R3(References on References on References) on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(38)
R3 on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(0)
https://qiita.com/kaizen_nagoya/items/a8eac9afbf16d2188901
What are the most important statistical ideas of the past 50 years?
Andrew Gelman, Aki Vehtari
https://arxiv.org/abs/2012.00174
References
38
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B 195, 216–222.
References on 38
38.1
Langevin simulations of lattice field theories.
Batrouni, Katz, Kronfeld, Lepage, Svetitsky, Wilson
Physics, Medicine Physical review. D, Particles and fields, 1985
Fourier techniques that greatly accelerate simulations on large lattices and a new technique for including quark vacuum-polarization corrections that admits any number of flavors, odd or even, without the need for nested Monte Carlo calculations are introduced. Expand
References on 38.1
38.1.1
Langevin Simulations of Lattice Field Theories
G.G. Batrouni(Cornell U., LNS), G.R. Katz(Cornell U., LNS), Andreas S. Kronfeld(Cornell U., LNS), G.P. Lepage(Cornell U., LNS), B. Svetitsky(Cornell U., LNS) et al.
Phys.Rev.D 32 (1985) 2736, IN DAMGAARD, P.H. (ED.), HUEFFEL, H. (ED.): STOCHASTIC QUANTIZATION, 485-496. (PHYS. REV. D32 (1985) 2736-2747) • DOI: 10.1103/PhysRevD.32.2736
38.2
Hybrid-molecular-dynamics algorithms for the numerical simulation of quantum chromodynamics.
Gottlieb, Liu, Toussaint, Renken, Sugar
Physics, Medicine
Physical review. D, Particles and fields
1987
TLDR
Two algorithms for the numerical simulation of SU(3) lattice gauge theory with dynamical quarks are discussed, based on the hybrid stochastic method of Duane and Kogut, which allow the simulation of arbitrary numbers of quarks. Expand
References on 38.2
38.2.1
J.Chem.Phys. 72 2384
38.2.2
Stochastic Quantization Versus the Microcanonical Ensemble: Getting the Best of Both Worlds
Simon Duane(Illinois U., Urbana)
Nucl.Phys.B 257 (1985) 652-662, Nucl. Phys. B257 (1985) 652-662 and Preprint - DUANE, S. (REC.APR.85) 19p • DOI: 10.1016/0550-3213(85)90369-4
38.2.3
Hybrid Stochastic Differential Equations Applied to Quantum Chromodynamics
Simon Duane(Illinois U., Urbana), John B. Kogut(Illinois U., Urbana)
Phys.Rev.Lett. 55 (1985) 2774 • DOI: 10.1103/PhysRevLett.55.2774
38.2.4
Hybrid Molecular Dynamics Algorithms for the Numerical Simulation of Quantum Chromodynamics
Steven A. Gottlieb(Indiana U.), W. Liu(UC, San Diego), D. Toussaint(UC, San Diego), R.L. Renken(UC, Santa Barbara), R.L. Sugar(UC, Santa Barbara)
Phys.Rev.D 35 (1987) 2531-2542, Phys. Rev. D35 ( 1987) 2531-2542 • DOI:
10.1103/PhysRevD.35.2531
38.2.5
Return of the Finite Temperature Phase Transition in the Chiral Limit of Lattice {QCD}
E.V.E. Kovacs(Argonne), D.K. Sinclair(Argonne), J.B. Kogut(Illinois U., Urbana)
Phys.Rev.Lett. 58 (1987) 751 • DOI: 10.1103/PhysRevLett.58.751
38.2.6
First Order Chiral Phase Transition in Lattice {QCD}
J.B. Kogut(Illinois U., Urbana), H.W. Wyld(Illinois U., Urbana), F. Karsch(CERN), D.K. Sinclair(Argonne)
Phys.Lett.B 188 (1987) 353-358 • DOI: 10.1016/0370-2693(87)91396-7
38.2.7
Monte Carlo Calculations of Coupled Boson - Fermion Systems. 1.
R. Blankenbecler(Orsay, LPT), D.J. Scalapino(Santa Barbara, KITP and UC, Santa Barbara), R.L. Sugar(Santa Barbara, KITP and UC, Santa Barbara)
Phys.Rev.D 24 (1981) 2278 • DOI: 10.1103/PhysRevD.24.2278
38.2.8
Phys.Rev. 31 4403
38.2.9
Langevin Simulations of Lattice Field Theories
G.G. Batrouni(Cornell U., LNS), G.R. Katz(Cornell U., LNS), Andreas S. Kronfeld(Cornell U., LNS), G.P. Lepage(Cornell U., LNS), B. Svetitsky(Cornell U., LNS) et al.
Phys.Rev.D 32 (1985) 2736, IN DAMGAARD, P.H. (ED.), HUEFFEL, H. (ED.): STOCHASTIC QUANTIZATION, 485-496. (PHYS. REV. D32 (1985) 2736-2747) • DOI: 10.1103/PhysRevD.32.2736
38.2.10
Phys.Rev. 35 1851
38.2.11
Numerical Analysis of Accelerated Stochastic Algorithms Near a Critical Temperature
Elbio Dagotto(Illinois U., Urbana), John B. Kogut(Illinois U., Urbana)
Phys.Rev.Lett. 58 (1987) 299 • DOI: 10.1103/PhysRevLett.58.299
38.3
New algorithm for the numerical simulation of fermions.
Scalettar, Scalapino, Sugar
Physics, Medicine, Physical review. B, Condensed matter, 1986
A new algorithm for the numerical simulation of lattice field theories with fermions degrees of freedom with an efficient method of measuring the fermion Green's functions during the simulation is presented. Expand
References on 38.3
38.3.1
l for Monte Carlo Simulations of Fermionic Systems
F. Fucito(Rome U. and Frascati), E. Marinari(Rome U. and INFN, Rome), G. Parisi(Frascati), C. Rebbi(CERN)
Nucl.Phys.B 180 (1981) 369, In Rebbi, C. ( Ed.): Lattice Gauge Theories and Monte Carlo Simulations, 586-594. ( Nucl. Phys. B180 |fs2| ( 1981) 369-377) and CERN Geneva - TH. 2960 (80,REC.NOV.) 14p • DOI: 10.1016/0550-3213(81)90055-9
38.3.2
Hybrid Stochastic Differential Equations Applied to Quantum Chromodynamics
Simon Duane(Illinois U., Urbana), John B. Kogut(Illinois U., Urbana)
Phys.Rev.Lett. 55 (1985) 2774 • DOI: 10.1103/PhysRevLett.55.2774
38.3.3
Langevin Simulations of Lattice Field Theories
G.G. Batrouni(Cornell U., LNS), G.R. Katz(Cornell U., LNS), Andreas S. Kronfeld(Cornell U., LNS), G.P. Lepage(Cornell U., LNS), B. Svetitsky(Cornell U., LNS) et al.
Phys.Rev.D 32 (1985) 2736, IN DAMGAARD, P.H. (ED.), HUEFFEL, H. (ED.): STOCHASTIC QUANTIZATION, 485-496. (PHYS. REV. D32 (1985) 2736-2747) • DOI: 10.1103/PhysRevD.32.2736
38.3.4
Direct observation of a high spin 12 C + 8 Be cluster state in 20 Ne
M.M. Hindi, J.H. Thomas, D.C. Radford, P.D. Parker
Phys.Lett.B 99 (1981) 33-37 • DOI: 10.1016/0370-2693(81)90798-X
38.3.5
Microcanonical Simulation of Fermionic Systems
J. Polonyi(Illinois U., Urbana), H.W. Wyld(Illinois U., Urbana)
Phys.Rev.Lett. 51 (1983) 2257, Phys.Rev.Lett. 52 (1984) 401 (erratum) • DOI: 10.1103/PhysRevLett.51.2257
38.4
The theory of hybrid stochastic algorithms
S. Duane, J. Kogut, Physics, 1986
Abstract The theory of hybrid stochastic algorithms is developed. A generalized Fokker-Planck equation is derived and is used to prove that the correct equilibrium distribution is generated by the… Expand
References on 38.4
38.4.1
[1] S. Duane, Nucl. Phys. B257 [FS14] (1985) 652
[2] G. Parisi and Y.-S. Wu, Sci. Sin. 14 (1981) 483
[3] D. Callaway and A. Rahman, Phys. Rev. Lett. 49 (1982) 613
[41 J. Polonyi and H.W. Wyld, Phys. Rev. Lett. 51 (1983) 2257
[5] S. Duane and J.B. Kogut, Phys. Rev. Lett. 55 (1985) 2774
[6] H.C. Andersen, J. Chem. Phys. 72 (1980) 2384
[7] G.G. Batrouni et al, Phys. Rev. D32 (1985) 2736
[8] A. Ukawa and M. Fukugita, Phys. Rev. Lctt. 55 (1985) 1854
[9] G. Parisi, in Progress in gauge field theory, ed. G. 't Hooft et al. (Plenum, New York, 1984)
[10] J. Kogut, J. Polonyi, J. Shigemitsu, D.K. Sinclair and H.W. Wyld, Nucl. Phys. B251 [FS13] (1985)
311
[ll] O. Martin and H.-Q Ding, Illinois preprint ILL-(TH)-85-~80 (Feb. 1986)
View publication
38.5
A proposal for Monte Carlo simulations of fermionic systems
F. Fucito, E. Marinari, G. Parisi, C. Rebbi
Physics
1981
Abstract We suggest a possible extension of the Monte Carlo technique to systems with fermionic degrees of freedom. We study in detail the application to an elementary example.
38.6
Equation of state calculations by fast computing machines
N. Metropolis, A. W. Rosenbluth, M. Rosenbluth, A. H. Teller, E. Teller
Physics
1953
A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method… Expand
38.7
Microcanonical Simulation of Fermionic Systems
J. Polonyi, H. Wyld
Physics
1983
A new method is suggested to bosonize the path integral of lattice field theories with fermion fields. The procedure is illustrated in the case of the Schwinger model.
38.8
Renormalization flow in lattice QED.
Lang
Physics, Medicine
Physical review letters
1986
TLDR
An investigation of pure U(1) gauge theory is made based on block-spin transformations for configurations of lattice size 16/sup 4/ down to size 8/Sup 4/ and 4/sup 2/ and results on the leading critical exponent are found. Expand
38.9
Renormalization and Stochastic Quantization
J. Zinn-Justin
Physics
1986
Abstract A set of problems which includes for example the Langevin equation, a spin system in a random magnetic field or the quantization of gauge theories, share a common algebraic structure: the… Expand
38.10
Stochastic quantization versus the microcanonical ensemble: Getting the best of both worlds
S. Duane
Physics
1985
Abstract The aim of this paper is to shed further light on the relation between two non-standard formulations of field theory: stochastic quantization and the microcanonical ensemble. One involves a… Expand
38.11
Acceleration of gauge field dynamics
S. Duane, R. Kenway, B. Pendleton, D. Roweth
Physics
1986
Abstract It is shown that the success of acceleration for abelian gauge field dynamics need not depend on any choice of gauge. The discussion leads to proposing a particular scheme for acceleration… Expand
参考資料(References)
Data Scientist の基礎(2)
https://qiita.com/kaizen_nagoya/items/8b2f27353a9980bf445c
岩波数学辞典 二つの版がCDに入ってお得
https://qiita.com/kaizen_nagoya/items/1210940fe2121423d777
岩波数学辞典
https://qiita.com/kaizen_nagoya/items/b37bfd303658cb5ee11e
アンの部屋(人名から学ぶ数学:岩波数学辞典)英語(24)
https://qiita.com/kaizen_nagoya/items/e02cbe23b96d5fb96aa1
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.