0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Forecasting: Principles and Practice, Rob J Hyndman and George Athanasopoulos 英語(90)

Last updated at Posted at 2022-02-08

Forecasting: Principles and Practice (2nd ed)
Rob J Hyndman and George Athanasopoulos
Monash University, Australia
https://otexts.com/fpp2/

Forecasting: Principles and Practice (3rd ed)
Rob J Hyndman and George Athanasopoulos
Monash University, Australia
https://otexts.com/fpp3/
https://www.youtube.com/watch?v=7TglVxNgbKQ

Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on 20220208

This online version of the book was last updated on 4 February 2022.
The print version of the book (available from Amazon) was last updated on 31 May 2021.

読みながら、各章の参考文献を拝見。同じ文献を何度も出すのではなく、最初に紹介だけにしてもらえると嬉しいかも。中国語と韓国語が訳が出ているらしい。日本語、どうしよう。
2022年8月までは仕事がびっしり詰まっていて身動きができない。

どうしても訳したいという方がおみえなら、手伝いは可能。

最後のBibliographyが各章の加算かどうか未確認。
確認のためにこの記事にしたはず。

Rを使って確かめられるのは嬉しそう。

Forecasting: Principles and Practice 単語帳
https://qiita.com/kaizen_nagoya/items/810d1065c7ec321604d5

<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words in order.

Chapter 1 Getting started

Armstrong, J. S. (Ed.). (2001). Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publishers.
https://www.amazon.co.jp/dp/0792379306?tag=otexts-22&geniuslink=true
https://www.gwern.net/docs/prediction/2001-armstrong-principlesforecasting.pdf

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co.
https://www.amazon.co.jp/dp/0999064916?tag=otexts-22&geniuslink=true

Chapter 2 Time series graphics

Cleveland, W. S. (1993). Visualizing data. Hobart Press.
https://www.amazon.co.jp/dp/0963488406?tag=otexts-22&geniuslink=true

Unwin, A. (2015). Graphical data analysis with R. Chapman; Hall/CRC.
https://www.amazon.co.jp/dp/1498715230?tag=otexts-22&geniuslink=true

Chapter 3 Time series decomposition

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–33. http://bit.ly/stl1990

Dagum, E. B., & Bianconcini, S. (2016). Seasonal adjustment methods and real time trend-cycle estimation. Springer.
https://www.amazon.co.jp/dp/3319318209?tag=otexts-22&geniuslink=true

Chapter 4 Time series features

Hyndman, R. J., Wang, E., & Laptev, N. (2015). Large-scale unusual time series detection. Proceedings of the IEEE International Conference on Data Mining, 1616–1619.
[DOI] https://ieeexplore.ieee.org/document/7395871

Kang, Y., Hyndman, R. J., & Smith-Miles, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345–358.
[DOI]https://www.sciencedirect.com/science/article/abs/pii/S0169207016301030?via%3Dihub

Wang, X., Smith, K. A., & Hyndman, R. J. (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335–364.
[DOI] https://link.springer.com/article/10.1007/s10618-005-0039-x

Chapter 5 The forecaster’s toolbox

Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1(1), 125–151.
[DOI] https://www.annualreviews.org/doi/10.1146/annurev-statistics-062713-085831

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207006000239?via%3Dihub

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. 既出

Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178–1195. [DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207011000070?via%3Dihub

2nd.Chapter 3 The forecaster’s toolbox

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207006000239?via%3Dihub

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. 既出

Chapter 6 Judgmental forecasts

Eroglu, C., & Croxton, K. L. (2010). Biases in judgmental adjustments of statistical forecasts: The role of individual differences. International Journal of Forecasting, 26(1), 116–133.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207009000442?via%3Dihub

Fildes, R., & Goodwin, P. (2007a). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576.
[DOI] https://pubsonline.informs.org/doi/abs/10.1287/inte.1070.0309

Fildes, R., & Goodwin, P. (2007b). Good and bad judgment in forecasting: Lessons from four companies. Foresight: The International Journal of Applied Forecasting, 8, 5–10.
https://www.researchgate.net/profile/Paul-Goodwin-4/publication/5055580_Good_and_Bad_Judgment_in_Forecasting_Lessons_from_Four_Companies/links/577285f608aeeec389540ba2/Good-and-Bad-Judgment-in-Forecasting-Lessons-from-Four-Companies?origin=publication_detail

Franses, P. H., & Legerstee, R. (2013). Do statistical forecasting models for SKU-level data benefit from including past expert knowledge? International Journal of Forecasting, 29(1), 80–87.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207012000842?via%3Dihub

Goodwin, P., & Wright, G. (2009). Decision analysis for management judgment (4th ed). John Wiley & Sons.
https://www.amazon.co.jp/dp/0470714395?tag=otexts-22&geniuslink=true

Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365–376.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207007000696?via%3Dihub

Harvey, N. (2001). Improving judgment in forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 59–80). Kluwer Academic Publishers.
[DOI] https://link.springer.com/chapter/10.1007/978-0-306-47630-3_4

Kahn, K. B. (2006). New product forecasting: An applied approach. M.E. Sharp.
https://www.amazon.co.jp/dp/0765616092?tag=otexts-22&geniuslink=true

Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347–364.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207007000799?via%3Dihub

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. 既出

Önkal, D., Sayım, K. Z., & Gönül, M. S. (2013). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80(4), 772–788.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0040162512002090?via%3Dihub

Rowe, G. (2007). A guide to Delphi. Foresight: The International Journal of Applied Forecasting, 8, 11–16.

Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353–375.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207099000187?via%3Dihub

Sanders, N., Goodwin, P., Önkal, D., Gönül, M. S., Harvey, N., Lee, A., & Kjolso, L. (2005). When and how should statistical forecasts be judgmentally adjusted? Foresight: The International Journal of Applied Forecasting, 1(1), 5–23.

2nd, Chapter 4 Judgmental forecasts

Eroglu, C., & Croxton, K. L. (2010). Biases in judgmental adjustments of statistical forecasts: The role of individual differences. International Journal of Forecasting, 26(1), 116–133. [DOI]
Fildes, R., & Goodwin, P. (2007a). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576. [DOI]
Fildes, R., & Goodwin, P. (2007b). Good and bad judgment in forecasting: Lessons from four companies. Foresight: The International Journal of Applied Forecasting, (8), 5–10.
Franses, P. H., & Legerstee, R. (2013). Do statistical forecasting models for SKU-level data benefit from including past expert knowledge? International Journal of Forecasting, 29(1), 80–87. [DOI]
Goodwin, P., & Wright, G. (2009). Decision analysis for management judgment (4th ed). Chichester: John Wiley & Sons. [Amazon]
Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365–376. [DOI]
Harvey, N. (2001). Improving judgment in forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 59–80). Boston, MA: Kluwer Academic Publishers. [DOI]
Kahn, K. B. (2006). New product forecasting: An applied approach. M.E. Sharp. [Amazon]
Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347–364. [DOI]
Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co.既出

Önkal, D., Sayım, K. Z., & Gönül, M. S. (2013). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80(4), 772–788. [DOI]
Rowe, G. (2007). A guide to Delphi. Foresight: The International Journal of Applied Forecasting, (8), 11–16.
Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353–375. [DOI]
Sanders, N., Goodwin, P., Önkal, D., Gönül, M. S., Harvey, N., Lee, A., & Kjolso, L. (2005). When and how should statistical forecasts be judgmentally adjusted? Foresight: The International Journal of Applied Forecasting, 1(1), 5–23. http://www.forecastpro.com/Trends/pdf/Nada%20Sanders%20Judgmental%20Adjustments%20to%20Statistical%20Forecasts%20July%202008.pdf

Chapter 7 Time series regression models

Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). Springer.
https://www.amazon.co.jp/dp/3319194240?tag=otexts-22&geniuslink=true

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co.既出
Sheather, S. J. (2009). A modern approach to regression with R. Springer.
https://www.amazon.co.jp/dp/0387096078?tag=otexts-22&geniuslink=true

2nd, Chapter 5 Time series regression models

Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). New York, USA: Springer. [Amazon]

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. 既出

Sheather, S. J. (2009). A modern approach to regression with R. New York, USA: Springer. [Amazon]

2nd Chapter 6 Time series decomposition

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–33. http://bit.ly/stl1990

Dagum, E. B., & Bianconcini, S. (2016). Seasonal adjustment methods and real time trend-cycle estimation. Springer. [Amazon]

Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178–1195. [DOI]

Chapter 8 Exponential smoothing

Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28.
[DOI] https://onlinelibrary.wiley.com/doi/10.1002/for.3980040103

Gardner, E. S. (2006). Exponential smoothing: The state of the art — Part II. International Journal of Forecasting, 22, 637–666.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207006000392?via%3Dihub

Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Springer-Verlag. http://www.exponentialsmoothing.net

2nd Chapter 7 Exponential smoothing

Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28. [DOI]

Gardner, E. S. (2006). Exponential smoothing: The state of the art — Part II. International Journal of Forecasting, 22, 637–666. [DOI]

Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Berlin: Springer-Verlag. http://www.exponentialsmoothing.net

Chapter 9 ARIMA models

Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day.

https://www.wiley.com/en-au/Time+Series+Analysis:+Forecasting+and+Control,+5th+Edition-p-9781118675021
https://www.amazon.co.uk/Time-analysis-Forecasting-control-Holden-Day/dp/0816211043

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). John Wiley & Sons.

Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed). Springer.
https://www.amazon.co.jp/dp/3319298526?tag=otexts-22&geniuslink=true

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22.
[DOI] https://www.jstatsoft.org/article/view/v027i03

Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2001). A course in time series analysis. John Wiley & Sons.
https://www.amazon.co.jp/dp/047136164X?tag=otexts-22&geniuslink=true

Chapter 8 ARIMA models

Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). Hoboken, New Jersey: John Wiley & Sons. [Amazon]
Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed). New York, USA: Springer. [Amazon]
Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2001). A course in time series analysis. New York, USA: John Wiley & Sons. [Amazon]

Chapter 10 Dynamic regression models

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). John Wiley & Sons. 既出

Pankratz, A. E. (1991). Forecasting with dynamic regression models. John Wiley & Sons.
https://www.amazon.co.jp/dp/0471615285?tag=otexts-22&geniuslink=true

2nd, Chapter 9 Dynamic regression models

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). Hoboken, New Jersey: John Wiley & Sons. 既出
Pankratz, A. E. (1991). Forecasting with dynamic regression models. New York, USA: John Wiley & Sons. [Amazon]

Chapter 11 Forecasting hierarchical and grouped time series

Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146–166.
[DOI]https://www.sciencedirect.com/science/article/abs/pii/S0169207008000691?via%3Dihub

Athanasopoulos, George, Gamakumara, P., Panagiotelis, A., Hyndman, R. J., & Affan, M. (2020). Hierarchical forecasting. In P. Fuleky (Ed.), Macroeconomic forecasting in the era of big data (pp. 689–719). Springer.
[DOI] https://link.springer.com/chapter/10.1007/978-3-030-31150-6_21

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74.
[DOI]https://www.sciencedirect.com/science/article/abs/pii/S0377221717301911?via%3Dihub

Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233–254.
[DOI] https://onlinelibrary.wiley.com/doi/10.1002/for.3980090304

Kourentzes, N., & Athanasopoulos, G. (2019). Cross-temporal coherent forecasts for Australian tourism. Annals of Tourism Research, 75, 393–409.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0160738319300167?via%3Dihub

Panagiotelis, A., Athanasopoulos, G., Gamakumara, P., & Hyndman, R. J. (2021). Forecast reconciliation: A geometric view with new insights on bias correction. International Journal of Forecasting, 37(1), 343–359.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207020300911?via%3Dihub

Panagiotelis, A., Gamakumara, P., Athanasopoulos, G., & Hyndman, R. J. (2020). Probabilistic forecast reconciliation: Properties, evaluation and score optimisation (Working Paper No. 26/20). Department of Econometrics & Business Statistics, Monash University. http://robjhyndman.com/publications/coherentprob/

Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804–819.
[DOI] https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1448825

Chapter 10 Forecasting hierarchical or grouped time series

Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146–166. [DOI]
Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74. [DOI]
Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233–254. [DOI]
Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. [DOI]
Hyndman, R. J., Lee, A., & Wang, E. (2016). Fast computation of reconciled forecasts for hierarchical and grouped time series. Computational Statistics and Data Analysis, 97, 16–32. [DOI]
Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804–819. [DOI]

Chapter 12 Advanced forecasting methods

Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312.

[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207015001120?via%3Dihub

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427.
[DOI] https://www.sciencedirect.com/science/article/abs/pii/S0169207020300996?via%3Dihub

Lahiri, S. N. (2003). Resampling methods for dependent data. Springer Science & Business Media.
https://www.amazon.co.jp/dp/0387009280?tag=otexts-22&geniuslink=true

Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. Springer Science & Business Media.
https://www.amazon.co.jp/dp/0387759662?tag=otexts-22&geniuslink=true

Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45.
[DOI] https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1380080

Chapter 11 Advanced forecasting methods

Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312. [DOI]
Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27(3), 635–660. [DOI]
De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. J American Statistical Association, 106(496), 1513–1527. [DOI]
Lahiri, S. N. (2003). Resampling methods for dependent data. New York, USA: Springer Science & Business Media. [Amazon]
Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. New York, USA: Springer Science & Business Media. [Amazon]

Chapter 13 Some practical forecasting issues

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. 既出

Chapter 12 Some practical forecasting issues

Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. 既出

Appendix: Using R

Appendix:

For instructors
https://otexts.com/fpp2/extrafiles/ChulwalarCase.zip

Appendix: Reviews

Translations

中国語と韓国語が訳が出ているらしい。
日本語、どうしよう。

About the authors

Buy a print or downloadable version

HELP

Bibliography

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17–21. [DOI]
Armstrong, J. S. (1978). Long-range forecasting: From crystal ball to computer. John Wiley & Sons. [Amazon]
Armstrong, J. S. (Ed.). (2001). Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publishers. [Amazon]
Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146–166. [DOI]
Athanasopoulos, George, Gamakumara, P., Panagiotelis, A., Hyndman, R. J., & Affan, M. (2020). Hierarchical forecasting. In P. Fuleky (Ed.), Macroeconomic forecasting in the era of big data (pp. 689–719). Springer. [DOI]
Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29(1), 19–31. [DOI]
Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74. [DOI]
Athanasopoulos, G., Poskitt, D. S., & Vahid, F. (2012). Two canonical VARMA forms: Scalar component models vis-à-vis the echelon form. Econometric Reviews, 31(1), 60–83. [DOI]
Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 20(4), 451–468. [DOI]
Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312. [DOI]
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70–83. [DOI]
Bickel, P. J., & Doksum, K. A. (1981). An analysis of transformations revisited. Journal of the American Statistical Association, 76(374), 296–311. [DOI]
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 26(2), 211–252. [DOI]
Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). John Wiley & Sons. [Amazon]
Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed). Springer. [Amazon]
Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
Buehler, R., Messervey, D., & Griffin, D. (2005). Collaborative planning and prediction: Does group discussion affect optimistic biases in time estimation? Organizational Behavior and Human Decision Processes, 97(1), 47–63. [DOI]
Christou, V., & Fokianos, K. (2015). On count time series prediction. Journal of Statistical Computation and Simulation, 85(2), 357–373. [DOI]
Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583. [DOI]
Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–33. http://bit.ly/stl1990
Cleveland, W. S. (1993). Visualizing data. Hobart Press. [Amazon]
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289–303. [DOI]
Dagum, E. B., & Bianconcini, S. (2016). Seasonal adjustment methods and real time trend-cycle estimation. Springer. [Amazon]
Eroglu, C., & Croxton, K. L. (2010). Biases in judgmental adjustments of statistical forecasts: The role of individual differences. International Journal of Forecasting, 26(1), 116–133. [DOI]
Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems, 27(1), 134–141. [DOI]
Fildes, R., & Goodwin, P. (2007a). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576. [DOI]
Fildes, R., & Goodwin, P. (2007b). Good and bad judgment in forecasting: Lessons from four companies. Foresight: The International Journal of Applied Forecasting, 8, 5–10.
Franses, P. H., & Legerstee, R. (2013). Do statistical forecasting models for SKU-level data benefit from including past expert knowledge? International Journal of Forecasting, 29(1), 80–87. [DOI]
Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28. [DOI]
Gardner, E. S. (2006). Exponential smoothing: The state of the art — Part II. International Journal of Forecasting, 22, 637–666. [DOI]
Gardner, E. S., & McKenzie, E. (1985). Forecasting trends in time series. Management Science, 31(10), 1237–1246. [DOI]
Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1(1), 125–151. [DOI]
Goodwin, P., & Wright, G. (2009). Decision analysis for management judgment (4th ed). John Wiley & Sons. [Amazon]
Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365–376. [DOI]
Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233–254. [DOI]
Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd ed). John Wiley & Sons. [Amazon]
Guerrero, V. M. (1993). Time-series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48. [DOI]
Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton. [Amazon]
Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). Springer. [Amazon]
Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. John Wiley & Sons. [Amazon]
Harvey, N. (2001). Improving judgment in forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 59–80). Kluwer Academic Publishers. [DOI]
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427. [DOI]
Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA. [DOI]
Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. [DOI]
Hyndman, R. J., & Fan, S. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142–1153. [DOI]
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22. [DOI]
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. [DOI]
Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Springer-Verlag. http://www.exponentialsmoothing.net
Hyndman, R. J., Wang, E., & Laptev, N. (2015). Large-scale unusual time series detection. Proceedings of the IEEE International Conference on Data Mining, 1616–1619. [DOI]
Izenman, A. J. (2008). Modern multivariate statistical techniques: Regression, classification and manifold learning. Springer. [Amazon]
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: With applications in R. Springer. [Amazon]
Kahn, K. B. (2006). New product forecasting: An applied approach. M.E. Sharp. [Amazon]
Kahneman, D., & Lovallo, D. (1993). Timid choices and bold forecasts: A cognitive perspective on risk taking. Management Science, 39(1), 17–31. [DOI]
Kang, Y., Hyndman, R. J., & Smith-Miles, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345–358. [DOI]
Kourentzes, N., & Athanasopoulos, G. (2019). Cross-temporal coherent forecasts for Australian tourism. Annals of Tourism Research, 75, 393–409. [DOI]
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159–178. [DOI]
Lahiri, S. N. (2003). Resampling methods for dependent data. Springer Science & Business Media. [Amazon]
Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493–518. [DOI]
Lütkepohl, H. (2007). General-to-specific or specific-to-general modelling? An opinion on current econometric terminology. Journal of Econometrics, 136(1), 234–319. [DOI]
Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347–364. [DOI]
Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. [Amazon]
Önkal, D., Sayım, K. Z., & Gönül, M. S. (2013). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80(4), 772–788. [DOI]
Panagiotelis, A., Athanasopoulos, G., Gamakumara, P., & Hyndman, R. J. (2021). Forecast reconciliation: A geometric view with new insights on bias correction. International Journal of Forecasting, 37(1), 343–359. [DOI]
Panagiotelis, A., Gamakumara, P., Athanasopoulos, G., & Hyndman, R. J. (2020). Probabilistic forecast reconciliation: Properties, evaluation and score optimisation (Working Paper No. 26/20). Department of Econometrics & Business Statistics, Monash University. http://robjhyndman.com/publications/coherentprob/
Pankratz, A. E. (1991). Forecasting with dynamic regression models. John Wiley & Sons. [Amazon]
Pegels, C. C. (1969). Exponential forecasting: Some new variations. Management Science, 15(5), 311–315. [DOI]
Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2001). A course in time series analysis. John Wiley & Sons. [Amazon]
Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. Springer Science & Business Media. [Amazon]
Randall, D. M., & Wolff, J. A. (1994). The time interval in the intention-behaviour relationship: Meta-analysis. British Journal of Social Psychology, 33(4), 405–418. [DOI]
Rowe, G. (2007). A guide to Delphi. Foresight: The International Journal of Applied Forecasting, 8, 11–16.
Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353–375. [DOI]
Sanders, N., Goodwin, P., Önkal, D., Gönül, M. S., Harvey, N., Lee, A., & Kjolso, L. (2005). When and how should statistical forecasts be judgmentally adjusted? Foresight: The International Journal of Applied Forecasting, 1(1), 5–23.
Sheather, S. J. (2009). A modern approach to regression with R. Springer. [Amazon]
Shenstone, L., & Hyndman, R. J. (2005). Stochastic models underlying Croston’s method for intermittent demand forecasting. Journal of Forecasting, 24(6), 389–402. [DOI]
Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715–725. [DOI]
Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. [DOI]
Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178–1195. [DOI]
Unwin, A. (2015). Graphical data analysis with R. Chapman; Hall/CRC. [Amazon]
Wang, X., Smith, K. A., & Hyndman, R. J. (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335–364. [DOI]
Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804–819. [DOI]
Winkler, R. L. (1972). A decision-theoretic approach to interval estimation. Journal of the American Statistical Association, 67(337), 187–191. [DOI]
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342. [DOI]
Young, P. C., Pedregal, D. J., & Tych, W. (1999). Dynamic harmonic regression. Journal of Forecasting, 18, 369–394. [DOI]

2nd Bibliography

Armstrong, J. S. (1978). Long-range forecasting: From crystal ball to computer. John Wiley & Sons. [Amazon]
Armstrong, J. S. (Ed.). (2001). Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publishers. [Amazon]
Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146–166. [DOI]
Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29(1), 19–31. [DOI]
Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74. [DOI]
Athanasopoulos, G., Poskitt, D. S., & Vahid, F. (2012). Two canonical VARMA forms: Scalar component models vis-à-vis the echelon form. Econometric Reviews, 31(1), 60–83. [DOI]
Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 20(4), 451–468. [DOI]
Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312. [DOI]
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70–83. [DOI]
Bickel, P. J., & Doksum, K. A. (1981). An analysis of transformations revisited. Journal of the American Statistical Association, 76(374), 296–311.
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 26(2), 211–252. [DOI]
Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). Hoboken, New Jersey: John Wiley & Sons. [Amazon]
Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed). New York, USA: Springer. [Amazon]
Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
Buehler, R., Messervey, D., & Griffin, D. (2005). Collaborative planning and prediction: Does group discussion affect optimistic biases in time estimation? Organizational Behavior and Human Decision Processes, 97(1), 47–63. [DOI]
Christou, V., & Fokianos, K. (2015). On count time series prediction. Journal of Statistical Computation and Simulation, 85(2), 357–373. [DOI]
Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583. [DOI]
Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–33. http://bit.ly/stl1990
Cleveland, W. S. (1993). Visualizing data. Hobart Press. [Amazon]
Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27(3), 635–660. [DOI]
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289–303. [DOI]
Dagum, E. B., & Bianconcini, S. (2016). Seasonal adjustment methods and real time trend-cycle estimation. Springer. [Amazon]
De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. J American Statistical Association, 106(496), 1513–1527. [DOI]
Eroglu, C., & Croxton, K. L. (2010). Biases in judgmental adjustments of statistical forecasts: The role of individual differences. International Journal of Forecasting, 26(1), 116–133. [DOI]
Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems, 27(1), 134–141. [DOI]
Fildes, R., & Goodwin, P. (2007a). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576. [DOI]
Fildes, R., & Goodwin, P. (2007b). Good and bad judgment in forecasting: Lessons from four companies. Foresight: The International Journal of Applied Forecasting, (8), 5–10.
Franses, P. H., & Legerstee, R. (2013). Do statistical forecasting models for SKU-level data benefit from including past expert knowledge? International Journal of Forecasting, 29(1), 80–87. [DOI]
Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28. [DOI]
Gardner, E. S. (2006). Exponential smoothing: The state of the art — Part II. International Journal of Forecasting, 22, 637–666. [DOI]
Gardner, E. S., & McKenzie, E. (1985). Forecasting trends in time series. Management Science, 31(10), 1237–1246. [DOI]
Goodwin, P., & Wright, G. (2009). Decision analysis for management judgment (4th ed). Chichester: John Wiley & Sons. [Amazon]
Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365–376. [DOI]
Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233–254. [DOI]
Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd ed). John Wiley & Sons. [Amazon]
Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton. [Amazon]
Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). New York, USA: Springer. [Amazon]
Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. Chichester, UK: John Wiley & Sons. [Amazon]
Harvey, N. (2001). Improving judgment in forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 59–80). Boston, MA: Kluwer Academic Publishers. [DOI]
Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA. [DOI]
Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. [DOI]
Hyndman, R. J., & Fan, S. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142–1153. [DOI]
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22. [DOI]
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. [DOI]
Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Berlin: Springer-Verlag. http://www.exponentialsmoothing.net
Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, 18(3), 439–454. [DOI]
Hyndman, R. J., Lee, A., & Wang, E. (2016). Fast computation of reconciled forecasts for hierarchical and grouped time series. Computational Statistics and Data Analysis, 97, 16–32. [DOI]
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: With applications in R. New York: Springer. [Amazon]
Kahn, K. B. (2006). New product forecasting: An applied approach. M.E. Sharp. [Amazon]
Kahneman, D., & Lovallo, D. (1993). Timid choices and bold forecasts: A cognitive perspective on risk taking. Management Science, 39(1), 17–31. [DOI]
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159–178. [DOI]
Lahiri, S. N. (2003). Resampling methods for dependent data. New York, USA: Springer Science & Business Media. [Amazon]
Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493–518. [DOI]
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer-Verlag. [Amazon]
Lütkepohl, H. (2007). General-to-specific or specific-to-general modelling? An opinion on current econometric terminology. Journal of Econometrics, 136(1), 234–319. [DOI]
Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347–364. [DOI]
Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. [Amazon]
Önkal, D., Sayım, K. Z., & Gönül, M. S. (2013). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80(4), 772–788. [DOI]
Pankratz, A. E. (1991). Forecasting with dynamic regression models. New York, USA: John Wiley & Sons. [Amazon]
Pegels, C. C. (1969). Exponential forecasting: Some new variations. Management Science, 15(5), 311–315. [DOI]
Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2001). A course in time series analysis. New York, USA: John Wiley & Sons. [Amazon]
Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. New York, USA: Springer Science & Business Media. [Amazon]
Randall, D. M., & Wolff, J. A. (1994). The time interval in the intention-behaviour relationship: Meta-analysis. British Journal of Social Psychology, 33(4), 405–418. [DOI]
Rowe, G. (2007). A guide to Delphi. Foresight: The International Journal of Applied Forecasting, (8), 11–16.
Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353–375. [DOI]
Sanders, N., Goodwin, P., Önkal, D., Gönül, M. S., Harvey, N., Lee, A., & Kjolso, L. (2005). When and how should statistical forecasts be judgmentally adjusted? Foresight: The International Journal of Applied Forecasting, 1(1), 5–23. http://www.forecastpro.com/Trends/pdf/Nada%20Sanders%20Judgmental%20Adjustments%20to%20Statistical%20Forecasts%20July%202008.pdf
Sheather, S. J. (2009). A modern approach to regression with R. New York, USA: Springer. [Amazon]
Shenstone, L., & Hyndman, R. J. (2005). Stochastic models underlying Croston’s method for intermittent demand forecasting. Journal of Forecasting, 24(6), 389–402. [DOI]
Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715–725. [DOI]
Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178–1195. [DOI]
Unwin, A. (2015). Graphical data analysis with R. Chapman; Hall/CRC. [Amazon]
Wang, X., Smith, K. A., & Hyndman, R. J. (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335–364. [DOI]
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed). Springer. [Amazon]
Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804–819. [DOI]
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342. [DOI]
Young, P. C., Pedregal, D. J., & Tych, W. (1999). Dynamic harmonic regression. Journal of Forecasting, 18, 369–394. [DOI]

作業

一覧確認

2nd 3rd title 2nd Title 3rd
Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17ミ21. [DOI]
Armstrong, J. S. (1978). Long-range forecasting: From crystal ball to computer. John Wiley & Sons. [Amazon] Armstrong, J. S. (1978). Long-range forecasting: From crystal ball to computer. John Wiley & Sons. [Amazon]
1, Armstrong, J. S. (Ed.). (2001). Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publishers. [Amazon] Armstrong, J. S. (Ed.). (2001). Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publishers. [Amazon]
10, Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146–166. [DOI] Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146ミ166. [DOI]
Athanasopoulos, George, Gamakumara, P., Panagiotelis, A., Hyndman, R. J., & Affan, M. (2020). Hierarchical forecasting. In P. Fuleky (Ed.), Macroeconomic forecasting in the era of big data (pp. 689ミ719). Springer. [DOI]
Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29(1), 19–31. [DOI] Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29(1), 19ミ31. [DOI]
10, Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74. [DOI] Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60ミ74. [DOI]
Athanasopoulos, G., Poskitt, D. S., & Vahid, F. (2012). Two canonical VARMA forms: Scalar component models vis-à-vis the echelon form. Econometric Reviews, 31(1), 60–83. [DOI] Athanasopoulos, G., Poskitt, D. S., & Vahid, F. (2012). Two canonical VARMA forms: Scalar component models vis-�vis the echelon form. Econometric Reviews, 31(1), 60ミ83. [DOI]
Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 20(4), 451–468. [DOI] Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 20(4), 451ミ468. [DOI]
11, Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312. [DOI] Bergmeir, C., Hyndman, R. J., & Ben稚ez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303ミ312. [DOI]
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70–83. [DOI] Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70ミ83. [DOI]
Bickel, P. J., & Doksum, K. A. (1981). An analysis of transformations revisited. Journal of the American Statistical Association, 76(374), 296–311. Bickel, P. J., & Doksum, K. A. (1981). An analysis of transformations revisited. Journal of the American Statistical Association, 76(374), 296ミ311. [DOI]
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 26(2), 211–252. [DOI] Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 26(2), 211ミ252. [DOI]
8, Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day. Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day.
8, 9, Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). Hoboken, New Jersey: John Wiley & Sons. [Amazon] Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). John Wiley & Sons. [Amazon]
8, Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed). New York, USA: Springer. [Amazon] Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed). Springer. [Amazon]
Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill. Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
Buehler, R., Messervey, D., & Griffin, D. (2005). Collaborative planning and prediction: Does group discussion affect optimistic biases in time estimation? Organizational Behavior and Human Decision Processes, 97(1), 47–63. [DOI] Buehler, R., Messervey, D., & Griffin, D. (2005). Collaborative planning and prediction: Does group discussion affect optimistic biases in time estimation? Organizational Behavior and Human Decision Processes, 97(1), 47ミ63. [DOI]
Christou, V., & Fokianos, K. (2015). On count time series prediction. Journal of Statistical Computation and Simulation, 85(2), 357–373. [DOI] Christou, V., & Fokianos, K. (2015). On count time series prediction. Journal of Statistical Computation and Simulation, 85(2), 357ミ373. [DOI]
Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583. [DOI] Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559ミ583. [DOI]
6, Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–33. http://bit.ly/stl1990 Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3ミ33. http://bit.ly/stl1990
2, Cleveland, W. S. (1993). Visualizing data. Hobart Press. [Amazon] Cleveland, W. S. (1993). Visualizing data. Hobart Press. [Amazon]
11, Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27(3), 635–660. [DOI] -
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289–303. [DOI] Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289ミ303. [DOI]
6, Dagum, E. B., & Bianconcini, S. (2016). Seasonal adjustment methods and real time trend-cycle estimation. Springer. [Amazon] Dagum, E. B., & Bianconcini, S. (2016). Seasonal adjustment methods and real time trend-cycle estimation. Springer. [Amazon]
11, De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. J American Statistical Association, 106(496), 1513–1527. [DOI] -
4, Eroglu, C., & Croxton, K. L. (2010). Biases in judgmental adjustments of statistical forecasts: The role of individual differences. International Journal of Forecasting, 26(1), 116–133. [DOI] Eroglu, C., & Croxton, K. L. (2010). Biases in judgmental adjustments of statistical forecasts: The role of individual differences. International Journal of Forecasting, 26(1), 116ミ133. [DOI]
Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems, 27(1), 134–141. [DOI] Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems, 27(1), 134ミ141. [DOI]
4, Fildes, R., & Goodwin, P. (2007a). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576. [DOI] Fildes, R., & Goodwin, P. (2007a). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570ミ576. [DOI]
4, Fildes, R., & Goodwin, P. (2007b). Good and bad judgment in forecasting: Lessons from four companies. Foresight: The International Journal of Applied Forecasting, (8), 5–10. Fildes, R., & Goodwin, P. (2007b). Good and bad judgment in forecasting: Lessons from four companies. Foresight: The International Journal of Applied Forecasting, 8, 5ミ10.
4, Franses, P. H., & Legerstee, R. (2013). Do statistical forecasting models for SKU-level data benefit from including past expert knowledge? International Journal of Forecasting, 29(1), 80–87. [DOI] Franses, P. H., & Legerstee, R. (2013). Do statistical forecasting models for SKU-level data benefit from including past expert knowledge? International Journal of Forecasting, 29(1), 80ミ87. [DOI]
7, Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28. [DOI] Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1ミ28. [DOI]
7, Gardner, E. S. (2006). Exponential smoothing: The state of the art — Part II. International Journal of Forecasting, 22, 637–666. [DOI] Gardner, E. S. (2006). Exponential smoothing: The state of the art ム Part II. International Journal of Forecasting, 22, 637ミ666. [DOI]
Gardner, E. S., & McKenzie, E. (1985). Forecasting trends in time series. Management Science, 31(10), 1237–1246. [DOI] Gardner, E. S., & McKenzie, E. (1985). Forecasting trends in time series. Management Science, 31(10), 1237ミ1246. [DOI]
Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1(1), 125ミ151. [DOI]
4, Goodwin, P., & Wright, G. (2009). Decision analysis for management judgment (4th ed). Chichester: John Wiley & Sons. [Amazon] Goodwin, P., & Wright, G. (2009). Decision analysis for management judgment (4th ed). John Wiley & Sons. [Amazon]
4, Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365–376. [DOI] Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365ミ376. [DOI]
10, Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233–254. [DOI] Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233ミ254. [DOI]
Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd ed). John Wiley & Sons. [Amazon] Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd ed). John Wiley & Sons. [Amazon]
Guerrero, V. M. (1993). Time-series analysis supported by power transformations. Journal of Forecasting, 12(1), 37ミ48. [DOI]
Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton. [Amazon] Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton. [Amazon]
5, Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). New York, USA: Springer. [Amazon] Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). Springer. [Amazon]
Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. Chichester, UK: John Wiley & Sons. [Amazon] Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. John Wiley & Sons. [Amazon]
4, Harvey, N. (2001). Improving judgment in forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 59–80). Boston, MA: Kluwer Academic Publishers. [DOI] Harvey, N. (2001). Improving judgment in forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 59ミ80). Kluwer Academic Publishers. [DOI]
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388ミ427. [DOI]
Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA. [DOI] Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA. [DOI]
10, Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. [DOI] Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579ミ2589. [DOI]
Hyndman, R. J., & Fan, S. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142–1153. [DOI] Hyndman, R. J., & Fan, S. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142ミ1153. [DOI]
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22. [DOI] Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1ミ22. [DOI]
3, Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. [DOI] Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679ミ688. [DOI]
7, Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Berlin: Springer-Verlag. http://www.exponentialsmoothing.net Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Springer-Verlag. http://www.exponentialsmoothing.net
Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, 18(3), 439–454. [DOI] -
Hyndman, R. J., Wang, E., & Laptev, N. (2015). Large-scale unusual time series detection. Proceedings of the IEEE International Conference on Data Mining, 1616ミ1619. [DOI]
10, Hyndman, R. J., Lee, A., & Wang, E. (2016). Fast computation of reconciled forecasts for hierarchical and grouped time series. Computational Statistics and Data Analysis, 97, 16–32. [DOI] -
Izenman, A. J. (2008). Modern multivariate statistical techniques: Regression, classification and manifold learning. Springer. [Amazon]
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: With applications in R. New York: Springer. [Amazon] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: With applications in R. Springer. [Amazon]
4, Kahn, K. B. (2006). New product forecasting: An applied approach. M.E. Sharp. [Amazon] Kahn, K. B. (2006). New product forecasting: An applied approach. M.E. Sharp. [Amazon]
Kahneman, D., & Lovallo, D. (1993). Timid choices and bold forecasts: A cognitive perspective on risk taking. Management Science, 39(1), 17–31. [DOI] Kahneman, D., & Lovallo, D. (1993). Timid choices and bold forecasts: A cognitive perspective on risk taking. Management Science, 39(1), 17ミ31. [DOI]
Kang, Y., Hyndman, R. J., & Smith-Miles, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345ミ358. [DOI]
Kourentzes, N., & Athanasopoulos, G. (2019). Cross-temporal coherent forecasts for Australian tourism. Annals of Tourism Research, 75, 393ミ409. [DOI]
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159–178. [DOI] Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159ミ178. [DOI]
11, Lahiri, S. N. (2003). Resampling methods for dependent data. New York, USA: Springer Science & Business Media. [Amazon] Lahiri, S. N. (2003). Resampling methods for dependent data. Springer Science & Business Media. [Amazon]
Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493–518. [DOI] Lawrence, M., Goodwin, P., OユConnor, M., & ⒄kal, D. (2006). Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493ミ518. [DOI]
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer-Verlag. [Amazon] -
Lütkepohl, H. (2007). General-to-specific or specific-to-general modelling? An opinion on current econometric terminology. Journal of Econometrics, 136(1), 234–319. [DOI] L殳kepohl, H. (2007). General-to-specific or specific-to-general modelling? An opinion on current econometric terminology. Journal of Econometrics, 136(1), 234ミ319. [DOI]
4, Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347–364. [DOI] Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347ミ364. [DOI]
1, 3, 4, 5, 12 Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. [Amazon] Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. [Amazon]
4, Önkal, D., Sayım, K. Z., & Gönül, M. S. (2013). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80(4), 772–788. [DOI] ⒄kal, D., Sayım, K. Z., & Gönül,, M. S. (2013). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80(4), 772ミ788. [DOI]
Panagiotelis, A., Athanasopoulos, G., Gamakumara, P., & Hyndman, R. J. (2021). Forecast reconciliation: A geometric view with new insights on bias correction. International Journal of Forecasting, 37(1), 343ミ359. [DOI]
Panagiotelis, A., Gamakumara, P., Athanasopoulos, G., & Hyndman, R. J. (2020). Probabilistic forecast reconciliation: Properties, evaluation and score optimisation (Working Paper No. 26/20). Department of Econometrics & Business Statistics, Monash University. http://robjhyndman.com/publications/coherentprob/
9, Pankratz, A. E. (1991). Forecasting with dynamic regression models. New York, USA: John Wiley & Sons. [Amazon] Pankratz, A. E. (1991). Forecasting with dynamic regression models. John Wiley & Sons. [Amazon]
Pegels, C. C. (1969). Exponential forecasting: Some new variations. Management Science, 15(5), 311–315. [DOI] Pegels, C. C. (1969). Exponential forecasting: Some new variations. Management Science, 15(5), 311ミ315. [DOI]
8, Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2001). A course in time series analysis. New York, USA: John Wiley & Sons. [Amazon] Peña,, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2001). A course in time series analysis. John Wiley & Sons. [Amazon]
11, Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. New York, USA: Springer Science & Business Media. [Amazon] Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. Springer Science & Business Media. [Amazon]
Randall, D. M., & Wolff, J. A. (1994). The time interval in the intention-behaviour relationship: Meta-analysis. British Journal of Social Psychology, 33(4), 405–418. [DOI] Randall, D. M., & Wolff, J. A. (1994). The time interval in the intention-behaviour relationship: Meta-analysis. British Journal of Social Psychology, 33(4), 405ミ418. [DOI]
4, Rowe, G. (2007). A guide to Delphi. Foresight: The International Journal of Applied Forecasting, (8), 11–16. Rowe, G. (2007). A guide to Delphi. Foresight: The International Journal of Applied Forecasting, 8, 11ミ16.
4, Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353–375. [DOI] Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353ミ375. [DOI]
4, Sanders, N., Goodwin, P., Önkal, D., Gönül, M. S., Harvey, N., Lee, A., & Kjolso, L. (2005). When and how should statistical forecasts be judgmentally adjusted? Foresight: The International Journal of Applied Forecasting, 1(1), 5–23. http://www.forecastpro.com/Trends/pdf/Nada%20Sanders%20Judgmental%20Adjustments%20to%20Statistical%20Forecasts%20July%202008.pdf Sanders, N., Goodwin, P., ⒄kal, D., G嗜殕, M. S., Harvey, N., Lee, A., & Kjolso, L. (2005). When and how should statistical forecasts be judgmentally adjusted? Foresight: The International Journal of Applied Forecasting, 1(1), 5ミ23.
5, Sheather, S. J. (2009). A modern approach to regression with R. New York, USA: Springer. [Amazon] Sheather, S. J. (2009). A modern approach to regression with R. Springer. [Amazon]
Shenstone, L., & Hyndman, R. J. (2005). Stochastic models underlying Croston’s method for intermittent demand forecasting. Journal of Forecasting, 24(6), 389–402. [DOI] Shenstone, L., & Hyndman, R. J. (2005). Stochastic models underlying Crostonユs method for intermittent demand forecasting. Journal of Forecasting, 24(6), 389ミ402. [DOI]
Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715–725. [DOI] Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715ミ725. [DOI]
Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37ミ45. [DOI]
6, Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178–1195. [DOI] Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178ミ1195. [DOI]
2, Unwin, A. (2015). Graphical data analysis with R. Chapman; Hall/CRC. [Amazon] Unwin, A. (2015). Graphical data analysis with R. Chapman; Hall/CRC. [Amazon]
Wang, X., Smith, K. A., & Hyndman, R. J. (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335–364. [DOI] Wang, X., Smith, K. A., & Hyndman, R. J. (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335ミ364. [DOI]
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed). Springer. [Amazon] -
10, Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804–819. [DOI] Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804ミ819. [DOI]
Winkler, R. L. (1972). A decision-theoretic approach to interval estimation. Journal of the American Statistical Association, 67(337), 187ミ191. [DOI]
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342. [DOI] Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324ミ342. [DOI]
Young, P. C., Pedregal, D. J., & Tych, W. (1999). Dynamic harmonic regression. Journal of Forecasting, 18, 369–394. [DOI] Young, P. C., Pedregal, D. J., & Tych, W. (1999). Dynamic harmonic regression. Journal of Forecasting, 18, 369ミ394. [DOI]

参考資料

私のAdvent Calendar 2022 ーー はじめたきっかけ、1月のふりかえり、今後の展望
https://qiita.com/torifukukaiou/items/891db4e40a7f6194af56

自己参照

今、Calendar2021を書いている理由
https://qiita.com/kaizen_nagoya/items/dca73e903785bea2a106

関連資料

' @kazuo_reve 私が効果を確認した「小川メソッド」
https://qiita.com/kazuo_reve/items/a3ea1d9171deeccc04da

' @kazuo_reve 新人の方によく展開している有益な情報
https://qiita.com/kazuo_reve/items/d1a3f0ee48e24bba38f1

' @kazuo_reve Vモデルについて勘違いしていたと思ったこと
https://qiita.com/kazuo_reve/items/46fddb094563bd9b2e1e

Engineering Festa 2024前に必読記事一覧

登壇直後版 色使い(JIS安全色) Qiita Engineer Festa 2023〜私しか得しないニッチな技術でLT〜 スライド編 0.15
https://qiita.com/kaizen_nagoya/items/f0d3070d839f4f735b2b

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

逆も真:社会人が最初に確かめるとよいこと。OSEK(69)、Ethernet(59)
https://qiita.com/kaizen_nagoya/items/39afe4a728a31b903ddc

統計の嘘。仮説(127)
https://qiita.com/kaizen_nagoya/items/63b48ecf258a3471c51b

自分の言葉だけで論理展開できるのが天才なら、文章の引用だけで論理展開できるのが秀才だ。仮説(136)
https://qiita.com/kaizen_nagoya/items/97cf07b9e24f860624dd

参考文献駆動執筆(references driven writing)・デンソークリエイト編
https://qiita.com/kaizen_nagoya/items/b27b3f58b8bf265a5cd1

「何を」よりも「誰を」。10年後のために今見習いたい人たち
https://qiita.com/kaizen_nagoya/items/8045978b16eb49d572b2

Qiitaの記事に3段階または5段階で到達するための方法
https://qiita.com/kaizen_nagoya/items/6e9298296852325adc5e

出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840

coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68

あなたは「勘違いまとめ」から、勘違いだと言っていることが勘違いだといくつ見つけられますか。人間の間違い(human error(125))の種類と対策
https://qiita.com/kaizen_nagoya/items/ae391b77fffb098b8fb4

プログラマの「プログラムが書ける」思い込みは強みだ。3つの理由。仮説(168)統計と確率(17) , OSEK(79)
https://qiita.com/kaizen_nagoya/items/bc5dd86e414de402ec29

出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840

これからの情報伝達手段の在り方について考えてみよう。炎上と便乗。
https://qiita.com/kaizen_nagoya/items/71a09077ac195214f0db

ISO/IEC JTC1 SC7 Software and System Engineering
https://qiita.com/kaizen_nagoya/items/48b43f0f6976a078d907

アクセシビリティの知見を発信しよう!(再び)
https://qiita.com/kaizen_nagoya/items/03457eb9ee74105ee618

統計論及確率論輪講(再び)
https://qiita.com/kaizen_nagoya/items/590874ccfca988e85ea3

読者の心をグッと惹き寄せる7つの魔法
https://qiita.com/kaizen_nagoya/items/b1b5e89bd5c0a211d862

@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b

ソースコードで議論しよう。日本語で議論するの止めましょう(あるプログラミング技術の議論報告)
https://qiita.com/kaizen_nagoya/items/8b9811c80f3338c6c0b0

脳内コンパイラの3つの危険
https://qiita.com/kaizen_nagoya/items/7025cf2d7bd9f276e382

心理学の本を読むよりはコンパイラ書いた方がよくね。仮説(34)
https://qiita.com/kaizen_nagoya/items/fa715732cc148e48880e

NASAを超えるつもりがあれば読んでください。
https://qiita.com/kaizen_nagoya/items/e81669f9cb53109157f6

データサイエンティストの気づき!「勉強して仕事に役立てない人。大嫌い!!」『それ自分かも?』ってなった!!!
https://qiita.com/kaizen_nagoya/items/d85830d58d8dd7f71d07

「ぼくの好きな先生」「人がやらないことをやれ」プログラマになるまで。仮説(37) 
https://qiita.com/kaizen_nagoya/items/53e4bded9fe5f724b3c4

なぜ経済学徒を辞め、計算機屋になったか(経済学部入学前・入学後・卒業後対応) 転職(1)
https://qiita.com/kaizen_nagoya/items/06335a1d24c099733f64

プログラミング言語教育のXYZ。 仮説(52)
https://qiita.com/kaizen_nagoya/items/1950c5810fb5c0b07be4

【24卒向け】9ヶ月後に年収1000万円を目指す。二つの関門と三つの道。
https://qiita.com/kaizen_nagoya/items/fb5bff147193f726ad25

「【25卒向け】Qiita Career Meetup for STUDENT」予習の勧め
https://qiita.com/kaizen_nagoya/items/00eadb8a6e738cb6336f

大学入試不合格でも筆記試験のない大学に入って卒業できる。卒業しなくても博士になれる。
https://qiita.com/kaizen_nagoya/items/74adec99f396d64b5fd5

全世界の不登校の子供たち「博士論文」を書こう。世界子供博士論文遠隔実践中心 安全(99)
https://qiita.com/kaizen_nagoya/items/912d69032c012bcc84f2

小川メソッド 覚え(書きかけ)
https://qiita.com/kaizen_nagoya/items/3593d72eca551742df68

DoCAP(ドゥーキャップ)って何ですか?
https://qiita.com/kaizen_nagoya/items/47e0e6509ab792c43327

views 20,000越え自己記事一覧
https://qiita.com/kaizen_nagoya/items/58e8bd6450957cdecd81

Views1万越え、もうすぐ1万記事一覧 最近いいねをいただいた213記事
https://qiita.com/kaizen_nagoya/items/d2b805717a92459ce853

自己記事一覧

Qiitaで逆リンクを表示しなくなったような気がする。時々、スマフォで表示するとあらわっることがあり、完全に削除したのではなさそう。

4月以降、せっせとリンクリストを作り、統計を取って確率を説明しようとしている。
2025年2月末を目標にしている。

物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff

量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4

数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d

統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba

図(0) state, sequence and timing. UML and お絵描き
https://qiita.com/kaizen_nagoya/items/60440a882146aeee9e8f

品質一覧
https://qiita.com/kaizen_nagoya/items/2b99b8e9db6d94b2e971

言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6

医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82

自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5

通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7

日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68

英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d

転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe

仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df

音楽 一覧(0)
https://qiita.com/kaizen_nagoya/items/b6e5f42bbfe3bbe40f5d

@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b

Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6

鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/26bda595f341a27901a0

安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3

Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68

プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

「はじめての」シリーズ  ベクタージャパン 
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb

AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

LaTeX(0) 一覧 
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

Rust(0) 一覧 
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927

100以上いいねをいただいた記事16選
https://qiita.com/kaizen_nagoya/items/f8d958d9084ffbd15d2a

小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on my individual experience. It has nothing to do with the organization or business to which I currently belong.

文書履歴(document history)

ver. 0.01 初稿  20240808

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?