3
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

クレイ数学研究所の数学未解決問題7つのうち、唯一解決済みのポアンカレ予想のペレルマン論文を読もうと思った。

Perelman, Grisha (11 November 2002). "The entropy formula for the Ricci flow and its geometric applications". arXiv:math.DG/0211159。https://arxiv.org/abs/math.DG/0211159

Perelman, Grisha (10 March 2003). "Ricci flow with surgery on three-manifolds". arXiv:math.DG/0303109。https://arxiv.org/abs/math.DG/0303109

Perelman, Grisha (17 July 2003). "Finite extinction time for the solutions to the Ricci flow on certain three-manifolds". arXiv:math.DG/0307245。https://arxiv.org/abs/math.DG/0307245

参考文献(Reference)

The entropy formula for the Ricci flow and its geometric applications

[A] M.T.Anderson Scalar curvature and geometrization conjecture for three-manifolds. Comparison Geometry (Berkeley, 1993-94), MSRI Publ. 30 (1997), 49-82.
[B-Em] D.Bakry, M.Emery Diffusions hypercontractives. Seminaire de Probabilites XIX, 1983-84, Lecture Notes in Math. 1123 (1985), 177-206.
[Cao-C] H.-D. Cao, B.Chow Recent developments on the Ricci flow. Bull. AMS 36 (1999), 59-74.
[Ch-Co] J.Cheeger, T.H.Colding On the structure of spaces with Ricci curvature bounded below I. Jour. Diff. Geom. 46 (1997), 406-480.
[C] B.Chow Entropy estimate for Ricci flow on compact two-orbifolds. Jour. Diff. Geom. 33 (1991), 597-600.
[C-Chu 1] B.Chow, S.-C. Chu A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow. Math. Res. Let. 2 (1995), 701-718.
[C-Chu 2] B.Chow, S.-C. Chu A geometric approach to the linear trace Harnack inequality for the Ricci flow. Math. Res. Let. 3 (1996), 549-568.
[D] E.D’Hoker String theory. Quantum fields and strings: a course for mathematicians (Princeton, 1996-97), 807-1011.
[E 1] K.Ecker Logarithmic Sobolev inequalities on submanifolds of euclidean space. Jour. Reine Angew. Mat. 522 (2000), 105-118.
[E 2] K.Ecker A local monotonicity formula for mean curvature flow. Ann. Math. 154 (2001), 503-525.
[E-Hu] K.Ecker, G.Huisken In terior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105 (1991), 547-569.
[Gaw] K.Gawedzki Lectures on conformal field theory. Quantum fields and strings: a course for mathematicians (Princeton, 1996-97), 727-805.
[G] L.Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups. Dirichlet forms (Varenna, 1992) Lecture Notes in Math. 1563 (1993), 54-88.
[H 1] R.S.Hamilton Three manifolds with positive Ricci curvature. Jour. Diff. Geom. 17 (1982), 255-306.
[H 2] R.S.Hamilton Four manifolds with positive curvature operator. Jour. Diff. Geom. 24 (1986), 153-179.
[H 3] R.S.Hamilton The Harnack estimate for the Ricci flow. Jour. Diff. Geom. 37 (1993), 225-243.
[H 4] R.S.Hamilton Formation of singularities in the Ricci flow. Surveys in Diff. Geom. 2 (1995), 7-136.
38
[H 5] R.S.Hamilton Four-manifolds with positive isotropic curvature. Commun. Anal. Geom. 5 (1997), 1-92.
[H 6] R.S.Hamilton Non-singular solutions of the Ricci flow on threemanifolds. Commun. Anal. Geom. 7 (1999), 695-729.
[H 7] R.S.Hamilton A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1 (1993), 113-126.
[H 8] R.S.Hamilton Monotonicity formulas for parabolic flows on manifolds. Commun. Anal. Geom. 1 (1993), 127-137.
[H 9] R.S.Hamilton A compactness property for solutions of the Ricci flow. Amer. Jour. Math. 117 (1995), 545-572.
[H 10] R.S.Hamilton The Ricci flow on surfaces. Contemp. Math. 71 (1988), 237-261.
[Hu] G.Huisken Asymptotic behavior for singularities of the mean curvature flow. Jour. Diff. Geom. 31 (1990), 285-299.
[I] T.Ivey Ricci solitons on compact three-manifolds. Diff. Geo. Appl. 3 (1993), 301-307.
[L-Y] P.Li, S.-T. Yau On the parabolic kernel of the Schrodinger operator. Acta Math. 156 (1986), 153-201.
[Lott] J.Lott Some geometric properties of the Bakry-Emery-Ricci tensor. arXiv:math.DG/0211065. https://arxiv.org/abs/math/0211065

Ricci flow with surgery on three-manifolds

[I] G.Perelman The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159 v1
[A] M.T.Anderson Scalar curvature and geometrization conjecture for threemanifolds. Comparison Geometry (Berkeley, 1993-94), MSRI Publ. 30 (1997), 49-82.
[C-G] J.Cheeger, M.Gromov Collapsing Riemannian manifolds while keeping their curvature bounded I. Jour. Diff. Geom. 23 (1986), 309-346.
[G-L] M.Gromov, H.B.Lawson Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. IHES 58 (1983), 83-196.
[H 1] R.S.Hamilton Three-manifolds with positive Ricci curvature. Jour. Diff. Geom. 17 (1982), 255-306.
[H 2] R.S.Hamilton Formation of singularities in the Ricci flow. Surveys in Diff. Geom. 2 (1995), 7-136.
[H 3] R.S.Hamilton The Harnack estimate for the Ricci flow. Jour. Diff. Geom. 37 (1993), 225-243.
[H 4] R.S.Hamilton Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7 (1999), 695-729.
[H 5] R.S.Hamilton Four-manifolds with positive isotropic curvature. Commun. Anal. Geom. 5 (1997), 1-92.
G.Perelman Spaces with curvature bounded below. Proceedings of ICM- 1994, 517-525.
F.Waldhausen Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I,II. Invent. Math. 3 (1967), 308-333 and 4 (1967), 87-117.

Finite extinction time for the solutions to the

Ricci flow on certain three-manifolds

[A-G] S.Altschuler, M.Grayson Shortening space curves and flow through singularities. Jour. Diff. Geom. 35 (1992), 283-298.
[B] S.Bando Real analyticity of solutions of Hamilton’s equation. Math. Zeit. 195 (1987), 93-97.
[E-Hu] K.Ecker, G.Huisken Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105 (1991), 547-569.
[G-H] M.Gage, R.S.Hamilton The heat equation shrinking convex plane curves. Jour. Diff. Geom. 23 (1986), 69-96.
[H] R.S.Hamilton Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7 (1999), 695-729.
[Hi] S.Hildebrandt Boundary behavior of minimal surfaces. Arch. Rat. Mech. Anal. 35 (1969), 47-82.
[M] C.B.Morrey The problem of Plateau on a riemannian manifold. Ann. Math. 49 (1948), 807-851.
[P] G.Perelman Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109 v1 https://arxiv.org/abs/math.DG/0303109

単語帳

The entropy formula for the Ricci flow and its geometric applications

Ricci flow equation
positive Ricci curvature
Richard Hamilton
Riemannian metric
arbitrary (smooth) metric
curvature tensor
closed manifold.
evolution equation
metric tensor implies
quadratic expression of the curvatures.
scalar curvature
maximum principle

Ricci flow with surgery on three-manifolds

Finite extinction time for the solutions to the

Ricci flow on certain three-manifolds

英単語帳

3つの論文の英単語帳を作った。

count word 日本語 備考
1775 the その
1337 t t
803 a 一つの
775 of
654 r r
638 x x
582 is です
565 and そして
490 in
459 to
437 that それ
424 we 私達
397 for にとって
320 on 上に
264 with
242 at
241 m m
212 can できる
212 y y
210 by 沿って
195 curvature 曲率
192 f f
189 then その後
184 h h
177 b b
171 this この
169 solution 解決
168 be あります
167 flow 流れ
164 c c
155 n n
154 time 時間
153 ricci ricci 人名
151 l l
148 gij gij
144 if もし
142 as なので
135 i
135 it それ
131 d d
130 such そのような
129 from から
124 an 一つの
122 k k
119 q q
119 s s
118 g g
116 not ない
110 metric 測定基準
109 where どこ
105 have 持ってる
104 p p
100 one 一つ
100 w w
94 are です
94 which これ
93 proof 証明
92 v v
87 let しましょう
87 some いくつか
82 any どれか
81 point
80 manifold 多様な
80 z z
79 limit 制限
77 now
75 bounded 跳ねる
74 each
72 has 持っている
72 our 私たちの
71 there そこ
71 volume
69 or または
68 case 場合
67 theorem 定理
66 ball
65 all すべて
65 ric ric
63 solutions
61 claim 請求
61 hamilton ハミルトン 人名
61 scalar 変量
59 estimate 見積もり
55 function 関数
52 get 取得する
52 j j
51 e e
51 satisfies 満たす
51 thus したがって、
51 zero ゼロ
50 smooth 滑らかな
48 assume 仮定する
48 equation 方程式
48 rm rm
47 also また
47 defined 定義済み
47 finite 有限の
47 so そう
47 surgery 手術
46 ct ct
46 small 小さい
46 u u
45 least 少なくとも
45 lemma 補題
45 radius 半径
44 dt dt
43 rij rij
42 consider 検討する
42 large
42 positive 肯定
41 follows 続く
41 neck
41 neighborhood ご近所
41 other その他
41 satisfying 満足
41 suppose 仮定します
41 tk tk
40 nonnegative 非負
39 interval 間隔
39 points
39 therefore したがって、
39 using を使用して
38 assumptions 仮定
38 every すべて
38 exists 存在する
38 following 以下
38 three
38 whenever いつでも
37 argument 引数
37 first 最初
37 its その
37 manifolds 多様な
37 round 円形
36 closed 閉まっている
36 may 五月
36 take 取る
35 ancient 古代
35 close 閉じる
35 find 見つける
35 only のみ
35 since 以来
34 bound 雪の
34 curve 曲線
34 distt 宛先t
33 when いつ
32 assumption 仮定
32 constant 絶え間ない
32 gradient 勾配
32 soliton 孤立波
32 than より
31 above 上記
31 sequence
31 was だった
30 does しますか
30 hand
30 implies 意味する
30 indeed 確かに
30 inequality 不平等
30 metrics 測定基準
30 would だろう
29 curvatures 曲率
29 same 同じ
29 sectional 断面
28 clearly 明らかに
28 const 定数
28 corollary 当然の結果
28 formula
28 see 見る
27 canonical 正準
27 either どちらか
27 enough 足りる
27 infinity 無限
27 scale 規模
26 apply 適用する
26 given 与えられた
26 math 数学
26 moreover さらに
26 proposition 命題
26 section
25 but だが
25 initial 初期
25 monotonicity 単調性
25 non
25 particular 特に
25 riemannian リーマン多様体 人名
25 times 時間
24 almost ほとんど
24 complete 完全な
24 distance 距離
24 property 特性
24 standard 標準
24 xk xk
23 along に沿って
23 contradiction 矛盾
23 dimension 寸法
23 factor 因子
23 ij ij
23 no 否定
23 rk rk
22 more もっと

#docker
単語帳はdockerに置いて更新中。

$ docker run -it kaizenjapan/perelman /bin/bash

自己参考資料(self reference)

英語(24)アンの部屋(人名から学ぶ数学:岩波数学辞典)
https://qiita.com/kaizen_nagoya/items/e02cbe23b96d5fb96aa1

岩波数学辞典
https://qiita.com/kaizen_nagoya/items/b37bfd303658cb5ee11e

文書履歴(document history)

ver. 0.01 初稿 20210104
ver. 0.02 誤字訂正、参考資料追記 20210123

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

3
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?