R3(References on References on References) on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(45)
R3(0) on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari
https://qiita.com/kaizen_nagoya/items/a8eac9afbf16d2188901
What are the most important statistical ideas of the past 50 years?
Andrew Gelman, Aki Vehtari
https://arxiv.org/abs/2012.00174
References 45
Fay, R. E., and Herriot, R. A. (1979). Estimates of income for small places: An application of James-Stein procedures to census data. Journal of the American Statistical Association 74, 269–277.
REFERENCE ON 45
45.1
Carter, Grace M. and Rolph, John E. 1974. “Empirical Bayes Methods Applied to Estimating Fire Alarm Probabilities,”. Journal of the American Statistical Association, 69: 880–885.
REFERENCE ON 45.1
45.1.1
Anscombe, Francis J. 1948. “The Transformation of Poisson, Binomial and Negative-Binomial Data”. Biometrika, 35: 246–54.
45.1.2
Carter, Grace M. and Rolph, John E. May 1973. New York City Fire Alarm Prediction Models I: Box-Reported Serious Fires, May, The Rand Corporation. R-1214-NYC
45.1.3
Dempster, Arthur P. 1973. “Alternatives to Least Squares in Multiple Regression”. In Multivariate Statistical Inference, Edited by: Kabe, D. G. and Gupta, R. P. Amsterdam: North-Holland Publishing Co..
45.1.4
Efron, Bradley and Morris, Carl. March 1974. Data Analysis Using Stein's Estimator and Its Generalizations, March, The Rand Corporation. R-1394–0E0
45.1.5
Efron, Bradley and Morris, Carl. 1972. “Limiting the Risk of Bayes and Empirical Bayes Estimators–Part II: The Empirical Bayes Case”. Journal of the American Statistical Association, 67 March: 130–39.
45.1.6
Efron, Bradley and Morris, Carl. 1973. “Stein's Estimation Rule and Its Competitors–An Empirical Bayes Approach”. Journal of the American Statistical Association, 68 March: 117–30.
45.1.7
James, W. and Stein, Charles. “Estimation with Quadratic Loss”. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probabilities. pp.361–79. Berkeley: University of California Press.
45.1.8
Sclove, Stanley L., Morris, Carl and Radhakrishnan, R. 1972. “Nonoptimality of Preliminary-Test Estimators for the Mean of a Multivariate Normal Distribution”. Annals of Mathematical Statistics, 43 October: 1481–90.
45.2
Draper, N. R. and Smith, H. 1966. Applied Regression Analysis, New York: John Wiley & Sons.
3rd Edition table of contents
https://assets.thalia.media/doc/99/6d/996d2571-0127-4bd1-9ca1-6900b2ceea81.pdf
2nd edition
http://web.nchu.edu.tw/~numerical/course1012/ra/Applied_Regression_Analysis_A_Research_Tool.pdf
REFERENCE ON 45.2
[1] A. Agresti. Categorical Data Analysis. Wiley, New York, 1990.
[2] H. Akaike. Fitting autoregressive models for prediction. Annals of
the Institute of Statistical Mathematics, 21:243–247, 1969.
[3] D. F. Alderdice. Some effects of simultaneous variation in salinity, temperature and dissolved oxygen on the resistance of young coho salmon to a toxic substance. Journal of the Fisheries Research Board of Canada, 20:525–475, 1963.
[4] D. M. Allen. Mean square error of prediction as a criterion for se- lecting variables. Technometrics, 13:469–475, 1971a.
[5] D. M. Allen. The prediction sum of squares as a criterion for selection of predictor variables. Technical Report 23, Department of Statistics, University of Kentucky, 1971b.
[6] R. L. Anderson and L. A. Nelson. A family of models involving in- tersecting straight lines and concomitant experimental designs useful in evaluating response to fertilizer nutrients. Biometrics, 31:303–318, 1975.
[7] T. W. Anderson. The Statistical Analysis of Time Series. Wiley, New York, 1971.
[8] D. F. Andrews and A. M. Herzberg. Data: A Collection of Problems from Many Fields for the Student and Research Worker. Springer- Verlag, New York, 1985.
636 REFERENCES
[9] F. J. Anscombe. Graphs in statistical analysis. The American Statis- tician, 27:17–21, 1973.
[10] A. C. Atkinson. Diagnostic regression analysis and shifted power transformations. Technometrics, 25:23–33, 1983.
[11] M. S. Bartlett. The use of transformations. Biometrics, 3:39–53, 1947.
[12] M. S. Bartlett. Fitting a straight line when both variables are subject to error. Biometrics, 5:207–212, 1949.
[13] R. P. Basson. On unbiased estimation in variance component models. PhD thesis, Iowa State University of Science and Technology, 1965.
[14] D. A. Belsley. Demeaning conditioning diagnostics through centering (with discussion). The American Statistician, 38:73–77, 1984.
[15] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley, New York, 1980.
[16] R. B. Bendel and A. A. Afifi. Comparison of stopping rules in forward “stepwise” regression. Journal of the American Statistical Associa- tion, 72:46–53, 1977.
[17] K. N. Berk. Tolerance and condition in regression computations. Journal of the American Statistical Association, 72:863–866, 1977.
[18] K. N. Berk. Comparing subset regression procedures. Technometrics, 20:1–6, 1978.
[19] G. Blom. Statistical Estimates and Transformed Beta Variates. Wi- ley, New York, 1958.
[20] P. Bloomfield. Fourier Analysis of Time Series: An Introduction. Wiley, New York, 1976.
[21] G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26:211–243, 1964.
[22] G. E. P. Box and N. R. Draper. Empirical Model-Building and Re- sponse Surfaces. Wiley, New York, 1987.
[23] G. E. P. Box and P. W. Tidwell. Transformation of the independent variables. Technometrics, 4:531–550, 1962.
[24] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Ex- perimenters: An Introduction to Design, Data Analysis, and Model Building. Wiley, New York, 1978.
[25] D. Bradu and K. R. Gabriel. Simultaneous statistical inference on interaction in two-way analysis of variance. Journal of the American Statistical Association, 69:428–436, 1974.
[26] D. Bradu and K. R. Gabriel. The biplot as a diagnostic tool for models of two-way tables. Technometrics, 20:47–68, 1978.
[27] R. L. Brown, J. Durbin, and J. M. Evans. Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society, Series B, 37:149–192, 1975.
[28] O. Bunke and B. Droge. Estimators of the mean squared error of prediction in linear regression. Technometrics, 26:145–155, 1984.
[29] D. A. Buonagurio, S. Nakada, J. D. Parvin, M. Krystal, P. Palese, and W. M. Fitch. Evolution of human influenza A viruses over 50 years: Rapid, uniform rate of change in NS gene. Science, 232:980– 982, 1986.
[30] E. Cameron and L. Pauling. Supplemental ascorbate in the sup- portive treatment of cancer: Reevaluation of prolongation of sur- vival times in terminal human cancer. Proceedings of the National Academy of Sciences U.S.A., 75:4538–4542, 1978.
[31] R. J. Carroll and D. Ruppert. Transformations and Weighting in Regression. Chapman & Hall, London, 1988.
[32] R. J. Carroll, D. Ruppert, and L. A. Stefanski. Measurement Error in Nonlinear Models. Chapman & Hall, London, 1995.
[33] R. L. Carter and W. A. Fuller. Instrumental variable estimation of the simple errors-in-variables model. Journal of the American Statistical Association, 75:687–692, 1980.
[34] G. P. Y. Clarke. Marginal curvatures in the analysis of nonlinear regression models. Journal of the American Statistical Association, 82:844–850, 1987.
[35] W. G. Cochran. Planning and Analysis of Observational Studies. Wiley, New York, 1983.
[36] J. Cook and L. A. Stefanski. A simulation extrapolation method for parametric measurement error models. Journal of the American Statistical Association, 89:1314–1328, 1995.
[37] R. D. Cook. Detection of influential observations in linear regression. Technometrics, 19:15–18, 1977.
[38] R. D. Cook. Influential observations in linear regression. Journal of the American Statistical Association, 74:169–174, 1979.
[39] R. D. Cook. Comment [to Belsley, D. A. (1984)]. The American Statistician, 38:78–79, 1984.
[40] R. D. Cook and P. Prescott. On the accuracy of Bonferroni signif- icance levels for detecting outliers in linear models. Technometrics, 23:59–63, 1981.
[41] R. D. Cook and P. C. Wang. Transformations and influential cases in regression. Technometrics, 25:337–343, 1983.
[42] R. D. Cook and S. Weisberg. Residuals and Influence in Regression. Chapman & Hall, London, 1982.
[43] L. C. A. Corsten and K. R. Gabriel. Graphical exploration in com- paring variance matrices. Biometrics, 32:851–863, 1976.
[44] H. Cram ́er. Mathematical Methods of Statistics. Princeton University Press, Princeton, New Jersey, 1946.
[45] C. Daniel and F. S. Wood. Fitting Equations to Data: Computer Analysis of Multifactor Data. Wiley, New York, 2nd edition, 1980.
[46] W. J. Dixon, editor. BMDP Statistical Software 1981. University of California Press, Berkeley, California, 1981.
[47] S. Drake. Galileo at Work. University of Chicago Press, Chicago, 1978.
[48] N. Draper and H. Smith. Applied Regression Analysis. Wiley, New York, 2nd edition, 1981.
[49] J. Durbin and G. S. Watson. Testing for serial correlation in least squares regression. II. Biometrika, 38:159–178, 1951.
[50] J. Durbin and G. S. Watson. Testing for serial correlation in least squares regression. III. Biometrika, 58:1–19, 1971.
[51] M. Feldstein. Errors in variables: A consistent estimator with smaller MSE in finite samples. Journal of the American Statistical Associa- tion, 69:990–996, 1974.
[52] R. J. Freund, R. C. Littell, and P. C. Spector. SAS System for Linear Models. SAS Institute, Inc., Cary, North Carolina, 2nd edition, 1986.
[53] W. A. Fuller. Measurement Error Models. Wiley, New York, 1987.
[54] W. A. Fuller. Introduction to Statistical Time Series. Wiley, New
York, 1996.
[55] G. M. Furnival. All possible regressions with less computation. Tech- nometrics, 13:403–408, 1971.
[56] G. M. Furnival and R. B. Wilson. Regression by leaps and bounds. Technometrics, 16:499–511, 1974.
[57] K. R. Gabriel. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58:453–467, 1971.
[58] K. R. Gabriel. Analysis of meteorological data by means of canonical decomposition and biplots. Journal of Applied Meteorology, 11:1071– 1077, 1972.
[59] K. R. Gabriel. Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society, Series B, 40:186–196, 1978.
[60] A. R. Gallant. Nonlinear Statistical Models. Wiley, New York, 1987.
[61] A. R. Gallant and W. A. Fuller. Fitting segmented polynomial mod- els whose join points have to be estimated. Journal of the American Statistical Association, 68:144–147, 1973.
[62] J. S. Galpin and D. M. Hawkins. The use of recursive residuals in checking model fit in linear regression. The American Statistician, 38:94–105, 1984.
[63] F. A. Graybill. An Introduction to Linear Statistical Models. McGraw-Hill, New York, 1961.
[64] M. L. Gumpertz and S. G. Pantula. A simple approach to inferences in random coefficient models. The American Statistician, 43:203–210, 1989.
[65] R. F. Gunst. Comment: Toward a balanced assessment of collinearity diagnostics. The American Statistician, 38:79–82, 1984.
[66] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Sta- hel. Robust Statistics, The Approach Based on Influence Functions. Wiley, New York, 1986.
[67] H. O. Hartley. The modified Gauss–Newton method for the fitting of nonlinear regression functions by least-squares. Technometrics, 3:269–280, 1961.
[68] C. M. Hawkins. On the investigation of alternative regressions by principal component analysis. Applied Statistics, 22:275–286, 1973.
[69] W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragosa, A. S. Heagle, H. E. Heggestad, R. J. Kohut, L. W. Kress, and P. J. Temple. Assessing impacts of ozone on agricultural crops: II. Journal of the Air Pollution Control Association, 34:810–817, 1984.
[70] A. Hedayat and D. S. Robson. Independent stepwise residuals for testing homoscedasticity. Journal of the American Statistical Asso- ciation, 65:1573–1581, 1970.
[71] F. Hernandez and R. A. Johnson. The large-sample behavior of trans- formations to normality. Journal of the American Statistical Associ- ation, 75:855–861, 1980.
[72] R. R. Hocking. The analysis and selection of variables in linear re- gression. Biometrics, 32:1–49, 1976.
[73] R. R. Hocking. The Analysis of Linear Models. Brooks/Cole, Mon- terey, California, 1985.
[74] R. R. Hocking and F. M. Speed. A full-rank analysis of some linear model problems. Journal of the American Statistical Association, 70:706–712, 1975.
[75] R. R. Hocking, F. M. Speed, and M. J. Lynn. A class of biased estimators in linear regression. Technometrics, 18:425–437, 1976.
[76] A. E. Hoerl and R. W. Kennard. Ridge regression: Applications to nonorthogonal problems. Technometrics, 12:69–82, 1970a.
[77] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12:55–67, 1970b.
[78] A. E. Hoerl, R. W. Kennard, and K. F. Baldwin. Ridge regression: Some simulations. Communications in Statistics, 4:105–124, 1975.
[79] A. S. Householder and G. Young. Matrix approximation and latent roots. American Mathematical Monthly, 45:165–171, 1938.
[80] C. J. Huang and B. W. Bolch. On testing of regression distur- bances for normality. Journal of the American Statistical Associa- tion, 69:330–335, 1974.
[81] P. J. Huber. Robust Statistics. Wiley, New York, 1981.
[82] G. G. Judge, W. E. Griffiths, R. C. Hill, and T. Lee. The Theory and
Practice of Econometrics. Wiley, New York, 1980.
[83] W. J. Kennedy and T. A. Bancroft. Model-building for prediction in regression based on repeated significance tests. Annals of Mathemat- ical Statistics, 42:1273–1284, 1971.
[84] S. B. Land. Sea water flood tolerance of some Southern pines. PhD thesis, Department of Forestry and Department of Genetics, North Carolina State University, 1973.
[85] R. A. Linthurst. Aeration, nitrogen, pH and salinity as factors af- fecting Spartina Alterniflora growth and dieback. PhD thesis, North Carolina State University, 1979.
[86] R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. SAS System for Mixed Models. SAS Institute Inc., Cary, North Carolina, 1996.
[87] W. F. Lott. The optimal set of principal component restrictions on a least squares regression. Communications in Statistics, 2:449–464, 1973.
[88] A. Madansky. The fitting of straight lines when both variables are subject to error. Journal of the American Statistical Association, 54:173–205, 1959.
[89] C. L. Mallows. Data analysis in a regression context. In W. L. Thompson and F. B. Cady, editors, University of Kentucky Con- ference on Regression with a Large Number of Predictor Variables, Department of Statistics, University of Kentucky, 1973a.
[90] C. L. Mallows. Some comments on Cp. Technometrics, 15:661–675, 1973b.
[91] D. W. Marquardt. An algorithm for least-squares estimation of non- linear parameters. Journal of the Society for Industrial and Applied Mathematics, 11:431–441, 1963.
[92] D. W. Marquardt. Generalized inverses, ridge regression, biased lin- ear estimation, and nonlinear estimation. Technometrics, 12:591–612, 1970.
[93] D. W. Marquardt. Comment: You should standardize the predictor variables in your regression models. Journal of the American Statis- tical Association, 75:87–91, 1980.
[94] D. W. Marquardt and R. D. Snee. Ridge regression in practice. The American Statistician, 29:3–19, 1975.
[95] R. L. Mason and R. F. Gunst. Outlier-induced collinearities. Tech- nometrics, 27:401–407, 1985.
[96] R. G. Miller, Jr. Simultaneous Statistical Inference. Springer-Verlag, New York, 2nd edition, 1981.
[97] R. A. Mombiela and L. A. Nelson. Relationships among some bio- logical and empirical fertilizer response models and use of the power family of transformations to identify an appropriate model. Agron- omy Journal, 73:353–356, 1981.
[98] R. Mosteller and J. W. Tukey. Data Analysis and Regression: A Sec- ond Course in Statistics. Addison-Wesley, Reading, Massachusetts, 1977.
[99] R. H. Myers. Classical and Modern Regression with Applications. PWS-KENT, Boston, 2nd edition, 1990.
[100] J. A. Nelder. Inverse polynomials, a useful group of multifactor re- sponse functions. Biometrics, 22:128–140, 1966.
[101] W. R. Nelson and D. W. Ahrenholz. Population and fishery charac- teristics of Gulf Menhaden, Brevoortia patronus. Fishery Bulletin, 84:311–325, 1986.
[102] D. R. Nielsen, J. W. Biggar, and E. T. Erh. Spatial variability of field-measured soil-water properties. Hilgardia, 42:215–259, 1973.
[103] M. J. Norusis. SPSS-X Advanced Statistics Guide. McGraw-Hill, Chicago, 1985.
[104] S. G. Pantula and K. H. Pollock. Nested analyses of variance with autocorrelated errors. Biometrics, 41:909–920, 1985.
[105] S. H. Park. Collinearity and optimal restrictions on regression pa- rameters for estimating responses. Technometrics, 23:289–295, 1981.
[106] E. S. Pearson and H. O. Hartley. Biometrika Tables for Statisticians, volume 1. Cambridge University Press, London, 3rd edition, 1966.
[107] S. P. Pennypacker, H. D. Knoble, C. E. Antle, and L. V. Madden. A flexible model for studying plant disease progression. Phytopathology, 70:232–235, 1980.
[108] Pharos Books. 1993 Almanac and Book of Facts. Scripps Howard Company, New York, 1993.
[109] D. A. Pierce and R. J. Gray. Testing normality of errors in regression models. Biometrika, 69:233–236, 1982.
[110] D. A. Pierce and K. J. Kopecky. Testing goodness of fit for the distribution of errors in regression models. Biometrika, 66:1–5, 1979.
[111] C. P. Quesenberry. Some transformation methods in goodness-of-fit. In R. B. D’Agostino and M. A. Stephens, editors, Goodness of Fit Techniques. Chapter 6. Marcel Dekker, New York, 1986.
[112] C. P. Quesenberry and C. Quesenberry, Jr. On the distribution of residuals from fitted parametric models. Journal of Statistical Com- putation and Simulation, 15:129–140, 1982.
[113]
M. L. Ralston and R. I. Jennrich. Dud, a derivative-free algorithm for nonlinear least squares. Technometrics, 20:7–14, 1978.
C. R. Rao. Linear Statistical Inference and Its Applications. Wiley, New York, 2nd edition, 1973.
J. O. Rawlings and W. W. Cure. The Weibull function as a dose- response model for air pollution effects on crop yields. Crop Science, 25:807–814, 1985.
D. S. Riggs, J. A. Guarnieri, and S. Addelman. Fitting straight lines when both variables are subject to error. Life Sciences, 22:1305–1360, 1978.
F. J. Rohlf and R. R. Sokal. Statistical Tables. W. H. Freeman, San Francisco, 2nd edition, 1981.
M. Saeed and C. A. Francis. Association of weather variables and genotype × environment interactions in grain sorghum. Crop Science, 24:13–16, 1984.
SAS Institute Inc. SAS/STAT User’s Guide, Version 6, Volume I. SAS Institute Inc., Cary, North Carolina, 4th edition, 1989a.
SAS Institute Inc. SAS/STAT User’s Guide, Version 6, Volume II. SAS Institute Inc., Cary, North Carolina, 4th edition, 1989b.
SAS Institute Inc. SAS Language and Procedures: Usage, Version 6. SAS Institute Inc., Cary, North Carolina, 1st edition, 1989c.
SAS Institute Inc. SAS/IML Software: Usage and Reference, Version 6. SAS Institute Inc., Cary, North Carolina, 1st edition, 1989d.
SAS Institute Inc. SAS Procedures Guide, Version 6. SAS Institute Inc., Cary, North Carolina, 3rd edition, 1990.
SAS Institute Inc. SAS/STAT Software: Changes and Enhancements Through Release 6.12. SAS Institute Inc., Cary, North Carolina, 1997.
F. E. Satterthwaite. An approximate distribution of estimates of variance components. Biometrics Bulletin, 2:110–114, 1946.
H. Scheff ́e. A method for judging all contrasts in the analysis of variance. Biometrika, 40:87–104, 1953.
H. Scheff ́e. The Analysis of Variance. Wiley, New York, 1959.
H. Schneeweiss. Consistent estimation of a regression with errors in the variables. Metrika, 23:101–116, 1976.
[129]
G. Schwarz. Estimating the dimension of a model. Annals of Statis- tics, 6:461–464, 1978.
S. R. Searle. Linear Models. Wiley, New York, 1971.
S. R. Searle. Matrix Algebra Useful for Statistics. Wiley, New York,
1982.
S. R. Searle. Linear Models for Unbalanced Data. Wiley, New York, 1986.
S. R. Searle and W. H. Hausman. Matrix Algebra for Business and Economics. Wiley, New York, 1970.
S. R. Searle and H. V. Henderson. Annotated computer output for analyses of unbalanced data: SAS GLM. Technical Report BU-641- M, Biometrics Unit, Cornell University, 1979.
S. R. Searle, F. M. Speed, and G. A. Milliken. Population marginal means in the linear model: An alternative to least squares means. The American Statistician, 34:216–221, 1980.
S. S. Shapiro and R. S. Francia. An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67:215–216, 1972.
S. S. Shapiro and M. B. Wilk. An analysis of variance test for nor- mality (complete samples). Biometrika, 52:591–611, 1965.
J. S. Shy-Modjeska, J. S. Riviere, and J. O. Rawlings. Application of biplot methods to the multivariate analysis of toxicological and pharmacokinetic data. Toxicology and Applied Pharmacology, 72:91– 101, 1984.
G. Smith and F. Campbell. A critique of some ridge regression meth- ods. Journal of the American Statistical Association, 75:74–81, 1980.
G. W. Snedecor and W. G. Cochran. Statistical Methods. Iowa State University Press, Ames, Iowa, 8th edition, 1989.
R. D. Snee. Validation of regression models: Methods and examples. Technometrics, 19:415–428, 1977.
R. D. Snee and D. W. Marquardt. Comment: Collinearity diagnostics depend on the domain of prediction, the model, and the data. The American Statistician, 38:83–87, 1984.
F. M. Speed and R. R. Hocking. The use of the R(·)-notation with unbalanced data. The American Statistician, 30:30–33, 1976.
[144]
F. M. Speed, R. R. Hocking, and O. P. Hackney. Methods of analysis of linear models with unbalanced data. Journal of the American Statistical Association, 73:105–112, 1978.
R. G. D. Steel, J. H. Torrie, and D. A. Dickey. Principles and Pro- cedures of Statistics: A Biometrical Approach. McGraw-Hill, New York, 3rd edition, 1997.
C. M. Stein. Multiple regression. In Contributions to Probability and Statistics, Essays in Honor of Harold Hotelling. Stanford University Press, Stanford, California, 1960.
G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.
F. S. Swed and C. Eisenhart. Tables for testing randomness of group- ing in a sequence of alternatives. Annals of Mathematical Statistics, 14:66–87, 1943.
H. Theil. Principles of Econometrics. Wiley, New York, 1971.
R. A. Thisted. Comment: A critique of some ridge regression meth-
ods. Journal of the American Statistical Association, 75:81–86, 1980. J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading,
Massachusetts, 1977.
J. C. van Houwelingen. Use and abuse of variance models in regres-
sion. Biometrics, 44:1073–1081, 1988.
A. Wald. The fitting of straight lines if both variables are subject to
error. Annals of Mathematical Statistics, 11:284–300, 1940.
J. T. Webster, R. F. Gunst, and R. L. Mason. Latent root regression
analysis. Technometrics, 16:513–522, 1974.
S Weisberg. An empirical comparison of the percentage points of W
and W′. Biometrika, 61:644–646, 1974.
S. Weisberg. Comment on White and MacDonald (1980). Journal of
the American Statistical Association, 75:28–31, 1980.
S. Weisberg. A statistic for allocating Cp to individual cases. Tech-
nometrics, 23:27–31, 1981.
S. Weisberg. Applied Linear Regression. Wiley, New York, 2nd edi-
tion, 1985.
H. White and G. M. MacDonald. Some large-sample tests for nonnor- mality in the linear regression model (with comment by S. Weisberg). Journal of the American Statistical Association, 75:16–31, 1980.
[160] F. S. Wood. Comment: Effect of centering on collinearity and in- terpretation of the constant. The American Statistician, 38:88–90, 1984.
[161] H. Working and H. Hotelling. Application of the theory of error to the interpretation of trends. Journal of the American Statistical Association, Supplement (Proceedings), 24:73–85, 1929.
45.3
Efron, Bradley and Morris, Carl. 1971. “Limiting the Risk of Bayes and Empirical Bayes Estimators—Part I: The Bayes Case,”. Journal of the American Statistical Association, 66: 807–815.
45.4
Efron, Bradley and Morris, Carl. 1972. “Limiting the Risk of Bayes and Empirical Bayes Estimators—Part II: The Empirical Bayes Case,”. Journal of the American Statistical Association, 67: 130–139.
45.5
Efron, Bradley and Morris, Carl. 1973a. “Stein's Estimation Rule and Its Competitors—An Empirical Bayes Approach,”. Journal of the American Statistical Association, 68: 117–130.
45.6
Efron, Bradley and Morris, Carl. 1973b. “Combining Possibly Related Estimation Problems,”. Journal of the Royal Statistical Society, Ser. B, 35: 379–421.
45.7
Efron, Bradley and Morris, Carl. 1975. “Data Analysis Using Stein's Estimator and Its Generalizations,”. Journal of the American Statistical Association, 70: 311–319.
45.8
Ericksen, Eugene P. 1973. “A Method of Combining Sample Survey Data and Symptomatic Indicators to Obtain Population Estimates for Local Areas,”. Demography, 10: 137–160.
45.9
Ericksen, Eugene P. 1974. “A Regression Method for Estimating Population Changes for Local Areas,”. Journal of the American Statistical Association, 69: 867–875.
45.10
Herriot, Roger A. 1977. “Updating Per Capita Income for General Revenue Sharing,”, U.S. Bureau of the Census. in Small Area Statistics Papers, Series GE-41, No. 4
45.11
James, W. and Stein, Charles. “Estimation With Quadratic Loss,”. Proceedings of the Fourth Berkeley Symposium of Mathematical Statistics and Probability. Vol. 1, pp.361–379. Berkeley: University of California Press.
45.12
Madow, W. G. and Hansen, M. H. “On Statistical Models and Estimation in Sample Surveys,”. Contributed Papers, 40th Session of the International Statistical Institute. Warsaw, Poland. pp.554–557.
45.13
Rao, Radhakrishna C. 1965. Linear Statistical Inference and Its Applications, New York: John Wiley & Sons.
45.14
Stein, Charles. “Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution,”. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1, pp.197–202. Berkeley: University of California Press.
45.15
U.S. Bureau of the Census. 1976. U.S. Census of Population and Housing: 1970, Procedural History PHC(R)-1 Washington, D.C.
45.16
U.S. Department of Commerce. 1978. Statistical Policy Working Paper 1: Report on Statistics for Allocation of Funds prepared by the Subcommittee on Statistics for Allocation of Funds, Federal Committee on Statistical Methodology
参考資料(References)
Data Scientist の基礎(2)
https://qiita.com/kaizen_nagoya/items/8b2f27353a9980bf445c
岩波数学辞典 二つの版がCDに入ってお得
https://qiita.com/kaizen_nagoya/items/1210940fe2121423d777
岩波数学辞典
https://qiita.com/kaizen_nagoya/items/b37bfd303658cb5ee11e
アンの部屋(人名から学ぶ数学:岩波数学辞典)英語(24)
https://qiita.com/kaizen_nagoya/items/e02cbe23b96d5fb96aa1
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.