles Revelle

  13. Locating Emergency Warning Sirens, Jun 2007, Decision Sciences, John R. CurrentJohn R. CurrentMorton E. O'KellyMorton E. O'Kelly

  14. Maximizing Wireless Mesh Network Coverage, Sep 2011, International Regional Science Review, Luke ShillingtonLuke ShillingtonDaoqin TongDaoqin Tong

  15. Indoor channel prediction and measurement for wireless local area network (WLAN) system, Dec 2006, S.A. HamzahS.A. HamzahM.F. BaharudinM.F. BaharudinNor Shahida Mohd ShahNor Shahida Mohd Shah[...]A. UbinA. Ubin

  16. Coverage Optimization to Support Security Monitoring, Mar 2007, Computers Environment and Urban Systems, Alan T. MurrayAlan T. MurrayKamyoung KimKamyoung KimJames W. DavisJames W. Davis[...]Richard ParentRichard Parent

  17. GIS and Geometric Representation in Facility Location Problems, Oct 1996, Geographical Information Systems, Harvey MillerHarvey Miller

  18. Coverage Optimization in Continuous Space Facility Siting, Aug 2007, International Journal of Geographical Information Science, Alan T. MurrayAlan T. MurrayDaoqin TongDaoqin Tong

  19. Regional Service Coverage Modeling, Feb 2008, Computers & Operations Research, Alan T. MurrayAlan T. MurrayMorton E. O'KellyMorton E. O'KellyRichard L. ChurchRichard L. Church

  20. Rectilinear minimax hub location problems, Sep 2009, Journal of Geographical Systems Morton E. O'KellyMorton E. O'Kelly

  21. Assessing Representation Error in Point-Based Coverage Modeling, Jun 2002, Journal of Geographical Systems, Alan T. MurrayAlan T. MurrayMorton E. O'KellyMorton E. O'Kelly

  22. Maximizing Coverage of Spatial Demand for Service, Mar 2009Papers in Regional Science, Daoqin TongDaoqin TongAlan T. MurrayAlan T. Murray

  23. Review on Radio Propagation into and within Buildings, Mar 1991M Microwaves, Antennas and Propagation, IEE Proceedings H, D. MolkdarD. Molkdar

  24. Efficient ray-tracing methods for propagation prediction for indoor communications, May 2001, IEEE Antennas and Propagation Magazine, Zhong JiZhong JiBin-Hong LiBin-Hong LiHao-Xing WangHao-Xing Wang[...]Tapan SarkarTapan Sarkar

  25. Wi-Fi (802.11b) and Bluetooth: Enabling coexistence, Oct 2001, IEEE Network, Jim LansfordJim LansfordA. StephensA. StephensR. NevoR. Nevo

  26. Measurements and Models for Radio Path Loss and Penetration Loss in and Around Homes and Trees at 5.85 GHz, Dec 1998, IEEE Transactions on Communications, Gregory D. DurginGregory D. DurginT.S. RappaportT.S. RappaportHao XuHao Xu

  27. 914 MHz Path Loss Prediction Models for Indoor Wireless Communications in Multifloored Buildings, Mar 1992, IEEE Transactions on Antennas and Propagation, Scott Y. SeidelScott Y. SeidelT.S. RappaportT.S. Rappaport

###[6] Reference

[1] Fortune S.J., Gay D.M., Kernighan B.W., Landron O., Valenzuela R.A.,Wright M.H., “WISE design of indoor wireless systems : practical computation and optimization”, IEEE Computational Science and Engineering, 2(1), pp. 58–68, 1995.

[2] Anderson H.R., McGeehan J.P., “Optimizing microcell base station locations using simulated annealing techniques”, Vehicular Technology Conference 2, pp. 858–862, 1994.

[3] Lee Y., Kim K., Choi Y., “Optimization of AP placement and channel assignment in wireless LANs”, IEEE Conference on Local Computer Networks, 2002.

[4] Rodrigues R.C., Mateus G.R., Loureiro A.A.F., “On the design and capacity planning of a wireless local area network”, IEEE / IFIP Network Operation and Management Symposium, pp. 335-348, 2000.

[5] Sherali H.D., Pendyala C.M., Rappaport T.S., “Optimal location of transmitters for micro-cellular radio communication system design”, IEEE Journal on Selected Areas in Comm.14(4), pp. 662–673, 1996.

[6] Mathar R., Niessen T., “Optimum positioning of base stations for cellular radio networks”, Wireless Networks 6, pp. 421-428, 2000.

[7] Amaldi E., Capone A., Cesana M., Malucelli F., “Optimizing WLAN Radio Coverage”, IEEE International Conference on Communications 2004, 1, pp.180-184, 2004.

[8] P. Reininger, A. Caminada. Multicriteria design model for cellular network. Annals of Operation Research, 107, 2001, pp 251-265.

[9] K. Jaffrès-Runser, J.-M. Gorce and S. Ubéda, "QoS constrained wireless LAN optimization within a multiobjective framework", in IEEE Wireless Communications Magazine, Special Issue on 3G/4G/WLAN/ WMAN Planning and Optimization, Dec. 2006.

[10] Bahri A., Chamberland S., “On the wireless local area network design problem with performance guarantees”, Computer Networks 48, pp.856-866, 2005.

[11] Ling X., Yeung K.L., “Joint access point placement and channel assignment for 802.11 wireless LANs”, IEEE Wireless Communication and Networking Conference, pp. 1583-1588, 2005.

[12] Prommak C., Kabara J., Tipper D., Charnsripinyo C., “Next generation wireless LAN system design”, IEEE Proceedings of Milcom 1, pp. 473 –477, 2002.

[13] Gondran A., Caminada A., Fondrevelle J., Baala O., “Wireless LAN planning: a didactical model to optimise the cost and effective payback”. International Journal of Mobile Network Design and Innovation 2007 - Vol. 2, No.1 pp. 13 - 25

[14] Wertz P., Sauter M., Landstorfer F.M., Wolfle G., Hoppe R., Automatic optimization algorithms for the planning of wireless local area networks. 60th IEEE Vehicular Technology Conf., pp. 3010-3014, 2004.

[15] K Jaffrès-Runser, J-M Gorce, S Ubeda "QoS constrained wireless LAN optimization within a multiobjective framework" IEEE Wireless Communications, Special Issue, vol 13(6), pp26-33, dec 2006.

[16] Stamatelos D., Ephremides A., “Spectral efficiency and optimal base placement for indoor wireless networks”. IEEE Journal on Selected Areas in Communications 14(4), pp. 651–661, 1996.

###[7] Reference

  1. Survey of Wireless Indoor Positioning Techniques and Systems Hongxing Liu, Houshang Darabi, Pat P. Banerjee, Jing Liu IEEE Transactions on Systems, Man, and…2007

  2. Particle-Filter-BasedWiFi-Aided Reduced Inertial Sensors Navigation System for Indoor and GPS-Denied Environments, Mohamed Maher Atia, Michael J. Korenberg, Aboelmagd Noureldin, 2015

  3. Location Information System for Access Points in the Heterogeneous Wireless Enviornment, Kei Kikuchi, Yoshitoshi Murata, Goutam Chakraborty, Tsuyoshi Takayama, Nobuyoshi Sato26th International Conference on Advanced…2012

  4. MCMC-based indoor localization with a smart phone and sparse WiFi access points, Yan Liu, Qiang Wang, Junbin Liu, Tim Wark IEEE International Conference on Pervasive…2012

  5. Smartphone-Based Collaborative and Autonomous Radio Fingerprinting, Yungeun Kim, Yohan Chon, Hojung Cha IEEE Transactions on Systems, Man, and…2012

  6. Unsupervised Locating of WiFi Access Points Using Smartphones, Jahyoung Koo, Hojung Cha IEEE Transactions on Systems, Man, and…2012

  7. A Data-Driven Movement Model for Single Cellphone-Based Indoor Positioning, Harshvardhan Vathsangam, Anupam Tulsyan, Gaurav S. SukhatmeInternational Conference on Body Sensor Networks, 2011

  8. Multisensor and Collaborative Localization for Diverse Environments, Björn Bittins, Jürgen SieckUKSim 5th European Symposium on Computer Modeling…2011

  9. Wi-Fi Localization Using RSSI Fingerprinting, Michael A Quan, E. Navarro, Benjamin Peuker, 2010

  10. A Novel Hybrid Algorithm for Passive Localization of Victims in Emergency Situations, Dimitri Tassetto, Eriza Hafid Fazli, Markus Werner4th Advanced Satellite Mobile Systems, 2008

  11. Pinpointing users with location estimation techniques and Wi-Fi hotspot technology, Kevin Curran, Eoghan FureyInt. Journal of Network Management, 2008

  12. Multidimensional Scaling, Second Edition, T. F. Cox, M.A.A. Cox, 2001

###[8] Reference

  1. Hui L., Darabi H., Banerjee P., Liu J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2007;37:1067–1080.

  2. Prasithsangaree P.K.P., Chrysanthis P.K. On indoor position location with wireless LANs; Proceedings of the 13th IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications; Lisboa, Portugal. 18 September 2002; pp. 720–724.

  3. Gu Y., Lo A., Niemegeers I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Totur. 2009;11:13–32. doi: 10.1109/SURV.2009.090103.

  4. Kaplan E.D., Hegarty C. Understanding GPS: Principles and Applications. 2nd ed. Artech House; Norwood, MA, USA: 2006.

  5. Sánchez-Rodríguez D., Hernández-Morera P., Quinteiro J.M., Alonso-González I. A low complexity system based on multiple weighted decision trees for indoor localization. Sensors. 2015;15:14809–14829. doi: 10.3390/s150614809.

  6. Zahid F., Rosdiadee N., Mahamod I. Recent advances in wireless indoor localization techniques and system. J. Comput. Netw. Commun. 2013;2013 doi: 10.1155/2013/185138.

  7. Zhao K., Li B., Andrew D., Chen L. A Comparison of algorithms adopted in fingerprinting indoor positioning systems; Proceedings of the International Global Navigation Satellite Systems Society IGNSS Symposium; Outrigger Gold Coast, Australia. 16–18 July 2013.

  8. Lin T.-N., Lin P.-C. Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks; Proceedings of the IEEE International Conference on Wireless Networks, Communications and Mobile Computing; Mauii, HI, USA. 13–16 June 2005; pp. 1569–1574.

  9. Husen M.N., Lee S. Indoor human localization with orientation using WiFi fingerprinting; Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication; Danang, Vietnam. 4–6 January 2014.

  10. Galván-Tejada C.E., García-Vázquez J.P., Brena R.F. Magnetic field feature extraction and selection for indoor location estimation. Sensors. 2014;14:11001–11015. doi: 10.3390/s140611001.

  11. Atia M.M., Noureldin A., Korenberg M.J. Dynamic online-calibrated radio maps for indoor positioning in wireless local area networks. IEEE Trans. Mob. Comput. 2013;12:1774–1787. doi: 10.1109/TMC.2012.143.

  12. Yoon G., Han D.S., Lim J., Jang W.-H. Radio map update automation for WiFi positioning systems. IEEE Commun. Lett. 2013;17:693–696.

  13. Koweerawong C., Wipusitwarakun K., Kaemarungsi K. Indoor localization improvement via adaptive RSS fingerprinting database. Inf. Netw. 2013;19:412–416.

  14. Jung J., Cho H.-W., Cha J., Hong J.-K., Lee S.-S. Efficient construction of database by indexing and correcting algorithms for personal computed indoor positioning system; Proceedings of the IEEE International Conference on Consumer Electronics (ICCE); Las Vegas, NV, USA. 11–14 January 2013; pp. 59–60.

  15. Aomumpai S., Kondee K., Prommak C., Kaemarungsi K. Optimal placement of reference nodes for wireless indoor positioning systems; Proceedings of the International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); Nakhon Ratchasima, Thailand. 14–17 May 2014; pp. 1–6.

  16. Chen Z., Zou H., Jiang H., Zhu Q., Soh Y.C., Xie L. Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization. Sensors. 2015;15:715–732. doi: 10.3390/s150100715.

  17. Song X., Yang F., Ding L., Qian L. Weight adjust algorithm in indoor fingerprint localization; Proceedings of the 6th International Conference on Signal Processing and Communication Systems; Gold Coast, Australia. 12–14 December 2012; pp. 1–5.

  18. Rodionov D., Kolev G., Bushminkin K. A hybrid localization technique for patient tracking; Proceedings of the 35th International Conference of the Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013; pp. 6728–6731.

  19. Yang Z., Sun Z., Jiang L., Xie Y., Kishiada H. An area zoning based WLAN location system; Proceedings of the IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2009); Shanghai, China. 7–9 December 2009.

  20. Liu H Y.Y. WiFi-based indoor positioning for multi-floor environment; Proceedings of the 2011 IEEE Region 10 Conference TENCON; Bali, Indonesia. 21–24 November 2011.

  21. Zou H., Lu X., Jiang H., Xie L. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine. Sensors. 2015;15:1804–1824. doi: 10.3390/s150101804.

  22. Laoudias C., Constantinides M., Nicolaou S., Zeinalipour-Yazti D., Panayiotou C.G. The airplace indoor positioning platform for android smartphones; Proceedings of the IEEE 13th International Conference on Mobile Data Management; Bengaluru, India. 23–26 July 2012; pp. 312–315.

  23. Laoudias C., Constantinou G., Constantinides M., Nicolaou S., Zeinalipour-Yazti D., Panayiotou C.G. Demo: The airplace indoor positioning platform; Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services; Low Wood Bay, UK. 25–29 June 2012; pp. 467–468.

  24. Tarrío P., Bernardos A.M., Casar J.R. Weighted least squares techniques for improved received signal strength based localization. Sensors. 2011;11:8569–8592. doi: 10.3390/s110908569.

  25. Al-Ahmadi A.S.M., Omer A.I.A., Kamarudin M.R., Rahman T.A. Multi-floor indoor positioning system using Bayesian graphical models. Prog. Electromagn. Res. 2010;25:241–259. doi: 10.2528/PIERB10081202.

  26. He Y., Meng W., Ma L., Deng Z. Rapid deployment of APs in WLAN indoor positioning system; Proceedings of the 6th International ICST Conference on Communications and Networking in China (CHINACOM); Harbin, China. 17–19 August 2011.

  27. Zou H., Jiang H., Lu X., Xie L. An online sequential extreme learning machine approach to WiFi based indoor positioning; Proceedings of the IEEE World Forum on Internet of Things (WF-IoT); Seoul, Korea. 6–8 March 2014.

###[9]References

[1] IMST GmbH, “Indoor Positioning – Imst ipos,” Project c21, IMST GmbH, www.centrum21.de.

[2] P. Bahl and V.N. Padmanabhan, “User Location and Tracking in an In-Building Radio Network”, Microsoft Technical Report MSR-TR-99-12, 1999.

[3] The Institute of Electrical and Electronics Engineers, Inc: Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11, 1999.

[4] P. Bahl and V.N. Padmanabhan, “RADAR: An in-building RF-based user location and tracking system”, Proc. IEEE Infocom, 2000.

[5] Ladd, Andrew M., et al, “Robotics-based location sensing using wireless Ethernet”, Technical Report TR02-393, Department of Computer Science, Rice University, 2002.

[6] D. Heberling, “Indoor Positioning Using WLAN”, in Conference Proceedings Wireless Congress 2005: Systems & Applications, Munich, Germany, November 2005.

[7] E. Moser, “Genauigkeits- und Leistungstest eines WLAN Indoor Positionierungssystems,”, Diploma Thesis, Institute of Geodesy and Geophysics, Vienna University of Technology, 2006.

[8] G. Retscher, “Multi-sensor Systems for Pedestrian Navigation,” in Proceedings of ION GNSS, 2004 Conference, Long Beach, California, USA, September 21-24, 2004, unpaginated CD-Rom Proceedings, 12 pgs. PROCEEDINGS OF THE 3rd WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATION (WPNC’06)

[9] G. Retscher, “Allgegenwärtige Positionierungsmethoden für Moderne und Intelligente Navigationssysteme und –dienste,” Österreichische Zeitschrift für Vermessung und Geoinformation VGI, Heft 3-4, pp. 136-144, 2004 (German).

[10] G. Retscher and A. Kealy, “Ubiquitous Positioning Technologies for Intelligent Navigation Systems,” in Proceedings of the 2nd Workshop on Positioning, Navigation and Communication, WPNC 2005, University of Hannover, Germany, March 17, 2005, Hannoversche Beiträge zur, Nachrichtentechnik, Band 0.2, Shaker Verlag, pp. 99-108.

[11] F.C.C., “First Report and Order 02-48,” Feb 2002.

[12] J.Romme and B.Kull, “A low-datarate and localization system”, in Proceeding of UWB4SN 2005: workshop on UWB for Sensor Networks, Lausanne, Switzerland, November 2005, http://icawww1.epfl.ch/uwb4sn/slides/RommeUWB4SN041105.pdf. PROCEEDINGS OF THE 3rd WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATION (WPNC’06)

###[10]References

[1] Y. Gu, A. Lo, I. Niemegeers: “A survey of indoor positioning systems for wireless personal networks”, IEEE Commun. Surveys & Tutorials, vol. 11, no. 1, pp. 13-32, 1Q 2009

[2] F. Barcelo-Arroyo, M. Ciurana, I. Martin-Escalona: “Process and system for calculating distances between wireless nodes”, U.S. Patent 8 289 963, October 26, 2012

[3] J. Corbet, A. Rubini, G. Kroah- Hartman: “Linux Device Drivers”, O'Reilly Media, Third edition, 2005

###[11] Reference

  1. Bosseboeuf, D. (2012). Energy efficiency trends in buildings in the EU. s.l.: s.n.

  2. Bruce, D., & Vernon, J. R. (2002). Returns on investments in information technology: A research synthesis. Journal of Information Systems, 16(1), 7–30.

  3. Chen, C.-Y., Tsoul, Y.-P., Liao, S.-C., & Lin, C.-T. (2009). Implementing the design of smart home and achieving energy conservation. Cardiff, Wales: IEEE.

  4. Christina, D., Evangelos, G., & Dionyssia, K. (2008). Towards a multi-objective optimization approach for improving energy efficiency in buildings. Chania, Crete, Greece: Elsevier B.V.

  5. Enerdata. (2015). Available at: http://www.indicators.odyssee-mure.eu/online-indicators.html. Energy Star, E. (n.d.). Energy star for programmable thermostats, s.l.: s.n.

  6. European Commission. (2015). (Online) Available at: http://ec.europa.eu/energy/en/topics/energy-efficiency/buildings. Foster, S., Tramba, A., & MacDonald, L. (2007). ecoMOD: Analyzing energy efficiency in affordable housing. Charlottesville, VA: IEEE.

  7. Global Building Performance Network. (2013). (Online) Available at: http://www.gbpn.org/databases-tools/bc-detail-pages/germany#Type%20of%20Building%20Code.

  8. Global eSustainability Initiative. (2008). SMART 2020: Enabling the low carbon economy in the information age. UK: Global eSustainability Initiative.

  9. Han, D.-M., & Lim, J.-H. (2010). Smart home energy management system using IEEE 802.15.4 and zigbee. Kongju, South Korea: IEEE.

  10. Ministerial Council on Energy Forming. (2006). Appliance standby power consumption store survey 2005/2006—final report. Australia: s.n.

  11. Sangogboye, F. (2015). Automation Scenario. (Online) Available at: http://goo.gl/ULYlu2. Accessed 8 April 2015.

  12. Skon, J., Kauhanen, O., & Kolehmainen, M. (2011). Energy consumption and air quality monitoring system. Adelaide, SA: IEEE.

  13. Tejani, D., Al-Kuwari, A., & Potdar, V. (2011). Energy conservation in a smart home. Daejeon: IEEE.

  14. Urban Land. (2009). Building Retro. (Online) Available at: http://www.esbnyc.com/sites/default/files/uli_building_retro_fits.pdf.

  15. Wei, C., & Li, Y. (2011). Design of energy consumption monitoring and energy-saving management system of intelligent building based on the Internet of things (pp. 3650, 3652). Zhejiang: IEEE.

###[12] noting

a) that Recommendation ITU-R P.526 provides guidance on diffraction effects, including those due to building materials and structures;

b) that Recommendation ITU-R P.527 provides information on the electrical properties of the surface of the Earth;

c) that Recommendation ITU-R P.679 provides guidance on planning broadcasting-satellite systems;

d) that Recommendation ITU-R P.1238 provides guidance on indoor propagation over the frequency range 900 MHz to 100 GHz;

e) that Recommendation ITU-R P.1406 provides information on various aspects of propagation relating to terrestrial land mobile and broadcasting services in the VHF and UHF bands;

f) that Recommendation ITU-R P.1407 provides information on various aspects of multi-path propagation;

g) that Recommendation ITU-R P.1411 provides propagation methods for short paths in outdoor situations, in the frequency range from about 300 MHz to 100 GHz;

h) that Recommendation ITU-R P.1812 provides a propagation prediction method for terrestrial point-to-area services in the frequency range 30 MHz to 3 GHz,

###[13] Reference

  1. T. S. Rappaport, "Characterization of UHF multipath radio propagation inside factory buildings", IEEE Trans. Antennas Propagat., vol. 37, pp. 1058-1069, Aug. 1989.

  2. A. A. M. Saleh, R. A. Valenzuela, "A statistical model for indoor multipath propagation", IEEE J. Select Areas Commun., vol. SAC-5, pp. 128-137, Feb. 1987.

  3. R. A. Valenzuela, "Performance of adaptive equalization for indoor radio communications", IEEE Trans. Commun., vol. 37, pp. 291-293, Mar. 1989.

  4. J. C.-I. Chuang, "The effects of time delay spread on portable radio communications channels with digital modulation", IEEE J. Select Areas Commun., vol. SAC-5, pp. 879-889, June 1987.

  5. T. S. Rappaport, C. D. McGillem, "UHF fading in factories", IEEE J. Select Areas Commun., vol. 7, pp. 40-48, Jan. 1989.

  6. T. S. Rappaport, C. D. McGillem, "Indoor radio communications for factories of the future", IEEE Commun. Mag., vol. 27, pp. 15-24, May 1989.

  7. D. M. J. Devasirvatham, "Multipath time delay spread in the digital portable radio environment", IEEE Commun. Mag., vol. 25, pp. 13-21, June 1987.

  8. R. J. C. Bultitude, S. A. Mahmoud, W. A. Sullivan, "A comparison of indoor radio propagation characteristics at 910 MHz and 1.75 GHz", IEEE J. Select Areas Commun., vol. 7, pp. 20-30, Jan. 1989.

  9. D. A. Hawbaker, T. S. Rappaport, "Indoor wideband radiowave propagation measurements at 1.3 GHz and 4.0 GHz", Electron. Lett., vol. 26, no. 21, pp. 1800-1802, Oct. 1990.

  10. P. Yegani, C. D. McGillem, "A statistical model for line-of-sight (LOS) factory radio channels", 39th Vehic. Technol. Conf. Proc., pp. 496-500, 1989-May.

  11. G. L. Turin, "Communication through noisy random-multipath channels", IRE Nat. Conf. Rec., pp. 4, 1956.

  12. G. L. Turin, F. D. Clapp, T. L. Johnson, S. B. Fine, D. Lavry, "A statistical model for urban multipath propagation", IEEE Trans. Vehic. Technol., vol. VT-21, pp. 1-9, Feb. 1972.

  13. H. Suzuki, "A statistical model for urban radio propagation", IEEE Trans. Commun., vol. COM-25, pp. 673-680, July 1977.

  14. H. Hashemi, "Simulation of urban radio propagation", IEEE Trans. Vehic Technol., vol. VT-28, pp. 213-225, Aug. 1979.

  15. W. C. Y. Lee, Mobile Communications Engineering, New York:McGraw-Hill, 1982.

  16. J. P. de Week, P. Merki, R. Lorenz, "Power delay profiles measured in mountainous terrain", 38th IEEE Vehic. Technol. Conf. Proc., pp. 105-112, 1988-June.

  17. D. C. Cox, R. P. Leek, "Distribution of multipath delay spread and average excess delay for 910 MHz urban mobile radio paths", IEEE Trans. Antennas Propagat., vol. AP-23, pp. 206-213, Mar. 1975.

  18. T. S. Rappaport, S. Y. Seidel, R. Singh, "900 MHz multipath propagation measurements for U.S. digital cellular radiotelephone", IEEE Trans. Vehic. Technol., vol. 39, pp. 132-139, May 1990.

  19. J. G. Proakis, Digital Communications, New York:McGraw-Hill, 1989.

  20. S. Y. Seidel, UHF indoor radio channel models for manufacturing environments, Aug. 1989.

  21. T. S. Rappaport, Radio channel modeling in manufacturing environments Part 1, Dec. 1988.

  22. D. C. Cox, H. Arnold, P. Porter, "Universal digital portable communications—A system perspective", IEEE Trans. J. Select Areas Commun., vol. SAC-5, pp. 764-773, June 1987.

  23. T. S. Rappaport, Radio channel modeling in manufacturing environments Parts 2 and 3, Feb. 1989.

  24. S. Y. Seidel, K. Takamizawa, T. S. Rappaport, "Application of second-order statistics for an indoor radio channel model", IEEE Vehic. Technol. Conf. Proc., pp. 888-892, 1989-May.

  25. S. Y. Seidel, T. S. Rappaport, "Simulation of UHF indoor radio channels for open plan building environments", 40th IEEE Vehic. Technol. Conf. Proc., pp. 597-602, 1990-May.

  26. S. Y. Seidel, T. S. Rappaport, "900 MHz path loss measurements and prediction techniques for in-building communication system design", Proc. 41st IEEE Vehic. Technol. Conf., pp. 613-618, 1991-May-21.

###[14] Reference

  1. CONTROLLED RADIO COVERAGE WITHIN BUILDINGS. Oct 1986, D.A. PalmerD.A. PalmerA.J. MotleyA.J. Motley

  2. Electromagnetic wave propagation in an underground duct, Apr 1971, COMSTOCK WDCOMSTOCK WD

  3. LEAKY FEEDER RADIO TECHNIQUES FOR MINES AND TUNNELS., Jan 1979, D.J.R. MartinD.J.R. MartinR.W. HainingR.W. Haining

  4. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase, Jan 1880, Philosophical Magazine, Lord RayleighLord Rayleigh

  5. A generalization of the two-state two-interval semi-Markov model Anders EkholmAnders Ekholm

  6. A Statistical Theory of Mobile-Radio Reception, Jul 1968, The Bell System technical journal, R.H. ClarkeR.H. Clarke

  7. 800-MHz Attenuation Measured In and Around Suburban Houses, Jul 1984B, ell Labs Technical Journal, Donald C. CoxDonald C. CoxRoy R. MurrayRoy R. MurrayA. W. NorrisA. W. Norris

  8. Statistical Properties of Gilbert's Burst Noise Model, Oct 1973, Bell Labs Technical Journal, Min‐Te ChaoMin‐Te Chao

  9. Penetration of Radio Signals Into Buildings in the Cellular Radio Environment, Nov 1983Bell Labs Technical Journal, E. H. WalkerE. H. Walker

  10. Theoretical distribution functions of multipath propagation and their parameters for mobile radio communication in quasi-smooth terrain, Dec 1979, R. W. LorenzR. W. Lorenz

  11. Propagation of low and medium frequency radio waves in a coal seam, Apr 1976, Radio Science, Alfred G. EmslieAlfred G. EmslieRobert L. LagaceRobert L. Lagace

  12. Calculated transmission loss for a leaky feeder communication system in a circular tunnel, Apr 1976, Radio Science, David A HillDavid A HillJames R. WaitJames R. Wait

  13. Theory of wave propagation along a thin wire inside a rectangular waveguide, Mar 1974, Radio Science, S.F. MahmoudS.F. MahmoudJames R. WaitJames R. Wait

  14. Measurement of building penetration loss on radio signals at 441, 900 and 1400 MHz, Sep 1988, Journal of the Institution of Electronic and Radio Engineers, A. M. D. TurkmaniA. M. D. TurkmaniJ.D. ParsonsJ.D. ParsonsD. G. LewisD. G. Lewis

  15. Modelling of UHF radiowave signals within externally illuminated multi-storey buildings, Nov 1987, Journal of the Institution of Electronic and Radio Engineers, P. J. BarryP. J. BarryA. G. WilliamsonA. G. Williamson

  16. Theory of transmission of electromagnetic waves along multi-conductor lines in the proximity of walls of mine tunnels, Jan 1975, Radio and Electronic Engineer, R. James WaitR. James Wait

  17. Theory and experiment of a mobile radio communication in tunnels by means of a leaky braided coaxial cable, Apr 1976, Radio Science, Pierre DegauquePierre DegauqueB. DemoulinB. DemoulinJ. FontaineJ. FontaineR. GabillardR. Gabillard

  18. Note on the theory of transmission of electromagnetic waves in a coal seam, Apr 1976, Radio Science, James R. WaitJames R. Wait

  19. Measurements of 800-MHz Radio Transmission Into Buildings With Metallic Walls, Nov 1983, Bell Labs Technical Journal, David C. CoxDavid C. CoxR. R. MurrayR. R. MurrayA. W. NorrisA. W. Norris

  20. Effects of Trains on Cutoff Frequency and Field in Rectangular Tunnel As Waveguide, May 1982, IEEE Transactions on Microwave Theory and Techniques, Jiro ChibaJiro ChibaKatsuhiko SugiyamaKatsuhiko Sugiyama

  21. Radio Propagation Characteristics in Underground Streets Crowded with Pedestrians, May 1988, IEEE Transactions on Electromagnetic Compatibility, Yoshio YamaguchiYoshio YamaguchiTakeo AbeTakeo AbeToshio SekiguchiToshio Sekiguchi

  22. Capacity of a Burst-Noise Channel, Sep 1960, The Bell System technical journal, E. N. GilbertE. N. Gilbert

  23. Estimation of time-varying digital mobile radio channels, Jan 1991, R. A. ZieglerR. A. ZieglerJ.M. CioffiJ.M. Cioffi

  24. Statistical Approach to Problems of Cosmology, Jan 1958, Journal of the Royal Statistical Society. Series B: Methodological, Jerzy NeymanJerzy NeymanElizabeth L. ScottElizabeth L. Scott

  25. Statistical autoregressive models for the indoor radio channel, Jan 1991, S.J. HowardS.J. HowardKaveh PahlavanKaveh Pahlavan

  26. 815 MHz radio attenuation measured within a commercial building, Jul 1986, R. MurrayR. MurrayH. ArnoldH. ArnoldD. CoxD. Cox, First Page of the Article

  27. Antenna Diversity Performance in Mitigating the Effects of Portable Radiotelephone Orientation and Multipath Propagation, Jun 1983, IEEE Transactions on Communications, Donald C. CoxDonald C. Cox

  28. A Statistical Model for Urban Radio Propogation, Aug 1977, IEEE Transactions on Communications, Hirofumi SuzukiHirofumi Suzuki

  29. Characteristics of Electromagnetic Guided Waves for Communication in Coal Mine Tunnels, Nov 1974, IEEE Transactions on Communications, S.F. MahmoudS.F. Mahmoud

  30. 910 MHz Urban Mobile Radio Propagation: Multipath Characteristics in New York City, Dec 1973, IEEE Transactions on Communications, Donald C. CoxDonald C. Cox

  31. Analysis of the RMS delay spread of indoor radio propagation channels, Jul 1992, H. HashemiH. HashemiD. ThollD. Tholl

  32. Simulation of the urban radio propagation channel in the presence of distant reflectors, Jan 1992, H. HashemiH. Hashemi

  33. Effects of circular and linear polarized antennas on wideband propagation parameters in indoor radio channels, Jan 1992, T.S. RappaportT.S. RappaportD.A. HawbakerD.A. Hawbaker

  34. Wideband frequency and time domain models for the indoor radio channel, Jan 1992, Kaveh PahlavanKaveh PahlavanRam GaneshRam GaneshS.J. HowardS.J. Howard

  35. The probability distributions of sinusoidal oscillations combined in random phase, Apr 1946, Margaret SlackMargaret Slack

  36. UHF wideband statistical model and simulation of mobile radio multipath propagation effects, Sep 1985, IEE Proceedings, A.S. BajwaA.S. Bajwa

  37. On the modeling of fading multipath indoor radio channels, Dec 1989, Ram GaneshRam GaneshKaveh PahlavanKaveh Pahlavan

  38. Communication through noisy, random-multipath channels, Jan 1956, George L TurinGeorge L Turin

  39. Experimental Study of Radio Propagation Characteristics in an Underground Street and Corridors, Sep 1986 IEEE Transactions on Electromagnetic Compatibility, Takeo Abe,Toshio Sekiguchi,Yoshio Yamaguchi(芳雄 山口)

  40. A pseudo-Markov model for stationary series of events, Jan 1971, Anders EkholmAnders Ekholm

  41. Time Division Adaptive Retransmission for Reducing Signal Impairments in Portable Radiotelephones, Jun 1983, IEEE Transactions on Vehicular Technology, Donald C. CoxDonald C. Cox

  42. In-building signal correlation for an urban environment, Jun 1984, R.J. PillmeierR.J. Pillmeier

  43. Radio communication in subways and mines through repeater amplifiers and leaky transmission lines, Apr 1978, R.A. IsbergR.A. Isberg

  44. Attenuation on a surface wave G-line suspended within a circular tunnel, Nov 1976, Journal of Applied Physics, James R. WaitJames R. WaitDavid A HillDavid A Hill

  45. A Ray Launching Method For The Prediction Of Indoor Radio Channel Characteristics, Oct 1991, M.C. LawtonM.C. LawtonR.L. DaviesR.L. DaviesJ. McgeehanJ. Mcgeehan

  46. Research in Site-Specific Propagation Modeling for PCS System Design, Jun 1993Vehicular Technology Conference, 1988, IEEE 38th, S. Y. SeidelS. Y. SeidelK. R. SchaubachK. R. SchaubachT. T. TranT. T. TranT.S. RappaportT.S. Rappaport

  47. Radio channel characterisation for the Digital European Cordless Telecommunications (DECT) system, Dec 1990, R.J. BaileyR.J. BaileyM.R. HeathM.R. Heath

  48. Multipath propagation models for in-building communications, Jan 1990, T.S. RappaportT.S. RappaportS.Y. SeidelS.Y. Seidel

  49. Propagation measurements at a G.M. manufacturing plant for wirelessLAN communication, Nov 1992, P. HodaieP. HodaieO.L. StoroshchukO.L. StoroshchukLarry Van Der JagtLarry Van Der Jagt[...]B. SzabadosB. Szabados

  50. 900 MHz indoor/outdoor propagation investigations via bit error structure measurements, Jun 1989Vehicular Technology Conference, 1988, IEEE 38th, C. GutzeitC. GutzeitA. BaranA. Baran

  51. DECT- Digital European Cordless Telecommunications, Jun 1989Vehicular Technology Conference, 1988, IEEE 38th, H. OchsnerH. Ochsner

  52. 900 MHz multipath propagation measurements for US digital cellular radiotelephone, Dec 1989, T.S. RappaportT.S. RappaportS.Y. SeidelS.Y. SeidelR. SinghR. Singh

  53. High-resolution spectral analysis techniques for estimating the impulse response of indoor radio channels, Jul 1992, T. LoT. LoJ. LitvaJ. LitvaR.J.C. BultitudeR.J.C. Bultitude

  54. Four branch diversity measurements at 1.7 GHz for indoor wirelesscommunications, Conference Paper, Jul 1992, S.R. ToddS.R. ToddM.S. El-TananyM.S. El-TananySamy MahmoudSamy Mahmoud

  55. Statistical modeling of the indoor radio propagation channel. II

Jun 1992Vehicular Technology Conference, 1988, IEEE 38th, H. HashemiH. HashemiD. LeeD. LeeD. EhmanD. Ehman

  1. Statistical modeling of the indoor radio propagation channel. I, Jun 1992Vehicular Technology Conference, 1988, IEEE 38th, H. HashemiH. HashemiD. ThollD. ThollG. MorrisonG. Morrison

  2. Delay spreads and channel dynamics measurements at ISM bands, Jul 1992, C.-C. HuangC.-C. HuangR. KhayataR. Khayata

  3. Statistical characterization of a partitioned indoor radio channel, Jul 1992, Communications, Speech and Vision, IEE Proceedings I, Ram GaneshRam GaneshKaveh PahlavanKaveh Pahlavan

  4. Statistics of short time variations of indoor radio propagation, Jul 1991, Ram GaneshRam GaneshKaveh PahlavanKaveh Pahlavan

  5. Development of a propagation model in the 20-60 GHz band for wireless indoor communications, Jun 1991, Peter F. DriessenPeter F. Driessen

  6. Frequency measurements of the indoor channel: System evaluation and post processing using IDFT and ARMA modeling, Jun 1991, G. MorrisonG. MorrisonHatem ZaghloulHatem ZaghloulMichel FattoucheMichel Fattouche [...] A. McGirrA. McGirr

  7. Guided radiation.... The key to tunnel talking, Apr 1965, R.A. FarmerR.A. FarmerN.H. ShepherdN.H. Shepherd

  8. Characterising the UHF factory radio channel, Feb 1987, Electronics Letters, T.S. RappaportT.S. RappaportC.D. McGillemC.D. McGillem

  9. Radiowave propagation into and within a building at 927 MHz, Feb 1987, Electronics Letters, P.J. BarryP.J. BarryA.G. WilliamsonA.G. Williamson

  10. Polarisation diversity in portable communications environment, Feb 1986, Electronics Letters, S.A. BergmannS.A. BergmannH.W. ArnoldH.W. Arnold

  11. Time delay spread measurements of wideband radio signals within a building, Feb 1984, Electronics Letters, D.M.J. DevasirvathamD.M.J. Devasirvatham

  12. Reduced long-range signal reception with leaky feeders, Feb 1983, Electronics Letters, A.J. MotleyA.J. MotleyD.A. PalmerD.A. Palmer

  13. Low-frequency radio transmission in a circular tunnel containing a wire conductor near the wall, Feb 1976, Electronics Letters, J.R. WaitJ.R. WaitDavid A HillDavid A Hill

  14. Radiocommunication in mines and tunnels, Feb 1970, Electronics Letters, D.J.R. MartinD.J.R. Martin

  15. Time delay spread measurements at 850 MHz and 1.7 GHz inside a metropolitan office building, Mar 1989, Electronics Letters, D.M.J. DevasirvathamD.M.J. DevasirvathamR.R. MurrayR.R. MurrayC. BanerjeeC. Banerjee

  16. Indoor wideband radiowave propagation measurements at 1.3 GHz and 4.0 GHz, Nov 1990, Electronics Letters, D.A. HawbakerD.A. HawbakerT.S. RappaportT.S. Rappaport

  17. Statistical AR models for the frequency selective indoor radio channel, Aug 1990, Electronics Letters, Kaveh PahlavanKaveh PahlavanS.J. HowardS.J. Howard

  18. Doppler spread measurements of indoor adio channel, Feb 1990, Electronics Letters, S.J. HowardS.J. HowardKaveh PahlavanKaveh Pahlavan

  19. Path Loss Prediction in Multifloored Buildings at 914 MHz, Aug 1991, Electronics Letters, S.Y. SeidelS.Y. SeidelT.S. RappaportT.S. Rappaport

  20. On arrival of paths in fading multipath indoor radio channels, Jul 1989, Electronics Letters, Ram GaneshRam GaneshKaveh PahlavanKaveh Pahlavan

  21. Radio propagation for digital cordless telephones at 1700 MHz and 900 MHz, Feb 1989, Electronics Letters, F.C. OwenF.C. OwenC.D. PudneyC.D. Pudney

  22. Radio transmission at 1800 MHz into, and within, multistory buildings, Jan 1992, Communications, Speech and Vision, IEE Proceedings I, A.M.D. TurkmaniA.M.D. TurkmaniA.F. de ToledoA.F. de Toledo

  23. Statistical model for UHF radio-wave signals within externally illuminated multistory buildings, Sep 1991, Communications, Speech and Vision, IEE Proceedings I, P.J. BarryP.J. BarryAllan WilliamsonAllan Williamson

  24. Wireless Personal Communications: Trends and Challenges, Nov 1991, IEEE Antennas and Propagation Magazine, T.S. RappaportT.S. Rappaport

  25. Radio Propagation and Anti-Multipath Techniques in the WIN Environment, Dec 1991, IEEE Network, James E. MitzlaffJames E. Mitzlaff

  26. Advanced Cordless Telecommunications Service, Jul 1987, IEEE Journal on Selected Areas in Communications, Alison M MotleyAlison M Motley

  27. Multipath Time Delay Jitter Measured at 850 MHz in the Portable Radio Environment, Jul 1987, IEEE Journal on Selected Areas in Communications, Daniel M J Devasirvatham

  28. Channel Modeling and Adaptive Equalization of Indoor Radio Channels, Feb 1989, IEEE Journal on Selected Areas in Communications, Thomas A. Sexton, Kaveh Pahlavan

  29. Multipath Time Delay Spread in the Digital Portable Radio Environment, Jul 1987, IEEE Communications Magazine, Daniel M J Devasirvatham

  30. Measurement, Characterization and Modeling of Indoor 800/900 MHz Radio Channels for Digital Communications, Jul 1987, IEEE Communications Magazine, R.J.C. BultitudeR.J.C. Bultitude

  31. Wireless communications for office information networks, Jul 1985, IEEE Communications Magazine, Kaveh Pahlavan

  32. Personal Communication Services: Expanding the Freedom to Communicate, Mar 1991, IEEE Communications Magazine, Sam Ginn

  33. Wireless Network Directions, Mar 1991, IEEE Communications Magazine, Ian M. Ross

  34. A business cordless PABX telephone system on 800 MHz based on the DECT technology, Feb 1991, IEEE Communications Magazine

  35. Personal Communication—A Viewpoint, Dec 1990, IEEE Communications Magazine,David C. Cox

  36. Portable Digital Radio Communications-An Approach to Tetherless Access, Aug 1989, IEEE Communications Magazine, Donald C. Cox

  37. Emerging Technology and Service Enhancement for Cordless Telephone Systems, Feb 1988, IEEE Communications Magazine, Toshihiro Hattori. Sasaki. Kohji Momma

  38. Autoregressive modeling of wide-band indoor radio propagation, Oct 1992, IEEE Transactions on Communications, Steven J. Howard, Kaveh Pahlavan

  39. Statistical Channel Impulse Response Models for Factory and Open Plan Building Radio Communicate System Design, Jun 1991, IEEE Transactions on Communications, T.S. RappaportT.S. RappaportScott Y. SeidelScott Y. SeidelKoichiro TakamizawaKoichiro Takamizawa

  40. Strange Attractors in Multipath Propagation, Jun 1991, IEEE Transactions on Communications, C. Tannous, R. Davies, A. Angus

  41. Measurements of the Wide-Band Radio Channel Characteristics for Rural, Residential, and Suburban Areas, Mar 1987, IEEE Transactions on Vehicular Technology, Jan van Rees

  42. Universal Portable Radio Communications, Sep 1985, IEEE Transactions on Vehicular Technology, Donald C. Cox

  43. Antenna Height Dependence of 800 MHz Attenuation Measured in Houses, Jun 1985, IEEE Transactions on Vehicular Technology, Donald C. Cox, Roy R. Murray, A.W. NorrisA

  44. Microwave Propagation Measurements for Mobile Digital Radio Application, Sep 1978, IEEE Transactions on Vehicular Technology, Donaild L. Nielson

  45. The Attenuation of UHF Radio Signals by Houses, Dec 1977, IEEE Transactions on Vehicular Technology, Paul I. Wells

  46. New Radio Paging System and Its Propagation Characteristics, Dec 1977, IEEE Transactions on Vehicular Technology, Mitsuru KomuraMitsuru KomuraTadatoshi HagihiraTadatoshi HagihiraMasanori OgasawaraMasanori Ogasawara

  47. Cordless Telephone System and Its Propagation Characteristics, Dec 1977, IEEE Transactions on Vehicular Technology, Kiyoyuki Tsujimura, Moriji Kuwabara

  48. Propagation and Radiation of VHF Radio Signals in Motorway Tunnels, Jun 1976 IEEE Transactions on Vehicular Technology, Eraldo D. DamossoEraldo D. DamossoSalvatore De PadovaSalvatore De Padova

  49. Space and Frequency Diversity Measurements of the 1.7 GHz Indoor Radio Channel Using a Four-Branch Receiver, Sep 1992, IEEE Transactions on Vehicular Technology, Stephen R. ToddStephen R. ToddMohammed S. El-TananyMohammed S. El-TananySamy MahmoudSamy Mahmoud

  50. Microwave Modeling of Rectangular Tunnels, Jul 1984, IEEE Transactions on Microwave Theory and Techniques, Benjamin JacardBenjamin JacardOscar MaldonadoOscar Maldonado

  51. Propagation Along a Braided Coaxial Cable Located Close to a Tunnel Wall (Short Papers), Aug 1976, IEEE Transactions on Microwave Theory and Techniques, David A HillDavid A HillJames R. WaitJames R. Wait

  52. Measurement and analysis of the indoor radio channel in frequency domain, Nov 1990, IEEE Transactions on Instrumentation and Measurement, Steven J. HowardSteven J. HowardKaveh PahlavanKaveh Pahlavan

  53. Electromagnetic Wave Propagation in an Asymmetrical Coal Seam, Mar 1986, IEEE Transactions on Antennas and Propagation, DA HILL

  54. Time delay spread and signal level measurements of 850 MHz radio waves in building environments, Dec 1986, IEEE Transactions on Antennas and Propagation, Daniel M J Devasirvatham

  55. Cross-Polarization Coupling Measured for 800 MHz Radio Transmission in and Around Houses and Large Buildings, Feb 1986, IEEE Transactions on Antennas and Propagation, Donald C. CoxDonald C. CoxRoy R. MurrayRoy R. MurrayHamilton W. ArnoldHamilton W. Arnold[...]Maevin F. WazowiczMaevin F. Wazowicz

  56. Attenuation of 900 MHz Radio Waves Propagating into a Metal Building, Aug 1982, IEEE Transactions on Antennas and Propagation, Harold H. HoffmanHarold H. HoffmanDonald C. CoxDonald C. Cox

  57. Theory of the Propagation of UHF Radio Waves in Coal Mine Tunnels, Apr 1975 IEEE Transactions on Antennas and Propagation, Alfred G. EmslieAlfred G. EmslieRobert L. LagaceRobert L. LagacePeter F. StrongPeter F. Strong

  58. Guided Electromagnetic Waves Along an Axial Conductor in a Circular Tunnel, Aug 1974, IEEE Transactions on Antennas and Propagation, JR WAITJR WAITDavid A HillDavid A Hill

  59. Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment, Oct 1972, IEEE Transactions on Antennas and Propagation, Donald C. Cox

  60. Introduction to Spread-Spectrum Antimultipath Techniques and Their Application to Urban Digital Radio, Apr 1980Proceedings of the IEEE, George L. Turin

  61. Underground Mine Communications, Feb 1978Proceedings of the IEEE, John N. MurphyJohn N. MurphyHoward E. ParkinsonHoward E. Parkinson

  62. T. K. Ishii, " RF propagi6on in buildings, " Radio Frequency Design, vol. 12, Part 7, pp. 45-49, July 1989. [I811 F. C. Owen and C. D. Pundey, " Radio propagation for digital cordless telephones at 1700 MHz and 900 MHz, " Electron. G. Pugliese, " Ay60 GHz radio system for propagation studies in buildings, " in IEE Third Int. Con5 Antennas Propagat.. 1983. [I281 M. Kaji, " UHF-band radio propagation characteristics within large buildings, " Trans. Inst. Electron. In$ Commun. Eng., vol. J 70-B, no.10, pp. 1200-1209, Oct. 1987.

  63. A. A. M. Saleh and R. A. Valenzuela, " A statistical model for 1992, pp. 57-60. 1991, pp. 48-53. 1992, pp. 338-342. 1992, pp. 839-843.

  64. [ I 161 P. J. Barry and A. G. Williamson, " Statistical model for UHF radio-wave signals within extemally illuminated multi-story buildings, " in IEE Proceedings-I, vol. 138, no.4, 1991.

[ I 171 H. Zaghloul, G. Morrison, D. Tholl, R. J. Davies, S. Kazemine-jad, " Frequency response measurements of the indoor channel, " in Proc. ANTEM'90 Conf, Winnipeg, Manitoba, Aug. 1990, pp.

[I 181 M. Fattouche, G. Morrison, H. Zaghloul, L. Petherick, " Di-versity for indoor radio communications, " Proc. 33rd Mid-west Symp. Circuifs Syst., Aug. 12-14, 1990, Calgary, Alberta, Canada.

[I191 H. Zaghloul, G. Morrison, M. Fry, and M. Fattouche, " Mea-surements of the frequency response of the indoor channel, " in Proc. 33rd IEEE Midwest Symp. Circuits Syst., Aug. 12-14, 1990.

  1. S. Kozono, T. Suzuki, andT. Hanazawa, " Experimental study of mobile radio propagation characteristics in rectangular tunnels, " Trans. IECE of Japan, vol. J62-B, no.6, pp. 565-572, June 1979.

  2. A. R. Potter, " Personal communications networks, " in Fourth Nordic Seminar on Digital Mobile Radio Communications, Oslo, Norway, June 1990. R. Steele, ''Deploying wrsonal communication networks, " IEEE pp. 19-29, Oct. 1991. ---. 1271

D. Molkdar, " Review on radio propagation into and within buildings,'' in 1EEProc.-H, vol. 138, no.1, pp. 61-73, Feb. 1991. PROCEEDINGS OF THE IEEh, VOL. 81. NO. 7, JULY 1993 -. wave channel measurements for indoor wireless communica-tions, " in Proc. IEEE Vehicular Technology Con$. VTC '92, Denver, Colo., May 1992, pp. 609-612.

  1. A. G. Slekys, " What's ahead worldwide for digital cellular,'' Mobile Radio Techn., pp. 28-58, May 1990.

  2. C. M. P. Ho and T. S. Rappaport, " Effects of antenna polariza-tion and beam pattern on multipath delay spread at 2.45 GHz in indoor propagation channels, " in Proc. 1st Int. Con$ Univ. Personal Commun., Dallas, Tex., Sept. 29-Oct. 2, 1992.

  3. J. H. Winters and Y. S. Yeh, " On the performance of wideband digital radio transmission within buildings using diversity, " in Proc. GLOBECOME '85 Con$. New Orleans, Louisiana, Dec.

  4. S. F. Mahmoud, " Characteristics of electromagnetic guided waves for communication in coal mine tunnels, " IEEE Trans. Commun., vol. COM-22, pp. 1547-1554, no. 4, Oct. 1974. 12251

S. F. Mahmoud and J. R. Wait, " Geometrical optical approach for electromagnetic wave propagation in rectangular mine tun-nels,'' Radio Sci., vol. 9, no. 12, pp. 1147-1 158, Dec. 1974. 12261

J. R. Wait and D. A. Hill, " Guided electromagnetic waves along an axial conductor in a circular tunnel, " IEEE Trans. Antennas Propagat., vol. AP-22, pp. 627-630, July 1974.

  1. D. M. J. Devasirvatham, C. Banerjee, M. J. Krain, and D. A. Rappaport, " Multi-frequency radiowave propagation measure-ments in the portable radio environment, " in Proc. IEEE Int. Confi Commun., ICC'90, pp. 1334-1340, Apr. 1990. (601

D. M. J. Devasirvatham, " Multi-frequency propagation mea-surement and models in a large metropolitan commercial build-ing for personal communications, " in Proc. Second IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun., London, England, Sept. 1991, pp. 98-103.

  1. [I511 P. Melancon, " Report on propagation inside an empty and fur-nished building at 433,861, and 1705 MHz, " Queens University 15th Biennial Symp. Communications, Queens Univ., Kingston, Ontario, Canada, June 3-6, 1990, pp. 81-84.

  2. R. J. C. Bultitude and S. A. Mahmoud, " Estimation of indoor 800/900 MHz digital radio channel performance characteristics using results from radio propagation measurements, " in P roc. Int. Commun. Con6 ICC' 87, pp. 70-75, 1987.

  3. GHz, " in Proc. IEEE Vehicular Techn. Conf, VTC '92, Denver, Colorado, May 1992, pp. 617-620. 11971 F. Lotse, J-E. Berg, and R. Bownds, " Indoor propagation measurement at 900 MHz, " in Proc. IEEE Vehicular Techn. Conf., VTC '92, Denver, Colo., May 1992, pp. 629-632. [ 1981

S. Harbin, C. Palmer, and B. K. Rainer, " Measured propagation characteristics of simulcast signals in an indoor microcellular environment, " in Proc. IEEE Vehicular Techn. Conf, VTC '92, Denver, Colorado, May 1992, pp. 604-608.

  1. T. Holt, K. Pahlavan, and J. F. Lee, " Ray tracing algorithm for indoor radio propagation modeling, " in Proceedings Third IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun., Boston, Mass., Oct. 19-21, 1992. 1135-1 140.

  2. H. Hashemi, " Simulation of the urban radio propagation chan-nel, " IEEE Trans. Vehicular Techn., vol. VT-28, pp. 213-224, Aug. 1979. 12541 D. C. Cox, " 910 MHz urban mobile radio propagation: Multi-path characteristics in New York City, " IEEE Trans. Vehicular Techn., vol. VT-22, no. 4, pp. 104-110, Nov. 1973.

  3. Martin, " Radio coverage in buildings, " in Proc. Nut. Commun. Forum, NCF'88, Chicago, 1988, pp. [IO61 S. E. Alexander, " Radio propagation within buildings at 900

  4. L. Deryck, " Natural propagation of electromagnetic waves in tunnels, " IEEE Trans. Vehicular Techn., vol. VT-27, no. 3, pp. Y. Yamaguchi, T. Abe, and T. Sekiguchi, " Improvement of attenuation characteristics in tunnels (I), " IECE of Japan, Tech. Report on Antennas Propagation, A.P83-11, May 1983.

  5. S. R. Todd, M. S. El-Tanany and S. A. Mahmoud, " Space and frequency diversity measurements of the 1.7GHz indoor radio channel for wireless personal communications, " in Proc. 1st Int. Con$ Universal Personal Commun., Dallas, Tex., Sept. 29-Oct. 2, 1992. [ 1471

P. Karlsson, " Investigation of radio propagation and macro-scopic diversity in indoor microcells at 1700 MHz, " in Proc. IEEE Vehicular Techn. Con$, VTC'90, pp. 390-395, Miami, May 1990. [I481

P. Karlsson and H. Borjesson, " Measurement system for indoor narrowband radio propagation at 1700 MHz and some results, " in Proc. IEEE Vehicular Techn. Con$. VTC '92, Denver, Colo., May 1992, pp. 625-628.

  1. J. R. Wait, " Note on the theory of transmission of electromag-netic waves in a coal seam, " Radio Sci., vol. 11, no. 4, pp. 263-265, Apr. 1976.

D. A. Hill and J. R. Wait, " Calculated transmission loss for a leaky feeder communication system in a circular tunnel, " Radio Science, vol. 1 1, no. 4, pp. 31.5-321, Apr. 1976.

D. A. Hill, " Electromagnetic propagation in an asymmetrical coal seam, " IEEE Trans. Antennas Propagat., vol. AP-34, no. 2, pp. 244-247, Feb. 1986.

  1. [I531 L. W. Pickering, E. H. Bamhart, M. L. Witten, N. H. Hightower, and M. D. Frerking, " Characterization of indoor propagation for personal communication services, " in IEEE Southcon ' 91 Con$ Record, Mar. 1991.

[I541 L. W. Pickering, E. N. Bamhart, and M. L. Witten, " Statistical data from frequency domain measurements of indoor PCN communication channel, " in Proc. Second IEEE Znt. Symp.

  1. R. Davies, M. Bensebti, M. Beach, J. P. McGeehan, D. Rickard, C. Shepherd, and S. Wales, " A comparison of indoor and urban propagation at 1.7, 39, and 60 GHz, " in Proc. of the 41st Vehicular Technology Conference, VTC '91, Saint Louis, Missouri, May 19-22, 1991, pp. 589-593. 11901 J. R. Barry, J. M. Kahn, E. A. Lee, and D. G. Messerschmitt, " Simulation of multipath impulse response for indoor diffuse optical channels, " in Proc. IEEE Workshop on Wireless LAN's, Worcester, MA, May 9-10, 1991, pp. 81-87.

  2. A. A. M. Saleh and R. A. Valenzuela, " A statistical model for indoor multipath propagation, " lEEE J. Selected Areas in Comm., vol. SAC-5, no.2, pp. 128-137, Feb. 1987. I991

A. A. M. Saleh, A. J. Rustako, Jr., and R. S. Roman, " Dis-tributed antennas for indoor radio communications, " in P roc. Int. Con$ Commun., ICC'87, pp. 76-80, 1987. IlOOl

A. A. M. Saleh, A. J. Rustako, Jr., and R. S. Roman, " Dis-tributed antennas for indoor radio communications, " IEEE Trans. Commun., vol. COM-35, 110.12, pp. 1245-1251, Dec. 1987. [IO11

A. J. Motley and D. A. Palmer, " Directed radio coverage within buildings, " in IEE Con& Publication, no.224, pp. 56-60, Sept. 1983. [IO21

A. J. Motley and D. A. Palmer, " Reduced long-range signal reception with leaky feeders, " Electronics Letters, vol. 19, no.18, pp. 714-715, Sept. 1983. [lo31

D. A. Palmer and A. J. Motley, " Controlled radio coverage within buildings, " British Telecomm. Technol. J., vol. 4, no.4, [I041

A. J. Motley and J. M. P. Keenan, " Personal communication radio coverage in buildings at 900 MHz and 1700 MHz, " Electron. Letters, vol. 24, no.12, pp. 763-764, June 9, 1988, [I051

  1. A. J. Motley and A. J. W. McKown and R. L. Hamilton, " Ray tracing as a design tool for radio networks, " IEEE Nemork Mag., vol. 5, no. 6, pp. [ 1941

J. E. Mitzlaff, " Radio propagation and anti-multipath techniques in the WIN environment, " IEEE Network Mag., vol. 5, no. 6,

  1. T. Hattori, A. Sasaki, and K. Momma, " Emerging telephony and service enhancement for cordless telephone systems, " IEEE Commun. Mag., vol. 26, no.1, pp. 53-58, Jan. 1988.

R. Steele, " The cellular environment of lightweight handheld portables, " IEEE Commun. Mag., vol. 27, 110.7, pp. 20-29, July 1989. " Special Issue on Mobile Communications, " British Telecom Tech. J., vol. 8, no.1, Jan. 1990.

F. J. Defier, " LAN's without wires, " PC Mag., vol. 9, no.10, May 29, 1990, pp. 295-318.

  1. R. J. C. Bultitude, P. Melancon, R. Hahn, and M. Prokki, " An investigation of static indoor channel multipath characteristics, " in Proc. Wireless '91 Conf, July 8-10, 1991, Calgary, Alberta, Canada.

  2. T. S. Rappaport, " Wireless personal communications: trends and challenges, " IEEE Antennas Propagat. Mag., vol. 33, no.5, T. S. Rappaport, " The wireless revolution, " IEEE Commun. Mag., vol. 29, no.11, pp. 52-71, Nov. 1991.

K. Pahlavan, " Wireless communications for office information networks, " IEEE Commun. Mag., vol. 23,110.6, pp. 19-27, June 1985. K. Pahlavan, " Wireless intra-office networks, " ACM Trans. OfJice Informat. Syst., July 1988.

M. H. Ross, " The mass market challenges of personal commu-nications, " in Second Nordic Seminar on Digital Land Mobile Radio, Stockholm, Sweden, Oct. 14-16, 1986.

  1. MHz, " Electron. Letters, vol. 18, no.21, pp. 913-914, Oct. 14, 1982. [IO71

S. E. Alexander and G. Pugliese, " Cordless communication within buildings: Results of measurements at 900 MHz and 60 GHz, " British Telecom. Technol. J., vol. I, no. I, pp. 99-105, July 1983. [ 1081

S. E. Alexander, " Characterizing buildings for propagation at 900 MHz, " Electron. Letters, vol. 19, p. 860, Sept. 29, 1983. [IO91 S. E. Alexander, " Radio propagation within buildings at 900

  1. D. J. R. Martin, " Leaky feeder communication in tunnels, " Wireless World, pp. 33-37, July 1982. 12201 P. Delogne, " Basic mechanisms of tunnel propagation, " Radio Sci., vol. 11, no. 4, pp. 295-303, Apr. 1976. [22 11

P. Delogne, " EM propagation in tunnels, " lEEE Trans. Antennas Propagat., vol. 39, no. 3, pp. 401-405, Mar. 1991. 12221

S. F. Mahmoud and J. R. Wait, " Guided electromagnetic waves in a curved rectangular mine tunnel, " Radio Sci., vol. 9, no. 5, pp. 567-572, May 1974.

  1. Reudink, " Mobile radio propagation in tunnels, " in IEEE Vehicular Techn. Group Con$. San Francisco, Calif., Dec., 1968.

W. D. Comstock, " Electromagnetic wave propagation in an underground duct, " Proc. IREE, Australia, vol. 32, pp. 159-162, Apr. 1971.

A. E. Goddard, " Radio propagation measurements in coal mines at UHF and VHF, " in Proc. of Through-the Earth Electromag-netics Workshop, Colorado School of Mines, Golden, Colo., Aug. 15-17, 1973; available from Nat. Tech. Informat. Service, Alexandria, Va.

  1. R.J.C. Bultitude, " Measurements of wideband propagation char-acteristics for indoor radio with predictions for digital system performance, " in Proc. Wireless '90 Con$, Calgary, Alberta, Canada, July 1990.

  2. C. C. Bailey, " Characterization of troposcatter channels by impulse response measurement, " in 16th Symp. AGARD Electro-magn. Wave Propagat. Panel (NATO), Aug. 31-Sept. 4, 1970, Dueseldorf, Germany. 12621

C. C. Bailey, " Multipath characteristics of angle diversity troposcatter channels, " presented at the IEEE International Conference on Communications, ICC '7 1, June 14-16, 197 1, Montreal, Canada.

  1. B. Jacard and 0. Maldonado, " Microwave modeling of rect-angular tunnels, " IEEE Trans. Microwave Theory Techn., vol. MTl-32, no. 6, pp. 576-581, June 1984. 93-102, M a. 1965. 145-150, Aug. 1978. Other Related References 12491

P. A. Bello, " Characterization of randomly time-variant linear channels, " IEEE Trans. Commun. Syst., vol. CS-11, pp. 360-393, Dec. 1963.

  1. R. J. C. Bultitude, " Propagation characteristics of 800/900 MHz radio channels operating within buildings, " in Proc. 13th Biennial Symp. Commun., BI/I -4, Kingston, Ontario, Canada, June 2-4, 1986.

  2. M. Kaji, " Polarization characteristics in UHF-band mobile radio propagation, " Trans. Inst. Electron. In$ Commun. Eng., vol. J 70-B, no.12, pp. 1510-1521, Dec. 1987. [ 1301

M. Kaji, " UHF-band path loss prediction within small buildings by ray method, " Trans. Inst. Electron. In$ Commun. Eng., vol. J 71-B, no.1, pp. 89-91, Jan. 1988. [I311

A. M. D. Turkamani, J. D. Parsons, and D. G. Lewis, " Ra-dio propagation into buildings at 441, 900 and 1400 MHz, " in Fourth Int. Con& Land Mobile Radio, Univ. of Warwick, Conventry, Publication 78, Dec. 1987, pp. 129-139.

  1. J. R. Wait, " Theory of transmission of electromagnetic waves along multi-conductor lines in tunnels, " Radio Electronic Engr., vol. 45, no. 5, pp. 229-232, May 1975. 12281 J. R. Wait and D. A. Hill, " Propagation along a braided coaxial cable in a circular tunnel, " IEEE Trans. Microwave Theory Techn., vol. MTT-23, pp. 401-405, May 1975.

  2. MHz, " in IEE Third Int. Con$ Antennas Propagat., 1983, pp. [I IO] S. E. Alexander, " 900 MHz propagation within buildings, " in IEE Second Con& Radio Spectrum Conservation Techn., May [I 1 I]

P. J. Barry and A. G. Williamson, " UHF radiowave penetration into.buildings and signal level variations within, " in Proc. 23rd New Zealand Nar. Electronics Con&, Palmerston North, New Zealand, Aug. 26-28, 1986, pp. 94-100.

  1. D. L. Nielson, " Microwave propagation measurements for mo-bile digital radio application, " IEEE Trans. Vehicular Technol-12571

A. S. Bajwa, " UHF wideband statistical model and simulation of mobile radio multipath propagation effects, " in IEE Proc., vol. 132, Pt. F, no. 5, pp. 327-333, Aug. 1985.

  1. W. A. McGladdery and S. Stapleton, " Investigation of polariza-tion effects in indoor radio propagation, " in Proc. 1992 IEEE Int. Conf Selected Topics in Wireless Commun., Vancouver, B. C., June 25-26, 1992, pp. 53-56. 1222-1226. 65-68. and Mobile Radio Commun., Boston, Mass., Oct. 19-21, 1992.

  2. T. T. Tran and T. S. Rappaport, " Site specific propagation prediction models for PCS design and installations, " in Milcom '92 Conf., San Diego, Calif., Oct. 1992. 1501

S. Y. Seidel and T. S. Rappaport, " A ray tracing technique to predict path loss and delay spread inside buildings, " Proc. IEEE GLOBECOM '92 Con$, Orlando, Ha., Dec. 6-9, 1992, 1511

D. M. J. Devasirvatham, " Time delay spread measurements of wideband radio signals within a building, " Electronics Letters, vol. 20, 110.23, pp. 950-951, Nov. 8, 1984.

  1. S. Kozono, " Experimental test results of 800-MHz band mobile radio propagation in high-way tunnels, " in Int. Symp. Antennas Propagat., Sendai, Japan, Aug. 29-3 1, 1978, pp. 393-396.

###[15] Reference

  1. D. Courjon, Near-Field Microscopy and Near-Field Optics. 57 Shelton Street, Covent Garden, London WC2H 9HE: Imperial College Press, 2003.

  2. L. Novotny and B. Hecht, Principles of Nano-Optics. New York: Cambridge University Press, 2006.

  3. S. A. Maier, Plasmonics: Fundamentals and Applications. Springer, 2007.

  4. T. W. Ebbesen, L. H. J., H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London), vol. 391, pp. 667-669, 1998.

  5. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett., vol. 83, no. 14, pp. 2845-2848, Oct. 1999.

  6. P. Sheng, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings - application to diffraction and surface-plasmon calculations," Phys. Rev. B, vol. 26, no. 6, pp. 2907-2916, 1982.

  7. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B, vol. 62, no. 23, pp. 16 100-16 108, Dec. 2000.

  8. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett., vol. 86, no. 6, pp. 1114-1117, Feb. 2001.

  9. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, "Dispersing light with surface plasmon polaritonic crystals," Phys. Rev. Lett., vol. 99, no. 8, p. 083901, Aug. 2007.

  10. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express, vol. 12, no. 16, pp. 3629-3651, Aug. 2004.

  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B, vol. 58, no. 11, pp. 6779-6782, Sep. 1998.

  12. M. Kowarz, "Homogeneous and evanescent contributions in scalar nearfield diffraction," Appl. Optics, vol. 34, pp. 3055-3063, 1995.

  13. H. Bethe, "Theory of diffraction by small holes," Phys. Rev., vol. 66, pp. 163-182, 1944.

  14. T. Thio, "A bright future for subwavelength light sources," Am. Sci., vol. 94, pp. 40-47, 2006.

  15. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett., vol. 88, no. 5, p. 057403, Feb. 2002.

  16. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express, vol. 13, no. 12, pp. 4485-4491, Jun. 2005.

  17. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, "Quantitative determination of optical transmission through subwavelength slit arrays in ag films: Role of surface wave interference and local coupling between adjacent slits," Phys. Rev. B, vol. 77, no. 11, p. 115411, Mar. 2008.

  18. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts," Opt. Express, vol. 14, no. 14, pp. 6400-6413, Jul. 2006.

  19. O. T. A. Janssen, H. P. Urbach, and G. W. 't Hooft, "On the phase of plasmons excited by slits in a metal film," Opt. Express, vol. 14, no. 24, pp. 11 823-11 832, Nov. 2006.

  20. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, nearfield characterization, and modeling of 45 circle surface-plasmon bragg mirrors," Phys. Rev. B, vol. 73, no. 15, p. 155416, Apr. 2006.

##参考文献の参考文献の参考文献

###1-1

  1. A. Ganz, A. Savvides, Z. Ganz, "Media Access Control Development Platform for Wireless LANs", Procedings of ICECS 99 Pafos Cyprus, [online] Available: http://www-unix.ecs.umass.edu/~asavvide.

  2. "IEEE P802.11", IEEE 802.11 for Wireless LANs, 1997.

  3. A. Ganz, D. Awduche, J. Euh, I. Kim, E. Haslett, S.H Park, A. Phonphoem, Z Ganz, "Multimedia Wireless LAN Prototype", 3 Telecommunications R&D Conference in Massachusetts, 1997.

  4. A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, T.-W. Chen, "Scalable Routing Strategies for Ad-hoc Wireless Networks", IEEE Journal on Selected Areas in Communications Special Issue on Ad-Hoc Networks, Aug. 1999.

  5. A. Ganz, A. Phonphoem, Z. Ganz, "Robust SuperPoll Protocol for IEEE 802.11 Wireless LANs", IEEE Military Communications Conference, 1998-October.

  6. http://www.intersil.com/prism/prismlk.asp

  7. http://www.amd.com/products/npd/software/pcnet_mobile/pcnet_mobile_intro.html

1-2

  1. http://wndw.net/

  2. "ICT and Development: The Kerala Model. Renee Kuriyan. Digital Kerala 2006". Green Chip Publications. Kerala State Information Technology Mission.

  3. J. Bussell, "International Norms on ICTs for Development: New Data, Initial Findings, and Opportunities for Analysis". 10Ist American Political Science Association Annual Meeting, Washington, DC, Sept, 2005.

  4. S. M. Mishra, J. Hwang, D. Filippini, T. Du, R. Moazzami, and L. Subramanian, Economic Analysis of Networking Technologies for Rural Developing Regions, Ist Workshop on Internet and Network Economics, Dec 2005.

  5. L. Subramanian, S. Surana, R. Patra, S. Nedevschi, M. Ho, E. Brewer, A. Sheth, "Rethinking Wireless in the Developing World", Hot Topics in Networks (HotNets-V), November 2006.

  6. S. Nedevschi, S. Surana, B. Du, R. Patra, E. Brewer, V. Stan "Potential of CDMA450 for Rural Network Connectivity", IEEE Communications Magazine, Special Issue on New Directions In Networking Technologies In Emerging Economies, Jan 2007.

  7. I.F. Akyildiz, Xudong Wang, "A survey on wireless mesh networks", IEEE Communications Magazine, Volume 43, Issue 9, Sept. 2005 Page(s): S23-S30

  8. R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian, E. Brewer. "WiLDNet: Design and Implementation of High Performance WiFi Based Long Distance Networks". USENIX NSDI, April 2007.

  9. http://www.iXem.polito.it/index_e.htm

  10. http://www.madwifi.org/

  11. http://madwifi.org/wiki/About/OpenHAL

###1-3

[1]. Halid H, Abdefatteh H, Ralf L., “Broadband Powerline Communication Network Design”, Wiley, 2004

[2]. Ferreira H, Grove H, Hooijen O and Vinck A, “Powerline Communications: An Overview”, Africon 1996, Stellenbosch, 1999

[3].Walter Hagmann, “Installation and Net Conditioning Manual for Powerline Infrastructure Units” Ascom Powerline. 2000

[4]. “IEEE Guide for Power-Line Carrier Applications”, IEEE Standard, 643-2004, 2005.

###1-4

[1] Suharjo I. Analisis Penggunaan Jaringan Kabel Listrik Sebagai Media Komunikasi Data Internet. TELKOMNIKA. Program Studi Teknik Elektro, Universitas Ahmad Dahlan. 2009; 7(1).

[2] IEEE Standards Association. IEEE 802.11nTM. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 5: Enhancements for Higher Throughput. New York; Oct. 2009.

[3] Setiawan H, Nagao Y, Huang ML, Lee J, Kurosaki M, Pyun KP, Ochi H, Park SC. High Throughput MAC Architecture for IEEE 802.11n. IEICE Technical Report. no.B-5-42, P.355, Tokyo, Sept., 2008.

[4] GJ Foschini. Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas. Bell Labs Technical Journal. 1996; 1(2): 41-59.

[5] Brown S, Vranesic Z. Fundamentals of Digital Logic with VHDL Design. 2nd edition. McGraw-Hill Int. 2005

[6] Syafei WA, Nagao Y, Nishijo K, Teramoto A, Kurosaki M, Ochi H. Achieving Highly Reliable Wireless Communication System Design Using a Model-based RTL Design. IEEE The 50th Global Communications Conference (GLOBECOM). Washington DC. Nov. 2007.

[7] Yamanaka Y, Nagao Y, Higashi K, Kurosak M, Ochi H. Development of Prototype Board IEEE802.11n and IP Set. IEEE The 9th International Conference on Advanced Communication Technology. Gangwon-Do Korea. 2007; 19-124.

[8] Sutikno H. Hardware-Resource Saving For Realization of Space Vector PWM Based on FPGA Using Bus-Clamping Technique. TELKOMNIKA. 2009; 7(3): 161-168. ISSN: 1693-6930 TELKOMNIKA Vol. 10, No. 1, March 2012 : 67 – 74

[9] Sutikno H. An Optimized Square Root Algorithm for Implementation in FPGA Hardware. TELKOMNIKA. 2010; 8(1): 1-8.

[10] Synplicity, Synplify DSP User Guide, Synplicity Inc. California. April 2008.

[11] Altera. Stratix II EP2S180 DSP Development Board. Reference Manual Version 1.0.0, Altera. August, 2005.

###1-5

  1. Α. Molisch, Wireless Communications, West Sussex:Wiley, 2005.

  2. A. Goldsmith, Wireless Communications, New York, Cambridge, 2005.

  3. B. O'Hara, A. Petrick, IEEE 802.11 Handbook, New York:IEEE Press, 2005.

  4. J. Farwell, "Wi-Fi on Steroids", PC Today, July 2006.

  5. "IEEE P802.11n/D3.00", Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 4: Enhancements for Higher Throughput.

  6. Y. Xiao, "IEEE 802.11n: Enhancements for Higher Throughput in Wireless LANs", IEEE Wireless Communications, Dec. 2005.

  7. "IEEE Std. 802.11 - 03/940r4", TGn Channel Models, May 2004, [online] Available: http://www.ieee802.org/ll/DocFiles/03/ll-03-0940-04-000n-tgnchannel-models.doc.

  8. "IEEE 802.11-05/1102r4", Joint Proposal: High throughput extension to the 802.11 Standard: PHY doc., [online] Available: http://www.ieee802.org/ll/Doc-Files/05/11-05-1102-04-000n-joint-proposal-phy-specification.doc.

  9. "IEEE 802.11-04/0889r7", TGn Sync Proposal Technical Specification document, [online] Available: http://www.ieee802.Org/l l/DocFiles/04/11-04-0889-07-000n-TGn Sync-proposal-technical-specification.doc.

  10. "IEEE 802.11-05/0149r5", WWiSE Proposal: High throughput extension to the 802.11 Standard, [online] Available: http://www.ieee802.org/ll/DocFiles/ 05/11-05-0149-05-000n-wwise-proposal-high-throughput-extension-to-802-11-standard.doc.

  11. T. S. Rappaport, Wireless Communications: Principles and Practice, New Jersey:Prentice Hall, 2002.

  12. J. Barry, E. Lee, D. Messerschmitt, Digital Communications, New York:Springer, 2004.

  13. J. Terry, J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide, Indianapolis:Sams, 2002.

  14. H. Yang, "A Road to Future Broadband Wireless Access: ΜIΜO-OFDM-Based Air Interface", IEEE Communications Magazine, Jan. 2004.

  15. G. L. Stuber, J. R. Barry, S. W. McLaughlin, Y. Li, M. A. Ingram, T. G. Pratt, "Broadband MIMO-OFDM Wireless Communications", Proceedings of the IEEE, vol. 92, no. 2, pp. 271-294.

  16. A. Saleh, R. Valenzuela, "A statistical model for indoor multi-path propagation", IEEE Journal of Selected Areas in Communications, vol. SAC 5, no. 2, pp. 138-146, Feb. 1987.

  17. Q. H. Spencer, "Modeling the statistical time and angle of arrival characteristics of an indoor environment", IEEE Journal of Selected Areas in Communications, vol. 18, no. 5, pp. 561-570, May 2002.

  18. L. Schumacher, K. I. Pedersen, P. E. Mogensen, "From antenna spacings to theoretical capacities - guidelines for simulating MIMO systems", Proc. PIMRC Conf., vol. 2, pp. 587-592, 2002-Sept.

  19. J. P. Kermoal, L. Schumacher, P. E. Mogensen, K. I. Pedersen, "Experimental investigation of correlation properties of MIMO radio channels for indoor picocell scenarios", Proc. IEEE Vehicular Technology Conference, vol. 1, pp. 14-21, 2000-Sept.

  20. L. Schumacher, B. Dijkstra, Description of a MATLAB implementation of the Indoor MIMO WLAN channel model proposed by the IEEE 802.11 TGn Channel Model Special Committee, May 2004, [online] Available: http://www.info.fundp.ac.be/~lsc/Research/IEEE_80211_HTSG_CMSC/distribution_terms.html.

  21. J. Ha, "LDPC Coded OFDM with Alamouti/SVD Diversity Technique", Wireless Personal Communications, vol. 23, no. 1, pp. 183-194, Oct. 2002.

  22. S. Haykin, Adaptive Filter Theory, NJ, Englewood Cliffs:Prentice Hall, 1996.

  23. M. Clark, IEEE 802.11a WLAN model, Mathworks, Inc., June 2003, [online] Available: http://www.mathworks.com/matlabcentral/fileexchange/ loadFile.do?objectId=3540&objectType=file.

  24. T. Feist, "Rapid prototyping and verification of MIMO systems", DSP Magazine, May 2006. Show Context Google Scholar

  25. The Next Generation of Wireless Solutions, [online] Available: http://www.xilinx.com.

  26. W. Sun, N. Trivedi, "Bluetooth Wi-Fi: No Brawl over 2.4 GHz", EE Times Asia, Oct. 2007.

    1. Eliezer, M. Shoemake, "Bluetooth and Wi-Fi coexistence schemes strive to avoid chaos", RF Design Magazine, Nov. 2001.
  27. J. Andrews, A. Ghosh, R. Muhamed, Fundamentals of WiMAX, New Jersey:Pearson, 2007.

  28. A. Ghosh, D. Wolter, J. Andrews, R. Chen, "Broadband Wireless Access with WiMAX/802.16: Current Performance Benchmarks and Future Potential", IEEE Communications Magazine, Feb. 2005.

  29. T. Paul, A Study of Proposals for the IEEE 802.11n Wireless Local-Area Network Standard, Dec. 2007.

###1-6

[1] G. J. Foschini, “Layered Space-Time Architectures for Wireless Communications in a Fading Environment When Using Multiple Antennas,” Bell Labs Tech., 1996.

[2] A. Burr, “Capacity Bounds and Estimates for the Finite Scatterers MIMO Wireless Channel,” IEEE JSAC, vol. 21, June 2003, pp. 812–18.

[3] K. Sakaguchi, H. Y. E. Chua, and K. Araki, “MIMO Chan- nel Capacity in an Indoor Line-of-Sight (LOS) Environ- ment,” IEICE Trans. Commun., vol. E88-B, no. 7, July 2005, pp. 3010–19.

[4] C. Williams (Ed.) et al., “Antenna Array Technology and MIMO Systems,” doc. 8366CRCR, deliverable to Ofcom, June 2004.

[5] P. F. Driessen and G. J. Foschini, “On the Capacity For- mula for Multiple Input-Multiple Output Wireless Chan- nels: a Geometric Interpretation,” IEEE Trans. Commun., vol. 47, no. 2, Feb. 1999, pp. 173–76.

[6] D. Gesbert et al., “Outdoor MIMO Wireless Channels: Models and Performance Prediction,” IEEE Trans. Com- mun., vol. 50, no.12, Dec. 2002, pp. 1926–34.

[7] I. Sarris and A. R. Nix, “Design and Performance Assess- ment of Maximum Capacity MIMO Architectures in Line-of-Sight,” IEE Proc. Commun. (in press).

[8] I. Sarris and A. R. Nix, “On the Link-Level Performance of MIMO Systems in Line-Of-Sight,” Proc. IEE 3G and Beyond Conf., London, Nov. 2005.

[9] A. Doufexi et al., “Capacity and Coverage Enhance- ments of MIMO WLANs in Realistic Environments,” Proc. Int’l. Conf. Commun., Istanbul, June 2006.

[10] K. Yu et al., “Modeling of Wide-Band MIMO Radio Channels Based on NLoS Indoor Measurements,” IEEE Trans. Vehic. Tech., vol. 53, no. 3, May 2004, pp. 655–65.

###1-7

  1. "AR1B STD-T71 (5.0)", Broadband Mobile Access Communication System (CSMA), December 2007.

  2. "ISO/IEC 14977:1996", Information technology - Syntactic metalanguage - Extended BNF.

###1-8

[1] A. Raniwala, T. Chiueh, “Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network,” Proceedings of IEEE INFOCOM, vol. 3, pp. 2223–2234, Mar. 2005.

[2] A. Raniwala, K. Gopalan, T. Chiueh, “Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks,” ACM Mobile Computing and Communications Review (MC2R), vol. 8, no. 2, pp. 50–65, Apr. 2004.

[3] http://grouper.ieee.org/groups/802/11/Reports/tgs update.htm

[4] IEEE 802.11n Working Group, “Draft amendment to standard for information technology - telecommunications and information exchange between systems-Local and metropolitan networks-specific requirements - part 11: wireless LAN medium access control and physical layer specifications: enhancements for higher throughput,” IEEE P802.11n/D1.0, Jan. 2006.

[5] A. Muir and J. J. Garcia-Luna-Aceves, “A channel access protocol for multihop wireless networks with multiple channels,” Proceedings of IEEE ICC, pp. 1617–1621, June 1998.

[6] J. So and N. Vaidya, “Multi-channel MAC for ad hoc networks: handling multi-channel hidden terminals using a single transceiver,” Proceedings of ACM MobiHoc, pp. 222–233, May 2004.

[7] W. C. Hung, K. L. Eddie Law, A. Leon Garcia, “A dynamic multichannel MAC for ad-hoc LAN,” 21st Symp. on Comm., pp. 31–35, Apr. 2002.

[8] Asis Nasipuri and Samir R. Das, “A multichannel CSMA MAC protocol for mobile multihop networks,” Proceedings of IEEE WCNC, pp. 1402– 1406, Sep. 1999.

[9] R. Garces and J. J. Garcia-Luna-Aceves, “Collision avoidance and resolution multiple access for multichannel wireless networks,” Proceedings of IEEE INFOCOM, pp. 595–602, Mar. 2000.

[10] J. So and N. Vaidya. “A multi-channel MAC protocol for ad hoc wireless networks,” UIUC Technical Report, Jan. 2003.

[11] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels : part 1 – carrier sense multiple-access modes and their throughputdelay characteristics,” IEEE Trans. Commun., vol. COM-23, no. 12, pp. 1400–1416, Dec. 1975

###1-9

transmission monitored and managed). REFERENCES

D. Aditya, M. Kamesh, P. Arogyaswami, Receive Antenna Selection in MIMO Systems using Convex Optimization, pp. 115–120, 2008.

P. Arogyaswami, R. Vwani, Communications, Computation, Control, And Signal Processing, Springer Netherlands, pp. 550–608, 1993.

G.J. Foschini, "Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas", Bell Laboratories Technical Journal, pp.41–59, October 1996. Available:http://www.ece.ualberta.ca/~hcdc/Library/StCommClass/Fosc 96.pdf

G.J. Foschini, G.D. Golden, R.A. Valenzuela and P.W. Wolniansky "Simplified Processing for High Spectral Efficiency Wireless Communication Employing Multi-Element Arrays", IEEE Journal on Selected Areas in Communications 17 (11):1841–1852, 1999.

V. Mai, P. Arogyaswami, Optimum Transmission Scheme for a MISO Wireless System with Partial Channel Knowledge and Infinite K factor, 2008. Available: http://en.scientificcommons.org/42361967

N. Mastorakis, M.C. Popescu, C.A. Bulucea, "Analysis in Time- Frequency Domain of Asynchronous Motors Control with Inverter Switching at Zero Voltage", Proceedings of the 8th WSEAS International Conference on Education and Educational Technology EDU’09: Advanced Educational Topics and Technologies, pp.126-132, Genova, October 17-20, 2009. IEEE 802.11n, 2003. Available: http://en.wikipedia.org/wiki/

O. Olaru, M.C. Popescu and V. Balas, A Study of Oscillation for Signal Stabilization of Nonlinear System, Proceedings of the 10th WSEAS Int. Conf. on Automation & Information (ICAI '09), pp.430-437, Prague, 23-25 march 2009.

M.C. Popescu, O. Olaru and N. Mastorakis, "Equilibrium Dynamic Systems Intelligence", International Journal of Mathematical Models and Methods in Applied Sciences, Issue 2, Vol.3, pp.133-142, 2009. Available: http://www.naun.org/journals/m3as/mmmas-140.pdf

[10] M.C. Popescu, TelecomunicaŃii, Lucrări practice, Tipografia UniversităŃii din Craiova, pp.200-233, 2005.

[11] M.C. Popescu, TelecomunicaŃii, Editura Universitaria Craiova, pp.410- 423, 2008.

[12] M.C. Popescu, Estimarea si identificarea proceselor, Editura Sitech Craiova, pp.112-123, 2006.

[13] M.C. Popescu, O. Olaru, N. Mastorakis, "Equilibrium Dynamic Systems Integration", Proceedings of the 10th WSEAS Int. Conf. on Automation & Information (ICAI '09), pp.424-430, Prague, 23-25 march 2009.

[14] M.C. Popescu, N. Mastorakis, Applications of the Four Color Problem, International Journal of Applied Mathematics and Informatics, Issue 1, Vol.3, pp.17-26, 2009. Available: http://www.universitypress.org.uk/journals/ami/19-180.pdf

[15] M.C. Popescu, L. Popescu, N. Mastorakis, "Applications of Genetic Algorithms", WSEAS Transactions on Information Science and Applications, Issue 11, Vol.6, pp.1782-1791, November 2009, Available: http://www.worldses.org/journals/information/information- 2009.htm

[16] M.C. Popescu, L. Popescu-Perescu, Gh. Manolea, N. Mastorakis, "New Management for the Control Three Tank System", WSEAS Transactions on Systems and Control, Issue 11, Vol.4, pp.561-570, November 2009. Available: http://www.worldses.org/journals/control/control-2009.htm

[17] M.C. Popescu, M.A. Drighiciu, O. Onisifor, Distributed control in wireless networks, The XIIIth Edition of the International Scientific Conference of the Engineering Faculty, Annals of the Constantin Brâncuşi University from Tg.-Jiu, Editura Academica Brâncuşi, Nr.2, pp.331-336, Tg.-Jiu, 7rd-8th November 2008.

[18] M.C. Popescu, Commande a distance des appareils de mesure de haute technologie, The XIIth Edition of the International Scientific Conference of the Engineering Faculty, Anale Universitatea Constantin Brâncuşi. Editura Academica Brâncuşi, Nr.3, pp.201-212, Tg.-Jiu, 23rd-24th November 2007.

[19] M.C. Popescu, Commande de systèmes non linéaires feedforward par une loi de commande linéaire avec petits gains, International Conference on Electromechanical and Power Systems, Vol.II, pp.II.9- II.12, Iasi, 2009.

[20] M.C. Popescu, N. Mastorakis, The Use of MIMO Technologies in Wireless, Proceedings of the 3rd International Conference on Communications and Information Technology (CIT'09), pp.139-145, NAUN International Conferences, Vouliagmeni Beach, Greece, December 29-31, 2009.

[21] RouterLinksysWRT54GSAvailable:http://www.price.ro/ preturi_linksys_wrt54g_wire_router_wirelessg_802.11g_access_point_19912.htm

[22] Wireless video surveillance - for airside AIHCB Available: http://www.agnor.ro

###1-10

[1] Supplement to IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz band. IEEE Std 802.11a-1999, 1999.

[2] Supplement to IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz band. IEEE Std 802.11b-1999, 2000.

[3] IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz band. ISO/IEC 8802-11:2005/Amd.4:2006(E) IEEE Std 802.11g-2003 (Amendment to IEEE Std 802.11-1999), 2006.

[4] IEEE 802.11n-2009: Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4: Enhancements for Higher Throughput. IEEE Std P802.11n, October 2009.

[5] CACE Technologies. AirPcap N, 2009. http: //www.cacetech.com/products/airpcap_nx.html [Last visited: 28/09/2009].U. Lamping and E. Warnicke. Wireshark User’s Guide. Wireshark Foundation, 2008.

[6] M. Petrova et al. Interference Measurements on Performance Degradation between Colocated IEEE 802.11 g/n and IEEE 802.15. 4 Networks. In Proc. of ICN’07. IEEE Computer Society Washington, DC, USA, 2007.

[7] T. Paul and T. Ogunfunmi. Wireless lan comes of age: Understanding the ieee 802.11n amendment. Circuits and Systems Magazine, IEEE, 8(1):28–54, Quarter 2008.

[8] A. Tirumala, L. Cottrell, and T. Dunigan. Measuring end-to-end bandwidth with Iperf using Web100.

[9] V. Shrivastava et al. 802.11n under the microscope. In Proc. of IMC ’08, pages 105–110, New York, NY, USA, 2008. ACM.

###1-11

  1. IEEE Standard, Telecommunications and information exchange between systems - LAN and MAN - Specific requirements - Part 11: Wireless LAN MAC and PHY specifications, 1999

  2. 11n: http://grouper.ieee.org/groups/802/11/Reports/tgn update.htm

  3. M. Aziz, A. Nix, P. Fletcher, A study of performance and complexity for IEEE 802.11n MIMO-OFDM GIS solutions, IEEE International Communications Conference, ICC 2004.

  4. Y. Lin, V.W.S. Wong, Frame Aggregation and Optimal Frame Size Adaptation for IEEE 802.11 n WLANs, IEEE GLOBECOM 2006.

  5. X. Yang, IEEE 802.11n: enhancements for higher throughput in wireless LANs, IEEE Wireless Communications, Dec. 2005.

  6. G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Communications, vol.18, March 2000.

  7. Pollin, S.; Ergen, M.; Coleri Ergen, S.; Bougard, B.; Van Der Perre, L.; Moerman, I.; Ahmad Bahai; Varaiya, P.; Catthoor, F., "Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer," Wireless Communications, IEEE Transactions on , vol.7, no.9, pp.3359-3371, September 2008

  8. M. Ergen, I-WLAN: Intelligent Wireless Local Area Networking, PhD degree Dissertation, University of California Berkeley, December 2004.

1-12

  1. M. Williams, "Linux ethernet bonding driver HOWTO", April 24, 2006.

  2. Interface bonding documentation, http://mikrotik.com/docs/ros/ 2.9/interface/bonding.pdf

  3. Linux bonding HOWTO (in Japanese language), http://www.linux.or.jp/JF/ JFdocs/kernel-docs-2.4/networking/ bonding.txt.html

  4. Advanced networking fuer fli41 (in German language), fli41 project, http://fli41.de/fileadmin/doc/fli41-3.0.1/node30.html

  5. H. Adiseshu, G. Parulkar, G. Varghese, "A reliable and scalable striping protocol", Computer Communications Review, Vol. 26, No.4, pp. 131-141, October 1996.

  6. F. Jacquet, M. Mission, "A method for increasing throughput based on packet striping", 1st European Conference, pp. 375-379, October 2000.

  7. IEEE P802.3ad link aggregation task force, http://gruper.ieee.org/groups/ 802/3/ad/index.html.

  8. M. Seaman, "Link aggregation control protocol scenarios", Rev. 01, August 1998.

  9. Linux channel bonding, sourceforge project, http://sourcelbrge.net/ project/bonding.

  10. Iperf version 2.02, http://dast.nlanr.net/Projects/Iperf/

  11. Ethernet card and driver test, test of combinaitons of ethernet cards and drivers under Linux (RedHat 6.2, kernel 2.2.16), http://www.hpc.sfu.ca/bugaboo/ nic-test.html

###1-14

  1. B. Berliner, and J. Polk, “Concurrent Versions System (CVS),” http://www.cvshome.org, 2001.

  2. A. Chervenak, V. Vellanki, and Z. Kurmas, “Protecting File Systems: A Survey of Backup Techniques,” Proc. Joint NASA and IEEE Mass Storage Conf., 1998.

  3. T.P.P. Council, “TPC BenchmarkTM C Standard Specification,” http://www.tpc.org/tpcc, 2005.

  4. L.P. Cox, C.D. Murray, and B.D. Noble, “Pastiche: Making Backup Cheap and Easy,” Proc. the Fifth USENIX Symp. Operating System Design and Implementation, 2002.

  5. J. Damoulakis, “Time to Say Goodbye to Backup?,” Storage, vol. 4, no. 9, pp. 64-66, Nov. 2006.

  6. M. Flouris, and A. Bilas, “Clotho: Transparent Data Versioning at the Block I/O Level,” Proc. the 12th NASA Goddard, 21st IEEE Conf. Mass Storage Systems and Technologies (MSST '04), pp. 315-328, 2004.

  7. D.K. Gifford, R.M. Needham, and M.D. Schroeder, “Cedar File System,” Comm. the ACM, vol. 31, no. 3, pp. 288-298, Mar. 1988.

  8. Y. Hu, and Q. Yang, “DCD—Disk Caching Disk: A New Approach for Boosting I/O Performance,” Proc. the 23rd Ann. Int'l Symp. Computer Architecture (ISCA), 1996.

  9. Intel, “IoMeter: Performance Analysis Tool,” http://www. iometer.org, 2011.

  10. J. Katcher, “PostMark: A New File System Benchmark,” Technical Report 3022, Network Appliance, 1997.

  11. K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes, “Designing for Disasters,” Proc. the Third USENIX Conf. File and Storage Technologies, 2004.

  12. D. Korn, and E. Krell, “The 3-D File System,” Proc. the USENIX Summer Conf., pp. 147-156, 1989.

  13. G. Laden, P. Ta-Shma, E. Yaffe, M. Factor, and S. Fienblit, “Architectures for Controller Based CDP,” Proc. the Fifth USENIX Conf. File and Storage Technologies, pp. 107-121, 2007.

  14. X. Li, C. Xie, and Q. Yang, “Optimal Implementation of Continuous Data Protection (CDP) in Linux Kernel,” Proc. the Int'l Conf. Networking, Architecture, and Storage (NAS '08), pp. 28-35, 2008.

  15. “Linux Kernel Drivers,” http://sourceforge.net, 2011.

  16. M. Lu, S. Lin, and T. Chiueh, “Efficient Logging and Replication Techniques for Comprehensive Data Protection,” Proc. the 24th IEEE Conf. Mass Storage Systems and Technologies (MSST '07), pp. 171-184, 2007.

  17. K. McCoy, VMS File System Internals. Digital Press, 1990.

  18. C. Morrey, III and D. Grunwald, “Peabody: The Time Travelling Disk,” Proc. IEEE Mass Storage Conf., 2003.

  19. C. Morrey, III and D. Grunwald, “Content-Based Block Caching,” Proc. the 14th NASA Goddard, 23rd IEEE Conf. Mass Storage Systems and Technologies (MSST '06), 2006.

  20. L. Moses, “An Introductory Guide to TOPS-20,” Technical Report TM-82-22, USC/Information Sciences Inst., 1982.

  21. K. Muniswamy-Reddy, C. Wright, A. Himmer, and E. Zadok, “A Versatile and User-Oriented Versioning File System,” Proc. the Third USENIX Conf. File and Storage Technologies, 2004.

  22. A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-Bandwidth Network File System,” Proc. the Eighth ACM Symp. Operating Systems Principles, 2001.

  23. K. Norvag, and K. Bratbergsengen, “Log-Only Temporal Object Storage,” Proc. Eighth Int'l Workshop Database and Expert Systems Applications (DEXA '97), 1997.

  24. B. O'Neill, “Any-Point-in-Time Backups,” Storage, special issue on managing the information that drives the enterprise, Sept. 2005.

  25. D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman, and M. Merzbacher, “Recovery-Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies,” Technical Report UCB/CSD-0201175, U.C. Berkeley, 2002.

  26. Z. Peterson, and R. Burns, “Ext3cow: A Time-Shifting File System For Regulatory Compliance,” ACM Trans. Storage, vol. 1, no. 2, pp. 190-212, 2005.

  27. J. Piernas, T. Cortes, and J. García, “TPCC- UVA: A Free, Open-Source Implementation of the TPC-C Benchmark,” http://www.infor.uva.es/~diego/tpcc-uva.html, 2005.

  28. S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz, “Pond: The OceanStore Prototype,” Proc. the Second USENIX Conf. File and Storage Technologies (FAST), pp. 1-14, 2003.

  29. M. Rosenblum, and J.K. Ousterhout, “The Design and Implementation of a Log-Structured File System,” ACM Trans. Compute System, vol. 10, no. 1, pp. 26-52, Feb. 1992.

  30. A. Sankaran, K. Guinn, and D. Nguyen, “Volume Shadow Copy Service,” POWER, vol. 14, Mar. 2004.

  31. D.S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Veitch, R.W. Carton, and J. Ofir, “Deciding when to Forget in the Elephant File System,” Proc. the Seventh ACM Symp. Operating Systems Principles, pp. 110-123, 1999.

  32. M. Seltzer, K. Bostic, M. McKusick, and C. Staelin, “An Implementation of a Log-Structured File System for UNIX,” Proc. Winter 1993 USENIX Tech. Conf., pp. 307-326, 1993.

  33. D. Smith, “The Cost of Lost Data,” J. Contemporary Business Practice, vol. 6, no. 3, 2003.

  34. C.A.N. Soules, G.R. Goodson, J.D. Strunk, and G.R. Ganger, “Metadata Efficiency in Versioning File Systems,” Proc. the Second USENIX Conf. File and Storage Technologies (FAST), pp. 43-58, 2003.

  35. “Storage Performance Council SPC-1 Specification,” http://www.storageperformance.org/spces, 2011.

  36. “Storage Performance Council, SPC-1 Benchmark Results,” http://www.storageperformance.org/results, 2011.

  37. P. Ta-Shma, G. Laden, M. Ben-Yehuda, and M. Factor, “Virtual Machine Time Travel Using Continuous Data Protection and Checkpointing,” ACM SIGOPS Operating Systems Rev., vol. 42, no. 1, pp. 127-134, 2008.

  38. “University of Massachusetts SPC Traces,” http://www.ssrc. ucsc.edu/wikis/ssrc/SoftwareTraces/SpcTraces, 2011.

  39. J. Wires, and M.J. Feeley, “Secure File System Versioning at the Block Level,” ACM SIGOPS Operating Systems Rev., vol. 41, no. 3, pp. 203-215, June 2007.

  40. W. Xiao, Y. Liu, Q. Yang, J. Ren, and C. Xie, “Implementation and Performance Evaluation of Two Snapshot Methods on iSCSI Target Storages,” Proc. the 14th NASA Goddard, 23rd IEEE Conf. Mass Storage Systems and Technologies (MSST '06), 2006.

  41. Q. Yang, W. Xiao, and J. Ren, “TRAP-Array: A Disk Array Architecture Providing Timely Recovery to Any Point-in-Time,” Proc. the 33rd Ann. Int'l Symp. Computer Architecture, pp. 289-301, 2006.

  42. B. Zhu, K. Li, and H. Patterson, “Avoiding the Disk Bottleneck in the Data Domain Deduplication File System,” Proc. the Sixth USENIX Conf. File and Storage Technologies (FAST), pp. 269-282, 2008.

  43. N. Zhu, and T. Chiueh, “Portable and Efficient Continuous Data Protection for Network File Servers,” Proc. the 37th Ann. IEEE/IFIP Int'l Conf. Dependable Systems and Networks (DSN '07), pp. 687-697, 2007.

###1-15

  1. S. Savage, A. Collins, and E. Hoffman, "The end-to-end effects of Internet path selection," in Proceedings of ACM SIGCOMM, Aug. 1999.

  2. C. Barakat, E. Altman, and W. Dabbous, "On TCP Performance in a Heterogeneous Network: A Survey," IEEE Communications Magazine, vol. 38, no. 1, pp. 40-46, 2000.

  3. M. Zhang, B. Karp, S. Floyd and L Peterson, "RR-TCP: A Reordering-Robust TCP with DSACK," in Proceedings of the Eleventh IEEE International Conference on Networking Protocols (ICNP 2003), November 2003.

  4. Youngseok Lee, Ilkyu Park, and Yanghee Choi, "Improving TCP Performance in Multipath Packet Forwarding Networks," Journal of Communication and Networks (JCN), pp. 148 - 157, vol. 4 no. 2, June 2002.

  5. Johnny Chen, "New Approaches to Routing for Large-Scale Data Networks," Rice University, TR99-344, pp.119-144, June 1999.

  6. M. Zhang, A. Krishnamurthy, L. Peterson, R. Wang, "A Transport Layer Approach for Improving End-to-End Performance and Robustness Using Redundant Paths," USENIX 2004, June 2004.

  7. Kultida Rojviboonchai and Hitoshi Aida, "An Evaluation of Multipath Transmission Control Protocol (M/TCP) with Robust Acknowledgement Schemes," Internet Conference 2002, Oct. 2002.

  8. Pablo Rodriguez and Ernst W. Biersack, "Dynamic Parallel Access to Replicated Content in the Internet," IEEE/ACM Transactions on Networking, vol. 10, num. 4, Aug. 2002.

  9. The network simulator- ns-2, http://www.isi.edu/nsnam/ns

###1-16

  1. H. Adiseshu, G. Parulkar, G. Varghese, "A Reliable and Scalable Striping Protocol", Proc.of ACM SIGCOMM, 1996-August.

  2. A. Bakre, B. Badrinath, "I-TCP: Indirect TCP for Mobile Hosts", Proc. of ICDCS, 1995-May.

  3. B. Bakshi, P. Krishna, N. Vaidya, D. K. Pradhan, "Improving Performance of TCP over Wireless Networks", Proc. of ICDCS, 1997-May.

  4. H. Balakrishnan, S. Seshan, E. Amir, R. Katz, "Improving TCP/IP Performance over Wireless Networks", Proc. of ACM MOBICOM, 1995-November. Access at ACM Google Scholar

  5. H. Balakrishnan, V. Padmanabhan, R. Katz, "The Effects of Asymmetry on TCP Performance", Proc. of ACM/IEEE MOBICOM, 1997-September.

  6. Bandwidth ON Demand Interoperability Group. Interoperability Requirements for Nx56/64 kbit/s Calls, September 1992.

  7. C. Brendan, S. Traw, J. Smith, "Striping within the Network Subsystem", IEEE Network, 1995.

  8. A. Demers, S. Keshav, S. Shenker, "Analysis of a Fair Queuing Algorithm", Journal of Internetworking Research and Experience, September 1989.

  9. R. Durst, G. Miller, E. Travis, "TCP Extensions for Space Communications", Proc. of ACM/IEEE MOBICOM, 1996-September.

  10. "IS-95", Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System, 1993.

  11. M. Mehta, N. Vaidya, Delayed Duplicate-Acknowledgements: A Proposal to Improve Performance of TCP on Wireless Links, February 1999.

  12. V. Paxson, "End-to-End Internet Packet Dynamics", Proc. of ACM SIGCOMM, 1997-September.

  13. M. Rahnema, "An Overview of the GSM System and Protocol Architecture", IEEE Communications Magazine, April 1993.

  14. P. Sinha, N. Venkitaraman, R. Sivakumar, V. Bharghavan, "WTCP: A Reliable Transport Protocol for Wireless Wide-Area Networks", Proc. of ACM/IEEE MOBICOM, 1999-August.

  15. Cellular Digital Packet Data System Specification Release 1.1, January 1995.

###1-17

[1] G. Malkin, ,” RFC 2701: Multi-link Multi-node PPP Bundle Dis- covery Protocol, Sept. 1999.

[2] K. Sklower, B. Lloyd, G. McGrego, D. Carr, and T. Coradetti, ,” RFC 1990: The PPP Multilink Protocol (MP), August 1996.

[3] K. Sklower, B. Lloyd, G. McGrego, and D. Carr, ,” RFC 1717:The PPP Multilink Protocol (MP), November 1994.

[4] W. Simpson, Editor, ,” RFC 1661 : The Point-to-Point Protocol(PPP).

[5] W. Simpson, Editor, ,” RFC 1662 : PPP in HDLC-like Framing,July 1994.

[6] D. Rand, ,” RFC 1663 : PPP Reliable Transmission, July 1994.

[7] R. Ogier, V. Ruenburg, and N. Shacham, “Distributed algorithms for computing shortest pairs of disjoint paths,” IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 443–455, Mar. 1993.

[8] I. Cidon, R. Rom, and Y. Shavim, “Analysis of multi-path rout- ing,” IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 885–896, Dec. 1999.

[9] N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality of Service Rout- ing Using Maximally Disjoint Paths,” in Proceedings of the IEEE IWQoS’99, London, UK., June 1999, pp. 119–128.

[10] A. Nasipuri and S. R. Das, “On-Demand Multipath Routing for Ad-Hoc Networks,” in Proceedings of the IEEE ICCCN,99, Boston, October 1999, pp. 64–70.

[11] J Raju and J.J. Garcia-Luna-Aceves, “A New Approach to On- Demand Multipath Routing,” in Proceedings of the IEEE IC- CCN,99, Boston, October 1999, pp. 522–527.

[12] M.R. Pearlman, Z.J. Haas, P. Scholander, and S.S. Tabrizi, “On the Impact of Alternate Path Routing for Load Balancing in Mo- bile Ad Hoc Networks,” in Proceedings of ACM MobiHOC’00, Boston, August 2000, pp. 119–128.

[13] Mario Gerla Sung-Ju Lee, “Split Multipath Routing with Max- imally Disjoint Paths in Ad hoc Networks ,” in Proceedings of ICC’01, Helsinki, Finland, June 2001.

[14] W-H Liao et. al., “A Multi-Path QoS Routing Protocol in a Wireless Mobile Ad Hoc Network,” in Proceedings of the IEEE ICN’00, CREF, Colmar, France, July 2001.

[15] DarrellC.Anderson,JeffreyS.Chase,andAminM.Vahdat,“In- terposed request routing for scalable network storage,” in Pro- ceedings of the Fourth Symposium on Operating System Design and Implementation (OSDI), October 2000.

[16] “SunStorEdgeNetworkDataReplicatorWhitePaper,” www.sun.com/storage/white-papers/sndr.html.

[17] “FilerDeploymentStrategiesforEvolvingLANTopologies,” www.netapp.com/tech library/3009.html.

[18] Randy Haagens, “iscsi requirements,” www.ietf.org/proceedings/00jul/SLIDES/ips-iscsi-reqs.pdf.

[19] CiscoSystems,,”www.cisco.com/warp/public/779/largeent/learn/ technologies/fast echannel.html.

[20] “SCTP site,” www.sctp.org.

[21] “SCTP site in Germany,” www.sctp.de. [22] “SCTP for beginners,” http://tdrwww.exp-math.uni-essen.de/pages/forschung/sctp fb. [23] “SCTP:AnOverview,”http://sctp.chicago.il.us/sctpoverview.html. [24] “Protocol engineering lab at university of delaware cis dept.,” http://www.cis.udel.edu/ iyengar/research/SCTP.

[25] R. R. Stewart, M. A. Ramalho et. al., “SCTP Extensions for Dynamic Reconfiguration of IP Addresses and Enforcement of Flow and Message Limits,” http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-addip-sctp- 02.txt, June 2001.

[26] Perkins, C., ,” RFC 2002: IP Mobility Support, October 1996. [27] Perkins, C., ,” RFC 2003: IP Encapsulation within IP, October 1996.

[28] Perkins, C., ,” RFC 2004: Minimal Encapsulation within IP, October 1996.

[29] Solomon, J., ,” RFC 2005: Applicability Statement for IP Mobility Support, October 1996.

[30] V. Jacobson, “Modified TCP Congestion Avoidance Algorithm,” end2end interest group mailing list, April 1990.

[31] L. Rizzo, “Dummynet: a simple approach to the evaluation of network protocols,” ACM Computer Communication Review, vol.27, no. 1, pp. 31–41, Jan. 1997.

1-19

  1. Iperf. http://dast.nlanr.net/Projects/Iperf/.

  2. Mgen. http://mgen.pf.itd.nrl.navy.mil.

  3. Rudecrude. http://www.atm.tut.fi/rude.

  4. Udpgenerator. http://www.citi.umich.edu/projects/qbone/generator.html.

  5. S. Avallone, M. D'Arienzo, S. P. Romano, M. Esposito, A. Pescape', and G. Ventre. Mtools. IEEE Network, Software Tools for Networking, 16(15):3, 2002.

  6. S. Avallone, D. Emma, A. Pescape', and G. Ventre. A distributed multiplatform architecture for traffic generations. To appear in Proc. of International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS'04), July 2004.

  7. D. Emma, A. Pescape', and G. Ventre. Analysis and experimentation of an open distributed platform for synthetic traffic generation. In Proc. of IEEE FTDCS, May 2004.

1-22

  1. Ying Li ; Shihua Zhu ; Pinyi Ren ; Gang Hu
    Path toward next generation wireless internet cellular mobile 4G, WLAn/WPAN and IPv6 backbone
    TENCON '02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering
    https://ieeexplore.ieee.org/document/1180327

  2. R.C. Qiu ; Wenwu Zhu ; Ya-Qin Zhang
    Third generation and beyond 3.5G wireless networks and its applications
    2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)
    https://ieeexplore.ieee.org/document/1009772

  3. Advanced wireless communications 4G technology
    Savo G. Glisic
    ISBN: 978-0-470-86777-8 December 2005, wiley,
    https://www.wiley.com/en-us/Advanced+Wireless+Communications%3A+4G+Technologies-p-9780470867778

  4. T.S. Rappaport
    The wireless revolution , 1991,
    Journals & Magazines > IEEE Communications Magazine > Volume: 29 Issue: 11
    https://ieeexplore.ieee.org/document/109666

0105)D.M. Barnes, The introduction of cellular radio in the united kingdom, 35th IEEE Vehicular Technology Conference,21-23 May 1985
https://ieeexplore.ieee.org/document/1623346

  1. Cellular Radio A European Round-up
  2. Cellular Moble Radio an emerging technology
  3. Bluetooth; connect without cables
  4. Next generation wearable networks
  5. 3G wireless systems and beyond a review
  6. system architecture for Mobile communication s systems beyond IMT-2000
  7. Evolution towards broadband wireless systems
  8. Features in feature: 4G visions from a technical perspective
  9. Evans visions of 4G
  10. fourth generation mobile presented at ACTS mobile summit99
  11. 3g wireless mobility scales new heights
  12. Radio Propagation Fundamentls
  13. Radio Wave Propagation
  14. THe Effects of time delay spread on portable communications channels with digital modulations
  15. a statistical basis for log normal shadowing effects in multipath fading channels
  16. distribution of multipath delay spread and average excess delay for 910 MHz urban mobile radio path
  17. short block equalization techniques employing channel estimation for fading
  18. level crossing rates and average fade duration of wireless channels with spatially complicated multipaths
  19. radio propagation in urban area
  20. fading channel issues in system engineering
  21. communications systems engineering
  22. mobie communications engineering
  23. Matlab version 7.0.1
  24. simulation of communication systems 2nd
  25. digital communication over fading channels, 2nd
  26. tradeoffs of source coding
  27. simulation and software radio for mobile communications
  28. a modular approach to design and simulation of digital communication systems
  29. propagation measurements and mobiles for wireless communications channels
  30. empirical formula for propagation loss in land mobile radio services
  31. Proakis, digital communications 4th
  32. mobile communications design fundamentals, 2nd
  33. principles of mobile communications 2nd
  34. a computer algorithm for prediction of service area in a mobile radio communication system
  35. cellular radio performance engineering
  36. wireless and personal communications systems
  37. a theoretical mobile of UHF propagation in urban environment
  38. the effect of path loss models on the simulated performance of portable radio systems
  39. radio propagation characteristics for line of sight microcellular and personal communications
  40. unified approach to prediction of propagation over buildings for all ranges of base station antenna height
  41. VHF radio system performance model for predicting communications operational ranges in irregular terrain
  42. convert field strength to received power for use in system design
  43. an empirically based path loss model for wireless channels in suburban environments
  44. the mobile radio propagation channel
  45. antennas and propagation for wireless communication system
  46. a microcellular ray tracing propagation model and envaluation of its narrowband and wideband predictions

###1-24

  1. Ν. Thompson, G. He, H. Luo, "Flow scheduling for end-host multihoming", Proc. of IEEE Infocom '06, pp. 1-12, 2006-Apr.

  2. S. Buljore, "Introduction to IEEE P1900.4 activities", IEICE Trans. on Communications, vol. E91-B, no. 1, pp. 2-9, Jan. 2008.

  3. R. Draves, J. Padhye, B. Zill, "Routing in multi-radio multi-hop wireless mesh networks", Proc. of MobiCom '04, pp. 114-128, 2004-Sept.-Oct.

  4. S. Hanaoka, M. Yano, T. Hirata, "Test-bed system of inter-radio system switching for cognitive radio", IEICE Trans. on Communications, vol. E91-B, no. 1, pp. 14-21, Jan. 2008.

  5. K. Chebrolu, R. Rao, "Communication using multiple wireless interfaces", Proc. of IEEE WCNC '02, pp. 327-331, 2002-Mar.

  6. P. Sharma, S. J. Lee, J. Brassil, K. G. Shin, "Aggregating bandwidth for multihomed mobile collaborative communities", IEEE Trans. on Mobile Computing, vol. 6, no. 3, pp. 280-296, Mar. 2007.

  7. H. R. Karimi, G. P. Koudouridis, K. Kimou, P. Karlsson, "Switched multi-radio transmission diversity for non-collocated radio accesses", Proc. of IEEE VTC '06, pp. 167-171, 2006-May.

  8. J. Li, J. Brassil, "Performance characterization of traffic equalizers on heterogeneous communication links", Proc. of Qshie '06, 2006-Aug.

  9. S. Mao, S. S. Panwar, Y. T. Hou, "On optimal partitioning of realtime traffic over multiple paths", Proc. of IEEE Infocom '05, pp. 2325-2336, 2005-Mar.

  10. S. Kandula, D. Katabi, S. Sinha, A. Berger, "Dynamic load balancing without packet reordering", Computer Communication Review, vol. 37, pp. 51-62, Apr. 2007.

  11. S. R. Mohanty, L. N. Bhuyan, "On fair scheduling in heterogeneous link aggregated services", Proc. of ICCCN '05, pp. 199-205, 2005-Oct.

  12. J.-O. Kim, T. Ueda, S. Obana, "MAC-level measurement based traffic distribution over IEEE 802.11 multi-radio networks", IEEE Trans. on Consumer Electronics, vol. 54, no. 3, pp. 1185-1191, Aug. 2008.

  13. Y. He, J. Brassil, "NATALIE: an adaptive network-aware traffic equalizer", Proc. of ICC '07, pp. 595-602, 2007-June.

#参考資料(reference)
Wifi(無線網) Antenna(空中線)(3)でresearchgateで文献調査
https://qiita.com/kaizen_nagoya/items/2cff082e2ef214f2b377

Wifi(無線網) Antenna(空中線)(4) researchgateで文献調査 の参考文献一覧
https://qiita.com/kaizen_nagoya/items/e7474ca67842565334b1

無線網(Wifi)空中線(antenna)(5) 設置(install)設計(design)
https://qiita.com/kaizen_nagoya/items/d71eece182768e97039a

Wifi(無線網) Antenna(空中線)(6) 空中線(antenna)の特性
https://qiita.com/kaizen_nagoya/items/4cd18795fbb5eb79896c

無線網(Wifi)空中線(antenna) (7) 障害物と反射物
https://qiita.com/kaizen_nagoya/items/e1a8123094c1d1d836a9

無線網(Wifi)と空中線(antenna)(8) 仰角(elevation) 方位(azimuth)
https://qiita.com/kaizen_nagoya/items/3553ed48e1b03c7340a3

無線網(Wifi)空中線(antenna)(1) 検索論文拝読
https://qiita.com/kaizen_nagoya/items/d6db5de2628a8ebfed94

無線網(Wifi)空中線(antenna)(2) 802.11 Wireless LAN Fundamentals を拝読
https://qiita.com/kaizen_nagoya/items/1ff8e127b52902d34cfd

無線網(Wifi)空中線(antenna)(21) 無料無線網(wifi)利用で便利なこと、不便なこと
https://qiita.com/kaizen_nagoya/items/9244aa0906cbedec83aa

無線網(Wifi)空中線(antenna)(22) WiFi Related document
https://qiita.com/kaizen_nagoya/items/c484c9f21b9d6fc5481e

無線網(Wifi)空中線(antenna)(31) 災害時のwifi-bluetooth網の構築
https://qiita.com/kaizen_nagoya/items/2d82637301650c202715

無線網(Wifi)空中線(antenna)(32) 災害時のWifiおよびbluetooth系の安全分析<予定>
https://qiita.com/kaizen_nagoya/items/c8c679beae7082df47bf

#文書履歴(document history)

ver. 0.01 20190307 午後

ver. 0.02 参考文献 20190307 夕

ver. 0.03 参考文献の参考文献書き始め 20190307 夜

ver. 0.04 参考文献の参考文献完了 20190308  朝

ver. 0.05 項目確認 400文献 20190308 昼

ver. 0.06 項目追加 600文献 20190308夜

ver. 0.07 参考文献の参考文献の参考文献追記 700文献 20190309 朝

ver. 0.08 引用文献と引用文献の参考文献追記 800文献 20190309 昼

ver. 0.09 950文献 20190309 夜

ver. 0.10 1000文献 20190310 朝

ver. 0.11 表題変更 20190312

ver. 0.12 HAZOP表追記 20190326 作業時間15分

無線網(Wi-Fi)空中線(antenna)(1) 検索論文拝 HAZOP表

ID guide 外れ:逸脱(deviation) なぜ:原因(cause) どうする:対策(action)案
1 no 論文がない、中身がない 公開していない researchgateで請願する
2 reverse 自分が論文をかかなきゃ 自分が書いてないと論文請願しづらい survey論文を1年以内に書く
3 other than 現実に困っている問題と、論文に書かれている問題との間に隙間があるかもしれない 網羅的に探せていない。実用的な雑誌を網羅していない。 現実の問題の一覧を作成し、論文との対応表を作り、論文のない領域を、別の分野で探す。
4 more 書籍のような大きいものもある ネットで公開しているひとがいる 読むっきゃない
5 less 草稿、記録など小さい ネットは便利だから小さいものもおける ひとまず数に入れない
6 as well as 将来の技術が予測できる内容のものが見当たらない 自分が予測できてないのでどの分野で探せばいいかわかっていない 材料、構造、数学など3つ以上の異なる分野で探す
7 part of 論文の部分しかない 草稿、記録の一部を保存しているらしい 全体の論文を探す、問い合わせる
8 early どんどん集まってしまう ネットで公開している人が多い 作業の期間におうじて論文数の上限を決めておく
9 late 非公開の論文の開示の返事が遅い ファイルを持っている著者じゃない場合がある ファイルを持っている著者を紹介してもらって、請願する
10 before 集まる前に読んでいたことがある 通信の論文Surveyは過去に数度している 過去に読んだことがあるものは、一つの書くにいちづける
11 after 作業が済んだ後に論文が来る 人の作業・連絡の時間的遅れ(社会的時定数) 次の作業に役立てる

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>

このエントリーをはてなブックマークに追加

文書履歴(document history)

ver. 0.01 初稿  20190307
ver. 0.02 ありがとう追記 20230311

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0