R3(References on References on References) on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(45)
R3(0) on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari
https://qiita.com/kaizen_nagoya/items/a8eac9afbf16d2188901
What are the most important statistical ideas of the past 50 years?
Andrew Gelman, Aki Vehtari
https://arxiv.org/abs/2012.00174
References 45
Fay, R. E., and Herriot, R. A. (1979). Estimates of income for small places: An application of James-Stein procedures to census data. Journal of the American Statistical Association 74, 269–277.
https://www.tandfonline.com/doi/ref/10.1080/01621459.1979.10482505?scroll=top
REFERENCE ON 45
45.1
Carter, Grace M. and Rolph, John E. 1974. “Empirical Bayes Methods Applied to Estimating Fire Alarm Probabilities,”. Journal of the American Statistical Association, 69: 880–885.
https://www.tandfonline.com/doi/ref/10.1080/01621459.1974.10480222?scroll=top
REFERENCE ON 45.1
45.1.1
Anscombe, Francis J. 1948. “The Transformation of Poisson, Binomial and Negative-Binomial Data”. Biometrika, 35: 246–54.
45.1.2
Carter, Grace M. and Rolph, John E. May 1973. New York City Fire Alarm Prediction Models I: Box-Reported Serious Fires, May, The Rand Corporation. R-1214-NYC
45.1.3
Dempster, Arthur P. 1973. “Alternatives to Least Squares in Multiple Regression”. In Multivariate Statistical Inference, Edited by: Kabe, D. G. and Gupta, R. P. Amsterdam: North-Holland Publishing Co..
45.1.4
Efron, Bradley and Morris, Carl. March 1974. Data Analysis Using Stein's Estimator and Its Generalizations, March, The Rand Corporation. R-1394–0E0
45.1.5
Efron, Bradley and Morris, Carl. 1972. “Limiting the Risk of Bayes and Empirical Bayes Estimators–Part II: The Empirical Bayes Case”. Journal of the American Statistical Association, 67 March: 130–39.
45.1.6
Efron, Bradley and Morris, Carl. 1973. “Stein's Estimation Rule and Its Competitors–An Empirical Bayes Approach”. Journal of the American Statistical Association, 68 March: 117–30.
45.1.7
James, W. and Stein, Charles. “Estimation with Quadratic Loss”. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probabilities. pp.361–79. Berkeley: University of California Press.
45.1.8
Sclove, Stanley L., Morris, Carl and Radhakrishnan, R. 1972. “Nonoptimality of Preliminary-Test Estimators for the Mean of a Multivariate Normal Distribution”. Annals of Mathematical Statistics, 43 October: 1481–90.
45.2
Draper, N. R. and Smith, H. 1966. Applied Regression Analysis, New York: John Wiley & Sons.
3rd Edition table of contents
https://assets.thalia.media/doc/99/6d/996d2571-0127-4bd1-9ca1-6900b2ceea81.pdf
2nd edition
http://web.nchu.edu.tw/~numerical/course1012/ra/Applied_Regression_Analysis_A_Research_Tool.pdf
REFERENCE ON 45.2
[1] A. Agresti. Categorical Data Analysis. Wiley, New York, 1990.
[2] H. Akaike. Fitting autoregressive models for prediction. Annals of
the Institute of Statistical Mathematics, 21:243–247, 1969.
[3] D. F. Alderdice. Some effects of simultaneous variation in salinity, temperature and dissolved oxygen on the resistance of young coho salmon to a toxic substance. Journal of the Fisheries Research Board of Canada, 20:525–475, 1963.
[4] D. M. Allen. Mean square error of prediction as a criterion for se- lecting variables. Technometrics, 13:469–475, 1971a.
[5] D. M. Allen. The prediction sum of squares as a criterion for selection of predictor variables. Technical Report 23, Department of Statistics, University of Kentucky, 1971b.
[6] R. L. Anderson and L. A. Nelson. A family of models involving in- tersecting straight lines and concomitant experimental designs useful in evaluating response to fertilizer nutrients. Biometrics, 31:303–318, 1975.
[7] T. W. Anderson. The Statistical Analysis of Time Series. Wiley, New York, 1971.
[8] D. F. Andrews and A. M. Herzberg. Data: A Collection of Problems from Many Fields for the Student and Research Worker. Springer- Verlag, New York, 1985.
636 REFERENCES
[9] F. J. Anscombe. Graphs in statistical analysis. The American Statis- tician, 27:17–21, 1973.
[10] A. C. Atkinson. Diagnostic regression analysis and shifted power transformations. Technometrics, 25:23–33, 1983.
[11] M. S. Bartlett. The use of transformations. Biometrics, 3:39–53, 1947.
[12] M. S. Bartlett. Fitting a straight line when both variables are subject to error. Biometrics, 5:207–212, 1949.
[13] R. P. Basson. On unbiased estimation in variance component models. PhD thesis, Iowa State University of Science and Technology, 1965.
[14] D. A. Belsley. Demeaning conditioning diagnostics through centering (with discussion). The American Statistician, 38:73–77, 1984.
[15] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley, New York, 1980.
[16] R. B. Bendel and A. A. Afifi. Comparison of stopping rules in forward “stepwise” regression. Journal of the American Statistical Associa- tion, 72:46–53, 1977.
[17] K. N. Berk. Tolerance and condition in regression computations. Journal of the American Statistical Association, 72:863–866, 1977.
[18] K. N. Berk. Comparing subset regression procedures. Technometrics, 20:1–6, 1978.
[19] G. Blom. Statistical Estimates and Transformed Beta Variates. Wi- ley, New York, 1958.
[20] P. Bloomfield. Fourier Analysis of Time Series: An Introduction. Wiley, New York, 1976.
[21] G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26:211–243, 1964.
[22] G. E. P. Box and N. R. Draper. Empirical Model-Building and Re- sponse Surfaces. Wiley, New York, 1987.
[23] G. E. P. Box and P. W. Tidwell. Transformation of the independent variables. Technometrics, 4:531–550, 1962.
[24] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Ex- perimenters: An Introduction to Design, Data Analysis, and Model Building. Wiley, New York, 1978.
[25] D. Bradu and K. R. Gabriel. Simultaneous statistical inference on interaction in two-way analysis of variance. Journal of the American Statistical Association, 69:428–436, 1974.
[26] D. Bradu and K. R. Gabriel. The biplot as a diagnostic tool for models of two-way tables. Technometrics, 20:47–68, 1978.
[27] R. L. Brown, J. Durbin, and J. M. Evans. Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society, Series B, 37:149–192, 1975.
[28] O. Bunke and B. Droge. Estimators of the mean squared error of prediction in linear regression. Technometrics, 26:145–155, 1984.
[29] D. A. Buonagurio, S. Nakada, J. D. Parvin, M. Krystal, P. Palese, and W. M. Fitch. Evolution of human influenza A viruses over 50 years: Rapid, uniform rate of change in NS gene. Science, 232:980– 982, 1986.
[30] E. Cameron and L. Pauling. Supplemental ascorbate in the sup- portive treatment of cancer: Reevaluation of prolongation of sur- vival times in terminal human cancer. Proceedings of the National Academy of Sciences U.S.A., 75:4538–4542, 1978.
[31] R. J. Carroll and D. Ruppert. Transformations and Weighting in Regression. Chapman & Hall, London, 1988.
[32] R. J. Carroll, D. Ruppert, and L. A. Stefanski. Measurement Error in Nonlinear Models. Chapman & Hall, London, 1995.
[33] R. L. Carter and W. A. Fuller. Instrumental variable estimation of the simple errors-in-variables model. Journal of the American Statistical Association, 75:687–692, 1980.
[34] G. P. Y. Clarke. Marginal curvatures in the analysis of nonlinear regression models. Journal of the American Statistical Association, 82:844–850, 1987.
[35] W. G. Cochran. Planning and Analysis of Observational Studies. Wiley, New York, 1983.
[36] J. Cook and L. A. Stefanski. A simulation extrapolation method for parametric measurement error models. Journal of the American Statistical Association, 89:1314–1328, 1995.
[37] R. D. Cook. Detection of influential observations in linear regression. Technometrics, 19:15–18, 1977.
[38] R. D. Cook. Influential observations in linear regression. Journal of the American Statistical Association, 74:169–174, 1979.
[39] R. D. Cook. Comment [to Belsley, D. A. (1984)]. The American Statistician, 38:78–79, 1984.
[40] R. D. Cook and P. Prescott. On the accuracy of Bonferroni signif- icance levels for detecting outliers in linear models. Technometrics, 23:59–63, 1981.
[41] R. D. Cook and P. C. Wang. Transformations and influential cases in regression. Technometrics, 25:337–343, 1983.
[42] R. D. Cook and S. Weisberg. Residuals and Influence in Regression. Chapman & Hall, London, 1982.
[43] L. C. A. Corsten and K. R. Gabriel. Graphical exploration in com- paring variance matrices. Biometrics, 32:851–863, 1976.
[44] H. Cram ́er. Mathematical Methods of Statistics. Princeton University Press, Princeton, New Jersey, 1946.
[45] C. Daniel and F. S. Wood. Fitting Equations to Data: Computer Analysis of Multifactor Data. Wiley, New York, 2nd edition, 1980.
[46] W. J. Dixon, editor. BMDP Statistical Software 1981. University of California Press, Berkeley, California, 1981.
[47] S. Drake. Galileo at Work. University of Chicago Press, Chicago, 1978.
[48] N. Draper and H. Smith. Applied Regression Analysis. Wiley, New York, 2nd edition, 1981.
[49] J. Durbin and G. S. Watson. Testing for serial correlation in least squares regression. II. Biometrika, 38:159–178, 1951.
[50] J. Durbin and G. S. Watson. Testing for serial correlation in least squares regression. III. Biometrika, 58:1–19, 1971.
[51] M. Feldstein. Errors in variables: A consistent estimator with smaller MSE in finite samples. Journal of the American Statistical Associa- tion, 69:990–996, 1974.
[52] R. J. Freund, R. C. Littell, and P. C. Spector. SAS System for Linear Models. SAS Institute, Inc., Cary, North Carolina, 2nd edition, 1986.
[53] W. A. Fuller. Measurement Error Models. Wiley, New York, 1987.
[54] W. A. Fuller. Introduction to Statistical Time Series. Wiley, New
York, 1996.
[55] G. M. Furnival. All possible regressions with less computation. Tech- nometrics, 13:403–408, 1971.
[56] G. M. Furnival and R. B. Wilson. Regression by leaps and bounds. Technometrics, 16:499–511, 1974.
[57] K. R. Gabriel. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58:453–467, 1971.
[58] K. R. Gabriel. Analysis of meteorological data by means of canonical decomposition and biplots. Journal of Applied Meteorology, 11:1071– 1077, 1972.
[59] K. R. Gabriel. Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society, Series B, 40:186–196, 1978.
[60] A. R. Gallant. Nonlinear Statistical Models. Wiley, New York, 1987.
[61] A. R. Gallant and W. A. Fuller. Fitting segmented polynomial mod- els whose join points have to be estimated. Journal of the American Statistical Association, 68:144–147, 1973.
[62] J. S. Galpin and D. M. Hawkins. The use of recursive residuals in checking model fit in linear regression. The American Statistician, 38:94–105, 1984.
[63] F. A. Graybill. An Introduction to Linear Statistical Models. McGraw-Hill, New York, 1961.
[64] M. L. Gumpertz and S. G. Pantula. A simple approach to inferences in random coefficient models. The American Statistician, 43:203–210, 1989.
[65] R. F. Gunst. Comment: Toward a balanced assessment of collinearity diagnostics. The American Statistician, 38:79–82, 1984.
[66] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Sta- hel. Robust Statistics, The Approach Based on Influence Functions. Wiley, New York, 1986.
[67] H. O. Hartley. The modified Gauss–Newton method for the fitting of nonlinear regression functions by least-squares. Technometrics, 3:269–280, 1961.
[68] C. M. Hawkins. On the investigation of alternative regressions by principal component analysis. Applied Statistics, 22:275–286, 1973.
[69] W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragosa, A. S. Heagle, H. E. Heggestad, R. J. Kohut, L. W. Kress, and P. J. Temple. Assessing impacts of ozone on agricultural crops: II. Journal of the Air Pollution Control Association, 34:810–817, 1984.
[70] A. Hedayat and D. S. Robson. Independent stepwise residuals for testing homoscedasticity. Journal of the American Statistical Asso- ciation, 65:1573–1581, 1970.
[71] F. Hernandez and R. A. Johnson. The large-sample behavior of trans- formations to normality. Journal of the American Statistical Associ- ation, 75:855–861, 1980.
[72] R. R. Hocking. The analysis and selection of variables in linear re- gression. Biometrics, 32:1–49, 1976.
[73] R. R. Hocking. The Analysis of Linear Models. Brooks/Cole, Mon- terey, California, 1985.
[74] R. R. Hocking and F. M. Speed. A full-rank analysis of some linear model problems. Journal of the American Statistical Association, 70:706–712, 1975.
[75] R. R. Hocking, F. M. Speed, and M. J. Lynn. A class of biased estimators in linear regression. Technometrics, 18:425–437, 1976.
[76] A. E. Hoerl and R. W. Kennard. Ridge regression: Applications to nonorthogonal problems. Technometrics, 12:69–82, 1970a.
[77] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12:55–67, 1970b.
[78] A. E. Hoerl, R. W. Kennard, and K. F. Baldwin. Ridge regression: Some simulations. Communications in Statistics, 4:105–124, 1975.
[79] A. S. Householder and G. Young. Matrix approximation and latent roots. American Mathematical Monthly, 45:165–171, 1938.
[80] C. J. Huang and B. W. Bolch. On testing of regression distur- bances for normality. Journal of the American Statistical Associa- tion, 69:330–335, 1974.
[81] P. J. Huber. Robust Statistics. Wiley, New York, 1981.
[82] G. G. Judge, W. E. Griffiths, R. C. Hill, and T. Lee. The Theory and
Practice of Econometrics. Wiley, New York, 1980.
[83] W. J. Kennedy and T. A. Bancroft. Model-building for prediction in regression based on repeated significance tests. Annals of Mathemat- ical Statistics, 42:1273–1284, 1971.
[84] S. B. Land. Sea water flood tolerance of some Southern pines. PhD thesis, Department of Forestry and Department of Genetics, North Carolina State University, 1973.
[85] R. A. Linthurst. Aeration, nitrogen, pH and salinity as factors af- fecting Spartina Alterniflora growth and dieback. PhD thesis, North Carolina State University, 1979.
[86] R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. SAS System for Mixed Models. SAS Institute Inc., Cary, North Carolina, 1996.
[87] W. F. Lott. The optimal set of principal component restrictions on a least squares regression. Communications in Statistics, 2:449–464, 1973.
[88] A. Madansky. The fitting of straight lines when both variables are subject to error. Journal of the American Statistical Association, 54:173–205, 1959.
[89] C. L. Mallows. Data analysis in a regression context. In W. L. Thompson and F. B. Cady, editors, University of Kentucky Con- ference on Regression with a Large Number of Predictor Variables, Department of Statistics, University of Kentucky, 1973a.
[90] C. L. Mallows. Some comments on Cp. Technometrics, 15:661–675, 1973b.
[91] D. W. Marquardt. An algorithm for least-squares estimation of non- linear parameters. Journal of the Society for Industrial and Applied Mathematics, 11:431–441, 1963.
[92] D. W. Marquardt. Generalized inverses, ridge regression, biased lin- ear estimation, and nonlinear estimation. Technometrics, 12:591–612, 1970.
[93] D. W. Marquardt. Comment: You should standardize the predictor variables in your regression models. Journal of the American Statis- tical Association, 75:87–91, 1980.
[94] D. W. Marquardt and R. D. Snee. Ridge regression in practice. The American Statistician, 29:3–19, 1975.
[95] R. L. Mason and R. F. Gunst. Outlier-induced collinearities. Tech- nometrics, 27:401–407, 1985.
[96] R. G. Miller, Jr. Simultaneous Statistical Inference. Springer-Verlag, New York, 2nd edition, 1981.
[97] R. A. Mombiela and L. A. Nelson. Relationships among some bio- logical and empirical fertilizer response models and use of the power family of transformations to identify an appropriate model. Agron- omy Journal, 73:353–356, 1981.
[98] R. Mosteller and J. W. Tukey. Data Analysis and Regression: A Sec- ond Course in Statistics. Addison-Wesley, Reading, Massachusetts, 1977.
[99] R. H. Myers. Classical and Modern Regression with Applications. PWS-KENT, Boston, 2nd edition, 1990.
[100] J. A. Nelder. Inverse polynomials, a useful group of multifactor re- sponse functions. Biometrics, 22:128–140, 1966.
[101] W. R. Nelson and D. W. Ahrenholz. Population and fishery charac- teristics of Gulf Menhaden, Brevoortia patronus. Fishery Bulletin, 84:311–325, 1986.
[102] D. R. Nielsen, J. W. Biggar, and E. T. Erh. Spatial variability of field-measured soil-water properties. Hilgardia, 42:215–259, 1973.
[103] M. J. Norusis. SPSS-X Advanced Statistics Guide. McGraw-Hill, Chicago, 1985.
[104] S. G. Pantula and K. H. Pollock. Nested analyses of variance with autocorrelated errors. Biometrics, 41:909–920, 1985.
[105] S. H. Park. Collinearity and optimal restrictions on regression pa- rameters for estimating responses. Technometrics, 23:289–295, 1981.
[106] E. S. Pearson and H. O. Hartley. Biometrika Tables for Statisticians, volume 1. Cambridge University Press, London, 3rd edition, 1966.
[107] S. P. Pennypacker, H. D. Knoble, C. E. Antle, and L. V. Madden. A flexible model for studying plant disease progression. Phytopathology, 70:232–235, 1980.
[108] Pharos Books. 1993 Almanac and Book of Facts. Scripps Howard Company, New York, 1993.
[109] D. A. Pierce and R. J. Gray. Testing normality of errors in regression models. Biometrika, 69:233–236, 1982.
[110] D. A. Pierce and K. J. Kopecky. Testing goodness of fit for the distribution of errors in regression models. Biometrika, 66:1–5, 1979.
[111] C. P. Quesenberry. Some transformation methods in goodness-of-fit. In R. B. D’Agostino and M. A. Stephens, editors, Goodness of Fit Techniques. Chapter 6. Marcel Dekker, New York, 1986.
[112] C. P. Quesenberry and C. Quesenberry, Jr. On the distribution of residuals from fitted parametric models. Journal of Statistical Com- putation and Simulation, 15:129–140, 1982.
[113]
M. L. Ralston and R. I. Jennrich. Dud, a derivative-free algorithm for nonlinear least squares. Technometrics, 20:7–14, 1978.
C. R. Rao. Linear Statistical Inference and Its Applications. Wiley, New York, 2nd edition, 1973.
J. O. Rawlings and W. W. Cure. The Weibull function as a dose- response model for air pollution effects on crop yields. Crop Science, 25:807–814, 1985.
D. S. Riggs, J. A. Guarnieri, and S. Addelman. Fitting straight lines when both variables are subject to error. Life Sciences, 22:1305–1360, 1978.
F. J. Rohlf and R. R. Sokal. Statistical Tables. W. H. Freeman, San Francisco, 2nd edition, 1981.
M. Saeed and C. A. Francis. Association of weather variables and genotype × environment interactions in grain sorghum. Crop Science, 24:13–16, 1984.
SAS Institute Inc. SAS/STAT User’s Guide, Version 6, Volume I. SAS Institute Inc., Cary, North Carolina, 4th edition, 1989a.
SAS Institute Inc. SAS/STAT User’s Guide, Version 6, Volume II. SAS Institute Inc., Cary, North Carolina, 4th edition, 1989b.
SAS Institute Inc. SAS Language and Procedures: Usage, Version 6. SAS Institute Inc., Cary, North Carolina, 1st edition, 1989c.
SAS Institute Inc. SAS/IML Software: Usage and Reference, Version 6. SAS Institute Inc., Cary, North Carolina, 1st edition, 1989d.
SAS Institute Inc. SAS Procedures Guide, Version 6. SAS Institute Inc., Cary, North Carolina, 3rd edition, 1990.
SAS Institute Inc. SAS/STAT Software: Changes and Enhancements Through Release 6.12. SAS Institute Inc., Cary, North Carolina, 1997.
F. E. Satterthwaite. An approximate distribution of estimates of variance components. Biometrics Bulletin, 2:110–114, 1946.
H. Scheff ́e. A method for judging all contrasts in the analysis of variance. Biometrika, 40:87–104, 1953.
H. Scheff ́e. The Analysis of Variance. Wiley, New York, 1959.
H. Schneeweiss. Consistent estimation of a regression with errors in the variables. Metrika, 23:101–116, 1976.
[129]
G. Schwarz. Estimating the dimension of a model. Annals of Statis- tics, 6:461–464, 1978.
S. R. Searle. Linear Models. Wiley, New York, 1971.
S. R. Searle. Matrix Algebra Useful for Statistics. Wiley, New York,
1982.
S. R. Searle. Linear Models for Unbalanced Data. Wiley, New York, 1986.
S. R. Searle and W. H. Hausman. Matrix Algebra for Business and Economics. Wiley, New York, 1970.
S. R. Searle and H. V. Henderson. Annotated computer output for analyses of unbalanced data: SAS GLM. Technical Report BU-641- M, Biometrics Unit, Cornell University, 1979.
S. R. Searle, F. M. Speed, and G. A. Milliken. Population marginal means in the linear model: An alternative to least squares means. The American Statistician, 34:216–221, 1980.
S. S. Shapiro and R. S. Francia. An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67:215–216, 1972.
S. S. Shapiro and M. B. Wilk. An analysis of variance test for nor- mality (complete samples). Biometrika, 52:591–611, 1965.
J. S. Shy-Modjeska, J. S. Riviere, and J. O. Rawlings. Application of biplot methods to the multivariate analysis of toxicological and pharmacokinetic data. Toxicology and Applied Pharmacology, 72:91– 101, 1984.
G. Smith and F. Campbell. A critique of some ridge regression meth- ods. Journal of the American Statistical Association, 75:74–81, 1980.
G. W. Snedecor and W. G. Cochran. Statistical Methods. Iowa State University Press, Ames, Iowa, 8th edition, 1989.
R. D. Snee. Validation of regression models: Methods and examples. Technometrics, 19:415–428, 1977.
R. D. Snee and D. W. Marquardt. Comment: Collinearity diagnostics depend on the domain of prediction, the model, and the data. The American Statistician, 38:83–87, 1984.
F. M. Speed and R. R. Hocking. The use of the R(·)-notation with unbalanced data. The American Statistician, 30:30–33, 1976.
[144]
F. M. Speed, R. R. Hocking, and O. P. Hackney. Methods of analysis of linear models with unbalanced data. Journal of the American Statistical Association, 73:105–112, 1978.
R. G. D. Steel, J. H. Torrie, and D. A. Dickey. Principles and Pro- cedures of Statistics: A Biometrical Approach. McGraw-Hill, New York, 3rd edition, 1997.
C. M. Stein. Multiple regression. In Contributions to Probability and Statistics, Essays in Honor of Harold Hotelling. Stanford University Press, Stanford, California, 1960.
G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.
F. S. Swed and C. Eisenhart. Tables for testing randomness of group- ing in a sequence of alternatives. Annals of Mathematical Statistics, 14:66–87, 1943.
H. Theil. Principles of Econometrics. Wiley, New York, 1971.
R. A. Thisted. Comment: A critique of some ridge regression meth-
ods. Journal of the American Statistical Association, 75:81–86, 1980. J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading,
Massachusetts, 1977.
J. C. van Houwelingen. Use and abuse of variance models in regres-
sion. Biometrics, 44:1073–1081, 1988.
A. Wald. The fitting of straight lines if both variables are subject to
error. Annals of Mathematical Statistics, 11:284–300, 1940.
J. T. Webster, R. F. Gunst, and R. L. Mason. Latent root regression
analysis. Technometrics, 16:513–522, 1974.
S Weisberg. An empirical comparison of the percentage points of W
and W′. Biometrika, 61:644–646, 1974.
S. Weisberg. Comment on White and MacDonald (1980). Journal of
the American Statistical Association, 75:28–31, 1980.
S. Weisberg. A statistic for allocating Cp to individual cases. Tech-
nometrics, 23:27–31, 1981.
S. Weisberg. Applied Linear Regression. Wiley, New York, 2nd edi-
tion, 1985.
H. White and G. M. MacDonald. Some large-sample tests for nonnor- mality in the linear regression model (with comment by S. Weisberg). Journal of the American Statistical Association, 75:16–31, 1980.
[160] F. S. Wood. Comment: Effect of centering on collinearity and in- terpretation of the constant. The American Statistician, 38:88–90, 1984.
[161] H. Working and H. Hotelling. Application of the theory of error to the interpretation of trends. Journal of the American Statistical Association, Supplement (Proceedings), 24:73–85, 1929.
45.3
Efron, Bradley and Morris, Carl. 1971. “Limiting the Risk of Bayes and Empirical Bayes Estimators—Part I: The Bayes Case,”. Journal of the American Statistical Association, 66: 807–815.
45.4
Efron, Bradley and Morris, Carl. 1972. “Limiting the Risk of Bayes and Empirical Bayes Estimators—Part II: The Empirical Bayes Case,”. Journal of the American Statistical Association, 67: 130–139.
45.5
Efron, Bradley and Morris, Carl. 1973a. “Stein's Estimation Rule and Its Competitors—An Empirical Bayes Approach,”. Journal of the American Statistical Association, 68: 117–130.
45.6
Efron, Bradley and Morris, Carl. 1973b. “Combining Possibly Related Estimation Problems,”. Journal of the Royal Statistical Society, Ser. B, 35: 379–421.
45.7
Efron, Bradley and Morris, Carl. 1975. “Data Analysis Using Stein's Estimator and Its Generalizations,”. Journal of the American Statistical Association, 70: 311–319.
45.8
Ericksen, Eugene P. 1973. “A Method of Combining Sample Survey Data and Symptomatic Indicators to Obtain Population Estimates for Local Areas,”. Demography, 10: 137–160.
45.9
Ericksen, Eugene P. 1974. “A Regression Method for Estimating Population Changes for Local Areas,”. Journal of the American Statistical Association, 69: 867–875.
45.10
Herriot, Roger A. 1977. “Updating Per Capita Income for General Revenue Sharing,”, U.S. Bureau of the Census. in Small Area Statistics Papers, Series GE-41, No. 4
45.11
James, W. and Stein, Charles. “Estimation With Quadratic Loss,”. Proceedings of the Fourth Berkeley Symposium of Mathematical Statistics and Probability. Vol. 1, pp.361–379. Berkeley: University of California Press.
45.12
Madow, W. G. and Hansen, M. H. “On Statistical Models and Estimation in Sample Surveys,”. Contributed Papers, 40th Session of the International Statistical Institute. Warsaw, Poland. pp.554–557.
45.13
Rao, Radhakrishna C. 1965. Linear Statistical Inference and Its Applications, New York: John Wiley & Sons.
45.14
Stein, Charles. “Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution,”. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1, pp.197–202. Berkeley: University of California Press.
45.15
U.S. Bureau of the Census. 1976. U.S. Census of Population and Housing: 1970, Procedural History PHC(R)-1 Washington, D.C.
45.16
U.S. Department of Commerce. 1978. Statistical Policy Working Paper 1: Report on Statistics for Allocation of Funds prepared by the Subcommittee on Statistics for Allocation of Funds, Federal Committee on Statistical Methodology
参考資料(References)
Data Scientist の基礎(2)
https://qiita.com/kaizen_nagoya/items/8b2f27353a9980bf445c
岩波数学辞典 二つの版がCDに入ってお得
https://qiita.com/kaizen_nagoya/items/1210940fe2121423d777
岩波数学辞典
https://qiita.com/kaizen_nagoya/items/b37bfd303658cb5ee11e
アンの部屋(人名から学ぶ数学:岩波数学辞典)英語(24)
https://qiita.com/kaizen_nagoya/items/e02cbe23b96d5fb96aa1
<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words and/or centences in order.
Este artículo no está completo. Agregaré algunas palabras en orden.
知人資料
' @kazuo_reve 私が効果を確認した「小川メソッド」
https://qiita.com/kazuo_reve/items/a3ea1d9171deeccc04da
' @kazuo_reve 新人の方によく展開している有益な情報
https://qiita.com/kazuo_reve/items/d1a3f0ee48e24bba38f1
' @kazuo_reve Vモデルについて勘違いしていたと思ったこと
https://qiita.com/kazuo_reve/items/46fddb094563bd9b2e1e
自己記事一覧
Qiitaで逆リンクを表示しなくなったような気がする。時々、スマフォで表示するとあらわることがあり、完全に削除したのではなさそう。2024年4月以降、せっせとリンクリストを作り、統計を取って確率を説明しようとしている。2025年2月末を目標にしていた。
一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39
仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df
Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6
Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8
C++ Support(0)
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514
Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0
Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794
Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0
線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001
なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2
プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394
言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4
Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53
安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409
プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909
転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe
技術士(0)一覧
https://qiita.com/kaizen_nagoya/items/ce4ccf4eb9c5600b89ea
Reserchmap(0) 一覧
https://qiita.com/kaizen_nagoya/items/506c79e562f406c4257e
物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff
量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4
数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d
coq(0) 一覧
https://qiita.com/kaizen_nagoya/items/d22f9995cf2173bc3b13
統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba
図(0) state, sequence and timing. UML and お絵描き
https://qiita.com/kaizen_nagoya/items/60440a882146aeee9e8f
色(0) 記事100書く切り口
https://qiita.com/kaizen_nagoya/items/22331c0335ed34326b9b
品質一覧
https://qiita.com/kaizen_nagoya/items/2b99b8e9db6d94b2e971
言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6
医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82
水の資料集(0) 方針と成果
https://qiita.com/kaizen_nagoya/items/f5dbb30087ea732b52aa
自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5
通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7
日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68
英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d
音楽 一覧(0)
https://qiita.com/kaizen_nagoya/items/b6e5f42bbfe3bbe40f5d
「@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b
鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/faa4ea03d91d901a618a
OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3
coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68
官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3
「はじめての」シリーズ ベクタージャパン
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb
AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869
プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945
LaTeX(0) 一覧
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792
自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b
Rust(0) 一覧
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927
programの本質は計画だ。programは設計だ。
https://qiita.com/kaizen_nagoya/items/c8545a769c246a458c27
登壇直後版 色使い(JIS安全色) Qiita Engineer Festa 2023〜私しか得しないニッチな技術でLT〜 スライド編 0.15
https://qiita.com/kaizen_nagoya/items/f0d3070d839f4f735b2b
プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945
逆も真:社会人が最初に確かめるとよいこと。OSEK(69)、Ethernet(59)
https://qiita.com/kaizen_nagoya/items/39afe4a728a31b903ddc
統計の嘘。仮説(127)
https://qiita.com/kaizen_nagoya/items/63b48ecf258a3471c51b
自分の言葉だけで論理展開できるのが天才なら、文章の引用だけで論理展開できるのが秀才だ。仮説(136)
https://qiita.com/kaizen_nagoya/items/97cf07b9e24f860624dd
参考文献駆動執筆(references driven writing)・デンソークリエイト編
https://qiita.com/kaizen_nagoya/items/b27b3f58b8bf265a5cd1
「何を」よりも「誰を」。10年後のために今見習いたい人たち
https://qiita.com/kaizen_nagoya/items/8045978b16eb49d572b2
Qiitaの記事に3段階または5段階で到達するための方法
https://qiita.com/kaizen_nagoya/items/6e9298296852325adc5e
出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840
祝休日・謹賀新年 2025年の目標
https://qiita.com/kaizen_nagoya/items/dfa34827932f99c59bbc
Qiita 1年間をまとめた「振り返りページ」@2024
https://qiita.com/kaizen_nagoya/items/ed6be239119c99b15828
2024 参加・主催Calendarと投稿記事一覧 Qiita(248)
https://qiita.com/kaizen_nagoya/items/d80b8fbac2496df7827f
主催Calendar2024分析 Qiita(254)
https://qiita.com/kaizen_nagoya/items/15807336d583076f70bc
Calendar 統計
https://qiita.com/kaizen_nagoya/items/e315558dcea8ee3fe43e
LLM 関連 Calendar 2024
https://qiita.com/kaizen_nagoya/items/c36033cf66862d5496fa
Large Language Model Related Calendar
https://qiita.com/kaizen_nagoya/items/3beb0bc3fb71e3ae6d66
博士論文 Calendar 2024 を開催します。
https://qiita.com/kaizen_nagoya/items/51601357efbcaf1057d0
博士論文(0)関連記事一覧
https://qiita.com/kaizen_nagoya/items/8f223a760e607b705e78
coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68
あなたは「勘違いまとめ」から、勘違いだと言っていることが勘違いだといくつ見つけられますか。人間の間違い(human error(125))の種類と対策
https://qiita.com/kaizen_nagoya/items/ae391b77fffb098b8fb4
プログラマの「プログラムが書ける」思い込みは強みだ。3つの理由。仮説(168)統計と確率(17) , OSEK(79)
https://qiita.com/kaizen_nagoya/items/bc5dd86e414de402ec29
出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840
これからの情報伝達手段の在り方について考えてみよう。炎上と便乗。
https://qiita.com/kaizen_nagoya/items/71a09077ac195214f0db
ISO/IEC JTC1 SC7 Software and System Engineering
https://qiita.com/kaizen_nagoya/items/48b43f0f6976a078d907
アクセシビリティの知見を発信しよう!(再び)
https://qiita.com/kaizen_nagoya/items/03457eb9ee74105ee618
統計論及確率論輪講(再び)
https://qiita.com/kaizen_nagoya/items/590874ccfca988e85ea3
読者の心をグッと惹き寄せる7つの魔法
https://qiita.com/kaizen_nagoya/items/b1b5e89bd5c0a211d862
「@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b
ソースコードで議論しよう。日本語で議論するの止めましょう(あるプログラミング技術の議論報告)
https://qiita.com/kaizen_nagoya/items/8b9811c80f3338c6c0b0
脳内コンパイラの3つの危険
https://qiita.com/kaizen_nagoya/items/7025cf2d7bd9f276e382
心理学の本を読むよりはコンパイラ書いた方がよくね。仮説(34)
https://qiita.com/kaizen_nagoya/items/fa715732cc148e48880e
NASAを超えるつもりがあれば読んでください。
https://qiita.com/kaizen_nagoya/items/e81669f9cb53109157f6
データサイエンティストの気づき!「勉強して仕事に役立てない人。大嫌い!!」『それ自分かも?』ってなった!!!
https://qiita.com/kaizen_nagoya/items/d85830d58d8dd7f71d07
「ぼくの好きな先生」「人がやらないことをやれ」プログラマになるまで。仮説(37)
https://qiita.com/kaizen_nagoya/items/53e4bded9fe5f724b3c4
なぜ経済学徒を辞め、計算機屋になったか(経済学部入学前・入学後・卒業後対応) 転職(1)
https://qiita.com/kaizen_nagoya/items/06335a1d24c099733f64
プログラミング言語教育のXYZ。 仮説(52)
https://qiita.com/kaizen_nagoya/items/1950c5810fb5c0b07be4
【24卒向け】9ヶ月後に年収1000万円を目指す。二つの関門と三つの道。
https://qiita.com/kaizen_nagoya/items/fb5bff147193f726ad25
「【25卒向け】Qiita Career Meetup for STUDENT」予習の勧め
https://qiita.com/kaizen_nagoya/items/00eadb8a6e738cb6336f
大学入試不合格でも筆記試験のない大学に入って卒業できる。卒業しなくても博士になれる。
https://qiita.com/kaizen_nagoya/items/74adec99f396d64b5fd5
全世界の不登校の子供たち「博士論文」を書こう。世界子供博士論文遠隔実践中心 安全(99)
https://qiita.com/kaizen_nagoya/items/912d69032c012bcc84f2
日本のプログラマが世界で戦える16分野。仮説(53),統計と確率(25) 転職(32)、Ethernet(58)
https://qiita.com/kaizen_nagoya/items/a7e634a996cdd02bc53b
小川メソッド 覚え(書きかけ)
https://qiita.com/kaizen_nagoya/items/3593d72eca551742df68
DoCAP(ドゥーキャップ)って何ですか?
https://qiita.com/kaizen_nagoya/items/47e0e6509ab792c43327
views 20,000越え自己記事一覧
https://qiita.com/kaizen_nagoya/items/58e8bd6450957cdecd81
Views1万越え、もうすぐ1万記事一覧 最近いいねをいただいた213記事
https://qiita.com/kaizen_nagoya/items/d2b805717a92459ce853
amazon 殿堂入りNo1レビュアになるまで。仮説(102)
https://qiita.com/kaizen_nagoya/items/83259d18921ce75a91f4
100以上いいねをいただいた記事16選
https://qiita.com/kaizen_nagoya/items/f8d958d9084ffbd15d2a
水道局10年(1976,4-1986,3)を振り返る
https://qiita.com/kaizen_nagoya/items/707fcf6fae230dd349bf
小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on my individual experience. It has nothing to do with the organization or business to which I currently belong.
Este artículo es una impresión personal basada en mi experiencia personal. No tiene nada que ver con la organización o empresa a la que pertenezco actualmente.
文書履歴(document history)
ver. 0.01 初稿 20250518
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.
Muchas gracias por leer hasta la última oración.
Por favor, haz clic en el ícono Me gusta 💚 y sígueme para tener una vida feliz.