1 Aligning language models to follow instructions
Aligning language models to follow instructions
https://openai.com/index/instruction-following/
2 Introducing ChatGPT
Introducing ChatGPT
https://openai.com/index/chatgpt/
3 Large language models encode clinical knowledge.
Singhal, Karan, et al. "Large language models encode clinical knowledge." Nature (2023): 1-9.
https://arxiv.org/pdf/2212.13138
reference on 3
Abacha, A. B., Agichtein, E., Pinter, Y. & Demner-Fushman, D. Overview of the medical question answering task at TREC 2017 LiveQA. in TREC (2017), 1–12.
Abacha, A. B., Mrabet, Y., Sharp, M., Goodwin, T. R., Shooshan, S. E. & Demner-Fushman, D. Bridging the Gap Between Consumers’ Medication Questions and Trusted Answers. in MedInfo (2019), 25–29.
Agrawal, M., Hegselmann, S., Lang, H., Kim, Y. & Sontag, D. Large Language Models are Zero-Shot Clinical Information Extractors. arXiv preprint arXiv:2205.12689 (2022).
Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand, S., Hurt, D., Isard, M., Lim, H., Pang, R., Roy, S., et al. Pathways: Asynchronous distributed dataflow for ML. Proceedings of Machine Learning and Systems 4, 430–449 (2022).
Beltagy, I., Lo, K. & Cohan, A. SciBERT: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676 (2019).
Berkman, N. D., Sheridan, S. L., Donahue, K. E., Halpern, D. J., Viera, A., Crotty, K., Holland, A., Brasure, M., Lohr, K. N., Harden, E., et al. Health literacy interventions and outcomes: an updated systematic review. Evidence report/technology assessment, 1–941 (2011).
Black, S., Gao, L., Wang, P., Leahy, C. & Biderman, S. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow version 1.0. If you use this software, please cite it using these metadata. Mar. 2021. https: //doi.org/10.5281/zenodo.5297715.
Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R. & Young, S. L. Best practices for developing and validating scales for health, social, and behavioral research: a primer. Frontiers in public health 6, 149 (2018).
Bolton, E., Hall, D., Yasunaga, M., Lee, T., Manning, C. & Liang, P. Stanford CRFM Introduces PubMedGPT 2.7B https://hai.stanford.edu/news/stanford-crfm-introduces-pubmedgpt-27b. 2022.
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021).
Bommasani, R., Liang, P. & Lee, T. Language Models are Changing AI: The Need for Holistic Evaluation https: //crfm.stanford.edu/2022/11/17/helm.html. 2022.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020).
Chen, I. Y., Pierson, E., Rose, S., Joshi, S., Ferryman, K. & Ghassemi, M. Ethical machine learning in healthcare. Annual review of biomedical data science 4, 123–144 (2021).
Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., et al. PaLM: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022).
Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma, S., et al. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022).
Clark, J. H., Choi, E., Collins, M., Garrette, D., Kwiatkowski, T., Nikolaev, V. & Palomaki, J. TyDi QA: A benchmark for information-seeking question answering in typologically diverse languages. Transactions of the Association for
Computational Linguistics 8, 454–470 (2020).
Cobbe, K., Kosaraju, V., Bavarian, M., Hilton, J., Nakano, R., Hesse, C. & Schulman, J. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168 (2021).
Creel, K. & Hellman, D. The Algorithmic Leviathan: Arbitrariness, Fairness, and Opportunity in Algorithmic Decision-
Making Systems. Canadian Journal of Philosophy, 1–18 (2022).
Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam: Efficient scaling of language models with mixture-of-experts in International Conference on Machine Learning (2022), 5547–5569.
Eneanya, N. D., Boulware, L., Tsai, J., Bruce, M. A., Ford, C. L., Harris, C., Morales, L. S., Ryan, M. J., Reese, P. P., Thorpe, R. J., et al. Health inequities and the inappropriate use of race in nephrology. Nature Reviews Nephrology 18, 84–94 (2022).
Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J. & Socher, R. Deep learning-enabled medical computer vision. NPJ digital medicine 4, 1–9 (2021).
Feng, S. Y., Khetan, V., Sacaleanu, B., Gershman, A. & Hovy, E. CHARD: Clinical Health-Aware Reasoning Across Dimensions for Text Generation Models. arXiv preprint arXiv:2210.04191 (2022).
Garg, S., Perot, V., Limtiaco, N., Taly, A., Chi, E. H. & Beutel, A. Counterfactual fairness in text classification through robustness in Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (2019), 219–226.
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D. & Crawford, K. Datasheets for datasets. Communications of the ACM 64, 86–92 (2021).
Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T., Gao, J. & Poon, H. Domain-specific language model pretraining for biomedical natural language processing. ACM Transactions on Computing for Healthcare
(HEALTH) 3, 1–23 (2021).
Gu, Y., Han, X., Liu, Z. & Huang, M. Ppt: Pre-trained prompt tuning for few-shot learning. arXiv preprint arXiv:2109.04332
(2021).
Guidance, W. Ethics and governance of artificial intelligence for health. World Health Organization (2021).
Han, X., Zhao, W., Ding, N., Liu, Z. & Sun, M. Ptr: Prompt tuning with rules for text classification. AI Open (2022). Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D. & Steinhardt, J. Measuring massive multitask
language understanding. arXiv preprint arXiv:2009.03300 (2020).
Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training Compute-Optimal Large Language Models. arXiv preprint arXiv:2203.15556 (2022). Hong, Z., Ajith, A., Pauloski, G., Duede, E., Malamud, C., Magoulas, R., Chard, K. & Foster, I. ScholarBERT: Bigger is
Not Always Better. arXiv preprint arXiv:2205.11342 (2022).
Hooker, S. Moving beyond “algorithmic bias is a data problem”. Patterns 2, 100241 (2021).
Jin, D., Pan, E., Oufattole, N., Weng, W.-H., Fang, H. & Szolovits, P. What disease does this patient have? a large-scale open domain question answering dataset from medical exams. Applied Sciences 11, 6421 (2021).
Jin, Q., Dhingra, B., Liu, Z., Cohen, W. W. & Lu, X. PubMedQA: A dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146 (2019).
Joshi, M., Choi, E., Weld, D. S. & Zettlemoyer, L. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551 (2017).
Kadavath, S., Conerly, T., Askell, A., Henighan, T., Drain, D., Perez, E., Schiefer, N., Dodds, Z. H., DasSarma, N., Tran-Johnson, E., et al. Language models (mostly) know what they know. arXiv preprint arXiv:2207.05221 (2022).
Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J. & Amodei, D. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).
Kington, R. S., Arnesen, S., Chou, W.-Y. S., Curry, S. J., Lazer, D. & Villarruel, A. M. Identifying credible sources of health information in social media: Principles and attributes. NAM perspectives 2021 (2021).
Kleinberg, J. & Raghavan, M. Algorithmic monoculture and social welfare. Proceedings of the National Academy of Sciences 118, e2018340118 (2021).
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y. & Iwasawa, Y. Large Language Models are Zero-Shot Reasoners. arXiv preprint arXiv:2205.11916 (2022).
Korngiebel, D. M. & Mooney, S. D. Considering the possibilities and pitfalls of Generative Pre-trained Transformer 3 (GPT-3) in healthcare delivery. NPJ Digital Medicine 4, 1–3 (2021).
Lakkaraju, H., Slack, D., Chen, Y., Tan, C. & Singh, S. Rethinking Explainability as a Dialogue: A Practitioner’s Perspective. arXiv preprint arXiv:2202.01875 (2022).
Lampinen, A. K., Dasgupta, I., Chan, S. C., Matthewson, K., Tessler, M. H., Creswell, A., McClelland, J. L., Wang, J. X. & Hill, F. Can language models learn from explanations in context? arXiv preprint arXiv:2204.02329 (2022).
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H. & Kang, J. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36, 1234–1240 (2020).
Lester, B., Al-Rfou, R. & Constant, N. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).
Lewis, P., Ott, M., Du, J. & Stoyanov, V. Pretrained language models for biomedical and clinical tasks: Understanding and extending the state-of-the-art in Proceedings of the 3rd Clinical Natural Language Processing Workshop (2020), 146–157.
Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone, A., Anil, C., Schlag, I., Gutman-Solo, T., et al. Solving quantitative reasoning problems with language models. arXiv preprint arXiv:2206.14858 (2022).
Li, X. L. & Liang, P. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021).
Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar, A., et al. Holistic evaluation of language models. arXiv preprint arXiv:2211.09110 (2022).
Liévin, V., Hother, C. E. & Winther, O. Can large language models reason about medical questions? arXiv preprint arXiv:2207.08143 (2022).
Lin, S., Hilton, J. & Evans, O. Teaching Models to Express Their Uncertainty in Words. arXiv preprint arXiv:2205.14334 (2022).
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H. & Neubig, G. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586 (2021).
Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z. & Tang, J. GPT understands, too. arXiv preprint arXiv:2103.10385 (2021).
Liu, X., Glocker, B., McCradden, M. M., Ghassemi, M., Denniston, A. K. & Oakden-Rayner, L. The medical algorithmic audit. The Lancet Digital Health (2022).
Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017).
Luo, R., Sun, L., Xia, Y., Qin, T., Zhang, S., Poon, H. & Liu, T.-Y. BioGPT: generative pre-trained transformer for
biomedical text generation and mining. Briefings in Bioinformatics 23 (2022).
Mandavilli, A. Medical Journals Blind to Racism as Health Crisis, Critics Say https://www.nytimes.com/2021/06/02/
health/jama-racism-bauchner.html. 2021.
Matheny, M., Israni, S. T., Ahmed, M. & Whicher, D. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril (2022).
Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D. & Gebru, T. Model cards for model reporting in Proceedings of the conference on fairness, accountability, and transparency (2019), 220–229.
Morgado, F. F., Meireles, J. F., Neves, C. M., Amaral, A. & Ferreira, M. E. Scale development: ten main limitations and recommendations to improve future research practices. Psicologia: Reflexao e Critica 30 (2017).
Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., et al. Show your work: Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114 (2021).
Of Science, W. H. O. & Policy, T. The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf. 2022.
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., et al. Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155 (2022).
Pal, A., Umapathi, L. K. & Sankarasubbu, M. MedMCQA: A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering in Conference on Health, Inference, and Learning (2022), 248–260.
Pampari, A., Raghavan, P., Liang, J. & Peng, J. emrqa: A large corpus for question answering on electronic medical records. arXiv preprint arXiv:1809.00732 (2018).
Papanikolaou, Y. & Pierleoni, A. DARE: Data augmented relation extraction with gpt-2. arXiv preprint arXiv:2004.13845 (2020).
Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. Bleu: a method for automatic evaluation of machine translation in Proceedings of the 40th annual meeting of the Association for Computational Linguistics (2002), 311–318.
Prabhakaran, V., Hutchinson, B. & Mitchell, M. Perturbation sensitivity analysis to detect unintended model biases. arXiv preprint arXiv:1910.04210 (2019).
Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., Aslanides, J., Henderson, S., Ring, R., Young, S., et al. Scaling language models: Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446 (2021).
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P. J., et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 1–67 (2020).
Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D. & Barnes, P. Closing the AI accountability gap: Defining an end-to-end framework for internal algorithmic auditing in Proceedings of the 2020 conference on fairness, accountability, and transparency (2020), 33–44.
Rostamzadeh, N., Mincu, D., Roy, S., Smart, A., Wilcox, L., Pushkarna, M., Schrouff, J., Amironesei, R., Moorosi, N. & Heller, K. Healthsheet: Development of a Transparency Artifact for Health Datasets. arXiv preprint arXiv:2202.13028 (2022).
Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M., et al. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. arXiv preprint arXiv:2211.05100 (2022).
Schaekermann, M., Cai, C. J., Huang, A. E. & Sayres, R. Expert discussions improve comprehension of difficult cases in medical image assessment in Proceedings of the 2020 CHI conference on human factors in computing systems (2020), 1–13.
Sezgin, E., Sirrianni, J., Linwood, S. L., et al. Operationalizing and Implementing Pretrained, Large Artificial Intelligence Linguistic Models in the US Health Care System: Outlook of Generative Pretrained Transformer 3 (GPT-3) as a Service Model. JMIR Medical Informatics 10, e32875 (2022).
Shin, H.-C., Zhang, Y., Bakhturina, E., Puri, R., Patwary, M., Shoeybi, M. & Mani, R. BioMegatron: Larger biomedical domain language model. arXiv preprint arXiv:2010.06060 (2020).
Shoemaker, S. J., Wolf, M. S. & Brach, C. Development of the Patient Education Materials Assessment Tool (PEMAT): a new measure of understandability and actionability for print and audiovisual patient information. Patient education and counseling 96, 395–403 (2014).
Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A., Garriga-Alonso, A., et al. Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615 (2022).
Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A., Saravia, E., Poulton, A., Kerkez, V. & Stojnic, R. Galactica: A Large Language Model for Science. arXiv preprint arXiv:2211.09085 (2022).
Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239 (2022).
Tomašev, N., Harris, N., Baur, S., Mottram, A., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A., Magliulo, V., et al. Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records. Nature Protocols 16, 2765–2787 (2021).
Tran, D., Liu, J., Dusenberry, M. W., Phan, D., Collier, M., Ren, J., Han, K., Wang, Z., Mariet, Z., Hu, H., et al. Plex: Towards reliability using pretrained large model extensions. arXiv preprint arXiv:2207.07411 (2022).
Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., et al. An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC bioinformatics 16, 1–28 (2015).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polosukhin, I. Attention is all you need. Advances in neural information processing systems 30 (2017).
Vyas, D. A., Eisenstein, L. G. & Jones, D. S. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms 2020.
Walsh, K. E., Harik, P., Mazor, K. M., Perfetto, D., Anatchkova, M., Biggins, C., Wagner, J., Schoettker, P. J., Firneno, C., Klugman, R., et al. Measuring harm in healthcare: optimizing adverse event review. Medical care 55, 436 (2017).
Wang, b., Min, S., Deng, X., Shen, J., Wu, Y., Zettlemoyer, L. & Sun, H. Towards Understanding Chain-of-Thought Prompting: An Empirical Study of What Matters. arXiv preprint arXiv:2212.10001 (2022).
Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E. & Zhou, D. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171 (2022).
Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M. & Le, Q. V. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021).
Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., et al. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682 (2022).
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q. & Zhou, D. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903 (2022).
Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., Cheng, M., Glaese, M., Balle, B., Kasirzadeh, A., et al. Ethical and social risks of harm from language models. arXiv preprint arXiv:2112.04359 (2021).
Williams, T., Szekendi, M., Pavkovic, S., Clevenger, W. & Cerese, J. The reliability of AHRQ Common Format Harm Scales in rating patient safety events. Journal of patient safety 11, 52–59 (2015).
Yasunaga, M., Bosselut, A., Ren, H., Zhang, X., Manning, C. D., Liang, P. & Leskovec, J. Deep bidirectional language- knowledge graph pretraining. arXiv preprint arXiv:2210.09338 (2022).
Yasunaga, M., Leskovec, J. & Liang, P. LinkBERT: Pretraining Language Models with Document Links. arXiv preprint arXiv:2203.15827 (2022).
Ye, S., Jang, J., Kim, D., Jo, Y. & Seo, M. Retrieval of Soft Prompt Enhances Zero-Shot Task Generalization. arXiv preprint arXiv:2210.03029 (2022).
Yim, J., Chopra, R., Spitz, T., Winkens, J., Obika, A., Kelly, C., Askham, H., Lukic, M., Huemer, J., Fasler, K., et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nature Medicine 26, 892–899 (2020).
Zhang, H., Lu, A. X., Abdalla, M., McDermott, M. & Ghassemi, M. Hurtful words: quantifying biases in clinical contextual word embeddings in proceedings of the ACM Conference on Health, Inference, and Learning (2020), 110–120.
Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., et al. OPT: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068 (2022).
Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Bousquet, O., Le, Q. & Chi, E. Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. arXiv preprint arXiv:2205.10625 (2022).
4 Palm
Chowdhery, Aakanksha, et al. "Palm: Scaling language modeling with pathways." arXiv preprint arXiv:2204.02311 (2022).
https://arxiv.org/pdf/2204.02311
Reference on 4
References
T5x, 2021. URL https://github.com/google-research/t5x.
Abid, A., Farooqi, M., and Zou, J. Persistent anti-muslim bias in large language models. CoRR, abs/2101.05783,
2021. URL https://arxiv.org/abs/2101.05783.
Adiwardana, D., Luong, M.-T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., Yang, Z., Kulshreshtha, A., Nemade, G., Lu, Y., et al. Towards a human-like open-domain chatbot. arXiv preprint arXiv:2001.09977, 2020.
Allamanis, M. The adverse effects of code duplication in machine learning models of code. In SPLASH Onward!, 2019.
Allamanis, M., Barr, E. T., Devanbu, P., and Sutton, C. A survey of machine learning for big code and naturalness. ACM Comput. Surv., 51(4), jul 2018. ISSN 0360-0300. doi: 10.1145/3212695. URL https://doi.org/10.1145/3212695.
Amini, A., Gabriel, S., Lin, S., Koncel-Kedziorski, R., Choi, Y., and Hajishirzi, H. Mathqa: Towards interpretable math word problem solving with operation-based formalisms. CoRR, abs/1905.13319, 2019. URL http://arxiv.org/abs/1905.13319.
Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and Sutton, C. Program synthesis with large language models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/abs/2108.07732.
Bakshi, S., Batra, S., Heidari, P., Arun, A., Jain, S., and White, M. Structure-to-text generation with self-training, acceptability classifiers and context-conditioning for the GEM shared task. In Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), pp. 136–147, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.gem-1.12. URL https://aclanthology.org/2021.gem-1.12.
Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand, S., Hurt, D., Isard, M., Lim, H., Pang, R., Roy, S., Saeta, B., Schuh, P., Sepassi, R., Shafey, L. E., Thekkath, C. A., and Wu, Y. Pathways: Asynchronous distributed dataflow for ML. To appear in MLSys 2022, 2022. URL https://arxiv.org/abs/2203.12533.
Barocas, S., Guo, A., Kamar, E., Krones, J., Morris, M. R., Vaughan, J. W., Wadsworth, W. D., and Wallach, H. Designing Disaggregated Evaluations of AI Systems: Choices, Considerations, and Tradeoffs, pp. 368–378. Association for Computing Machinery, New York, NY, USA, 2021. ISBN 9781450384735. URL https://doi.org/10.1145/3461702.3462610.
Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 610–623. Association for Computing Machinery, 2021. URL https: //doi.org/10.1145/3442188.3445922.
Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic parsing on freebase from question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural language processing, pp. 1533–1544, 2013.
BIG-bench collaboration. Beyond the imitation game: Measuring and extrapolating the capabilities of language models. In preparation, 2021. URL https://github.com/google/BIG-bench/.
Bird, S. and Loper, E. NLTK: The natural language toolkit. In Proceedings of the ACL Interactive Poster and Demonstration Sessions, pp. 214–217, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https://aclanthology.org/P04-3031.
Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y. PIQA: reasoning about physical commonsense in natural language. CoRR, abs/1911.11641, 2019. URL http://arxiv.org/abs/1911.11641.
Blodgett, S. L., Barocas, S., Daum ́e III, H., and Wallach, H. Language (technology) is power: A critical survey of “bias” in NLP. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5454–5476, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/ v1/2020.acl-main.485. URL https://aclanthology.org/2020.acl-main.485.
Blodgett, S. L., Lopez, G., Olteanu, A., Sim, R., and Wallach, H. Stereotyping Norwegian salmon: An inventory of pitfalls in fairness benchmark datasets. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1004–1015, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.81. URL https://aclanthology.org/2021.acl-long.81.
Bommasani, R. and et. al., D. A. H. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021. URL https://arxiv.org/abs/2108.07258.
Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., Driessche, G. v. d., Lespiau, J.-B., Damoc, B., Clark, A., et al. Improving language models by retrieving from trillions of tokens. arXiv preprint arXiv:2112.04426, 2021.
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: Composable transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. Language models are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901, 2020. URL https: //proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
Cao, Y. T. and Daum ́e III, H. Toward gender-inclusive coreference resolution. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4568–4595, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.418. URL https: //aclanthology.org/2020.acl-main.418.
Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F., and Zhang, C. Quantifying memorization across neural language models. arXiv preprint arXiv:2202.07646, 2022.
Castro Ferreira, T., Gardent, C., Ilinykh, N., van der Lee, C., Mille, S., Moussallem, D., and Shimorina, A. The 2020 bilingual, bi-directional webnlg+ shared task overview and evaluation results (webnlg+ 2020). In Proceedings of the 3rd WebNLG Workshop on Natural Language Generation from the Semantic Web (WebNLG+ 2020), pp. 55–76, Dublin, Ireland (Virtual), 2020. Association for Computational Linguistics.
Caswell, I., Chelba, C., and Grangier, D. Tagged back-translation. In Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers), pp. 53–63, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5206. URL https://aclanthology.org/W19-5206.
Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL https://arxiv.org/abs/2107.03374.
Child, R., Gray, S., Radford, A., and Sutskever, I. Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.
Choi, E., He, H., Iyyer, M., Yatskar, M., Yih, W., Choi, Y., Liang, P., and Zettlemoyer, L. QuAC : Question answering in context. CoRR, abs/1808.07036, 2018. URL http://arxiv.org/abs/1808.07036.
Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., et al. Rethinking attention with performers. arXiv preprint arXiv:2009.14794, 2020.
Clark, J., Choi, E., Collins, M., Garrette, D., Kwiatkowski, T., Nikolaev, V., and Palomaki, J. TydiQA: A benchmark for information-seeking question answering in typologically diverse languages. Transactions of the Association for Computational Linguistics, 2020. URL https://storage.googleapis.com/tydiqa/ tydiqa.pdf.
Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., and Tafjord, O. Think you have solved question answering? try arc, the ai2 reasoning challenge. ArXiv, abs/1803.05457, 2018.
Cobbe, K., Kosaraju, V., Bavarian, M., Hilton, J., Nakano, R., Hesse, C., and Schulman, J. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021. URL https://arxiv.org/abs/ 2110.14168.
Dev, S., Li, T., Phillips, J. M., and Srikumar, V. On measuring and mitigating biased inferences of word embeddings. CoRR, abs/1908.09369, 2019. URL http://arxiv.org/abs/1908.09369.
Dev, S., Monajatipoor, M., Ovalle, A., Subramonian, A., Phillips, J., and Chang, K.-W. Harms of gender exclusivity and challenges in non-binary representation in language technologies. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 1968–1994, Online and Punta Cana, Dominican Republic, November 2021a. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.150. URL https://aclanthology.org/2021.emnlp-main.150.
Dev, S., Sheng, E., Zhao, J., Sun, J., Hou, Y., Sanseverino, M., Kim, J., Peng, N., and Chang, K. What do bias measures measure? CoRR, abs/2108.03362, 2021b. URL https://arxiv.org/abs/2108.03362.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, jun 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-1423.
Dixon, L., Li, J., Sorensen, J., Thain, N., and Vasserman, L. Measuring and mitigating unintended bias in text classification. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’18, pp. 67–73, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450360128.
doi: 10.1145/3278721.3278729. URL https://doi.org/10.1145/3278721.3278729. 53
Dodge, J., Sap, M., Marasovi ́c, A., Agnew, W., Ilharco, G., Groeneveld, D., Mitchell, M., and Gardner, M. Documenting large webtext corpora: A case study on the colossal clean crawled corpus. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 1286–1305, 2021.
Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. GLaM: Efficient scaling of language models with mixture-of-experts. arXiv preprint arXiv:2112.06905, 2021. URL https://arxiv.org/pdf/2112.06905.
Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S., and Gardner, M. DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 2368–2378, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1246. URL https://aclanthology.org/N19-1246.
Dusek, O. and Jurvc’ivcek, F. Neural generation for czech: Data and baselines. 2019.
Duˇsek, O. and Jurˇc ́ıˇcek, F. Neural Generation for Czech: Data and Baselines. In Proceedings of the 12th International Conference on Natural Language Generation (INLG 2019), pp. 563–574, Tokyo, Japan, October 2019. URL https://www.aclweb.org/anthology/W19-8670/.
Duˇsek, O., Howcroft, D. M., and Rieser, V. Semantic Noise Matters for Neural Natural Language Generation. In Proceedings of the 12th International Conference on Natural Language Generation (INLG 2019), pp. 421–426, Tokyo, Japan, 2019. URL https://www.aclweb.org/anthology/W19-8652/.
Edunov, S., Ott, M., Auli, M., and Grangier, D. Understanding back-translation at scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 489–500, 2018. URL https://aclanthology.org/D18-1045.
Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., Baines, M., Celebi, O., Wenzek, G., Chaudhary, V., Goyal, N., Birch, T., Liptchinsky, V., Edunov, S., Grave, E., Auli, M., and Joulin, A. Beyond english-centric multilingual machine translation. CoRR, abs/2010.11125, 2020. URL https: //arxiv.org/abs/2010.11125.
Fedus, W., Zoph, B., and Shazeer, N. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021. URL https://arxiv.org/abs/2101.03961.
Freitag, M. and Firat, O. Complete multilingual neural machine translation. CoRR, abs/2010.10239, 2020. URL https://arxiv.org/abs/2010.10239.
Gale, T., Elsen, E., and Hooker, S. The state of sparsity in deep neural networks. arXiv preprint arXiv:1902.09574, 2019.
Gardent, C., Shimorina, A., Narayan, S., and Perez-Beltrachini, L. Creating training corpora for nlg micro- planners. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 179–188. Association for Computational Linguistics, 2017. doi: 10.18653/v1/
P17-1017. URL http://www.aclweb.org/anthology/P17-1017.
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., III, H. D., and Crawford, K. Datasheets for datasets. Commun. ACM, 64(12):86–92, nov 2021. ISSN 0001-0782. doi: 10.1145/3458723. URL https://doi.org/10.1145/3458723.
Gehman, S., Gururangan, S., Sap, M., Choi, Y., and Smith, N. A. Realtoxicityprompts: Evaluating neural toxic degeneration in language models, 2020.
Gehrmann, S., Adewumi, T., Aggarwal, K., Ammanamanchi, P. S., Aremu, A., Bosselut, A., Chandu, K. R., Clinciu, M.-A., Das, D., Dhole, K., Du, W., Durmus, E., Duˇsek, O., Emezue, C. C., Gangal, V., Garbacea, C., Hashimoto, T., Hou, Y., Jernite, Y., Jhamtani, H., Ji, Y., Jolly, S., Kale, M., Kumar, D., Ladhak, F., Madaan, A., Maddela, M., Mahajan, K., Mahamood, S., Majumder, B. P., Martins, P. H., McMillan-Major, A., Mille, S., van Miltenburg, E., Nadeem, M., Narayan, S., Nikolaev, V., Niyongabo Rubungo, A., Osei,
S., Parikh, A., Perez-Beltrachini, L., Rao, N. R., Raunak, V., Rodriguez, J. D., Santhanam, S., Sedoc, J., Sellam, T., Shaikh, S., Shimorina, A., Sobrevilla Cabezudo, M. A., Strobelt, H., Subramani, N., Xu, W., Yang, D., Yerukola, A., and Zhou, J. The GEM benchmark: Natural language generation, its evaluation and metrics. In Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics
(GEM 2021), pp. 96–120, 2021. URL https://aclanthology.org/2021.gem-1.10.
Gehrmann, S., Clark, E., and Sellam, T. Repairing the cracked foundation: A survey of obstacles in evaluation
practices for generated text. CoRR, abs/2202.06935, 2022. URL https://arxiv.org/abs/2202.06935.
Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann, F. A. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2:665–673, Nov 2020. doi: https: //doi.org/10.1038/s42256-020-00257-z. URL https://www.nature.com/articles/s42256-020-00257-z.
Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., and Berant, J. Did aristotle use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of the Association for Computational Linguistics, 9:346–361, 2021. doi: 10.1162/tacl a 00370. URL https://aclanthology.org/2021.tacl-1. 21.
Google Cloud NLP. Google cloud classifying content, a. URL https://cloud.google.com/ natural-language/docs/classifying-text.
Google Cloud NLP. Google cloud infotype detector, b. URL https://cloud.google.com/dlp/docs/ infotypes-reference.
Gupta, R., Pal, S., Kanade, A., and Shevade, S. K. Deepfix: Fixing common C language errors by deep learning. In Singh, S. P. and Markovitch, S. (eds.), Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA, pp. 1345–1351. AAAI Press, 2017. URL http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603.
Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M. Retrieval augmented language model pre-training. In III, H. D. and Singh, A. (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 3929–3938. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/guu20a.html.
Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., and Steinhardt, J. Measuring massive multitask language understanding. Proceedings of the International Conference on Learning Representations
(ICLR), 2021.
Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican, K., Driessche, G. v. d., Damoc, B., Guy, A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W., Vinyals, O., and Sifre, L. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.
Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen, M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. GPipe: Efficient training of giant neural networks using pipeline parallelism. In Advances in neural information processing systems, pp. 103–112, 2019.
Hutchinson, B., Prabhakaran, V., Denton, E., Webster, K., Zhong, Y., and Denuyl, S. Social biases in nlp models as barriers for persons with disabilities. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5491–5501, 2020.
Jacobs, A. Z. and Wallach, H. Measurement and fairness. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 375–385, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445901. URL https://doi.org/10.1145/3442188.3445901.
Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611, 2017. URL https://aclanthology. org/P17-1147.
Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N., Laudon, J., Young, C., and Patterson, D. A domain-specific supercomputer for training deep neural networks. Communications of the ACM, 63(7): 67–78, 2020.
Kandpal, N., Wallace, E., and Raffel, C. Deduplicating training data mitigates privacy risks in language models. 2022. URL https://arxiv.org/abs/2202.06539.
Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The efficient transformer. arXiv preprint arXiv:2001.04451, 2020.
Know Your Data. URL https://knowyourdata.withgoogle.com/.
Koncel-Kedziorski, R., Roy, S., Amini, A., Kushman, N., and Hajishirzi, H. MAWPS: A math word problem repository. In Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 1152–1157, San Diego, California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136. URL https://aclanthology. org/N16-1136.
Kudo, T. and Richardson, J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 66–71, Brussels, Belgium, November 2018a. Association for Computational Linguistics. doi: 10.18653/v1/D18-2012. URL https://aclanthology. org/D18-2012.
Kudo, T. and Richardson, J. Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Blanco, E. and Lu, W. (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pp. 66–71. Association for Computational Linguistics, 2018b. doi: 10.18653/v1/d18-2012. URL https://doi.org/10.18653/v1/d18-2012.
Kulal, S., Pasupat, P., Chandra, K., Lee, M., Padon, O., Aiken, A., and Liang, P. SPoC: Search-based pseudocode to code. In Advances in Neural Information Processing Systems, June 2019.
Kurita, K., Vyas, N., Pareek, A., Black, A. W., and Tsvetkov, Y. Quantifying social biases in contextual word representations. 1st ACL Workshop on Gender Bias for Natural Language Processing, 2019. URL https://par.nsf.gov/biblio/10098355.
Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M., Chang, M.-W., Dai, A. M., Uszkoreit, J., Le, Q., and Petrov, S. Natural Questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019. URL https://aclanthology.org/Q19-1026.
Lachaux, M., Rozi`ere, B., Chanussot, L., and Lample, G. Unsupervised translation of programming languages. CoRR, abs/2006.03511, 2020. URL https://arxiv.org/abs/2006.03511.
Ladhak, F., Durmus, E., Cardie, C., and McKeown, K. WikiLingua: A new benchmark dataset for cross- lingual abstractive summarization. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 4034–4048, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/ v1/2020.findings-emnlp.360. URL https://www.aclweb.org/anthology/2020.findings-emnlp.360.
Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. RACE: Large-scale ReAding comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 785–794, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1082. URL https://aclanthology.org/D17-1082.
Lan, Y., Wang, L., Zhang, Q., Lan, Y., Dai, B. T., Wang, Y., Zhang, D., and Lim, E.-P. Mwptoolkit: An open- source framework for deep learning-based math word problem solvers. arXiv preprint arXiv:2109.00799, 2021.
Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D., Callison-Burch, C., and Carlini, N. Deduplicating training data makes language models better. 2021. URL https://arxiv.org/abs/2107.06499.
Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., and Chen, Z. GShard: Scaling giant models with conditional computation and automatic sharding. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=qrwe7XHTmYb.
Levesque, H., Davis, E., and Morgenstern, L. The Winograd Schema Challenge. In Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning, 2012. URL https://dl.acm.
org/doi/10.5555/3031843.3031909.
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020. URL https://aclanthology.org/2020.acl-main.703.
Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone, A., Anil, C., Schlag, I., Gutman-Solo, T., et al. Solving quantitative reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.
Li, B., Li, Y., Xu, C., Lin, Y., Liu, J., Liu, H., Wang, Z., Zhang, Y., Xu, N., Wang, Z., Feng, K., Chen, H., Liu, T., Li, Y., Wang, Q., Xiao, T., and Zhu, J. The NiuTrans machine translation systems for WMT19. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pp. 257–266, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5325. URL https://aclanthology.org/W19-5325.
Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P., et al. Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704, 2020.
Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago, A., Hubert, T., Choy, P., de Masson d’Autume, C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal, S., Cherepanov, A., Molloy, J., Mankowitz, D., Sutherland Robson, E., Kohli, P., de Freitas, N., Kavukcuoglu, K., and Vinyals, O. Competition-level code generation with alphacode, Feb 2022.
Lieber, O., Sharir, O., Lenz, B., and Shoham, Y. Jurassic-1: Technical details and evaluation. White Paper. AI21 Labs, 2021.
Lin, C.-Y. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https: //aclanthology.org/W04-1013.
Lin, Z., Pan, X., Wang, M., Qiu, X., Feng, J., Zhou, H., and Li, L. Pre-training multilingual neural machine translation by leveraging alignment information. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2649–2663, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.210. URL https://aclanthology. org/2020.emnlp-main.210.
Ling, W., Yogatama, D., Dyer, C., and Blunsom, P. Program induction by rationale generation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158–167, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1015. URL https://aclanthology. org/P17-1015.
Lopes, C. V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny, J., Sajnani, H., and Vitek, J. D ́eja`Vu: a map of code duplicates on GitHub. Proc. ACM Program. Lang., 1(OOPSLA):1–28, October 2017.
McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D. An empirical model of large-batch training. arXiv preprint arXiv:1812.06162, 2018.
Megatron LM, N. Megatron-LM. URL https://github.com/NVIDIA/Megatron-LM.
Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint arXiv:1809.02789, 2018.
Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., and Gebru, T. Model cards for model reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, pp. 220–229, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361255. doi: 10.1145/3287560.3287596. URL https://doi.org/10.1145/3287560.3287596.
Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra, D., Vanderwende, L., Kohli, P., and Allen, J. A corpus and cloze evaluation for deeper understanding of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 839–849, 2016.
Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1797–1807, 2018. URL https://aclanthology. org/D18-1206.
Narayanan, D., Phanishayee, A., Shi, K., Chen, X., and Zaharia, M. Memory-efficient pipeline-parallel dnn training. In International Conference on Machine Learning, pp. 7937–7947. PMLR, 2021a.
Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Patwary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P., Bernauer, J., Catanzaro, B., et al. Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15, 2021b.
Nie, Y., Williams, A., Dinan, E., Bansal, M., Weston, J., and Kiela, D. Adversarial nli: A new benchmark
for natural language understanding. arXiv preprint arXiv:1910.14599, 2019.
Novikova, J., Duˇsek, O., and Rieser, V. The E2E dataset: New challenges for end-to-end generation. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pp. 201–206, Saarbru ̈cken, Germany, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-5525. URL https://aclanthology.org/W17-5525.
Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., et al. Show your work: Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114, 2021.
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., and Lowe, R. Training language models to follow instructions with human feedback. Preprint, 2022. URL https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_ with_human_feedback.pdf.
Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N., Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and Ferna ́ndez, R. The LAMBADA dataset: Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.
Pascanu, R., Mikolov, T., and Bengio, Y. Understanding the exploding gradient problem. CoRR, abs/1211.5063, 2012. URL http://arxiv.org/abs/1211.5063.
Patel, A., Bhattamishra, S., and Goyal, N. Are NLP models really able to solve simple math word problems? In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL https://aclanthology.org/ 2021.naacl-main.168.
Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., Texier, M., and Dean, J. Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350, 2021.
Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., and Karri, R. An empirical cybersecurity evaluation of GitHub Copilot’s code contributions. CoRR, abs/2108.09293, 2021. URL https://arxiv.org/abs/2108. 09293.
Pi, X., Liu, Q., Chen, B., Ziyadi, M., Lin, Z., Gao, Y., Fu, Q., Lou, J.-G., and Chen, W. Reasoning like program executors. arXiv preprint arXiv:2201.11473, 2022.
Piekos, P., Malinowski, M., and Michalewski, H. Measuring and improving BERT’s mathematical abilities by predicting the order of reasoning. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pp. 383–394, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-short.49. URL https://aclanthology.org/2021.acl-short.49.
Pu, A., Chung, H. W., Parikh, A. P., Gehrmann, S., and Sellam, T. Learning compact metrics for MT. In Moens, M., Huang, X., Specia, L., and Yih, S. W. (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 751–762. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-main.58. URL https://doi.org/10.18653/v1/2021.emnlp-main.58.
Qi, Z., Long, F., Achour, S., and Rinard, M. An analysis of patch plausibility and correctness for generate- and-validate patch generation systems. In Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015, pp. 24–36, New York, NY, USA, July 2015. Association for Computing
Machinery.
Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving language understanding by generative
pre-training. https://blog.openai.com/language-unsupervised, 2018.
Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, H. F., Aslanides, J., Henderson, S., Ring, R., Young, S., Rutherford, E., Hennigan, T., Menick, J., Cassirer, A., Powell, R., van den Driessche, G., Hendricks, L. A., Rauh, M., Huang, P., Glaese, A., Welbl, J., Dathathri, S., Huang, S., Uesato, J., Mellor, J., Higgins, I., Creswell, A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S. M., Buchatskaya, E., Budden, D., Sutherland, E., Simonyan, K., Paganini, M., Sifre, L., Martens, L., Li, X. L., Kuncoro, A., Nematzadeh, A., Gribovskaya, E., Donato, D., Lazaridou, A., Mensch, A., Lespiau, J., Tsimpoukelli, M., Grigorev, N., Fritz, D., Sottiaux, T., Pajarskas, M., Pohlen, T., Gong, Z., Toyama, D., de Masson d’Autume, C., Li, Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark, A., de Las Casas, D., Guy, A., Jones, C., Bradbury, J., Johnson, M., Hechtman, B. A., Weidinger, L., Gabriel, I., Isaac, W. S., Lockhart, E., Osindero, S., Rimell, L., Dyer, C., Vinyals, O., Ayoub, K., Stanway, J., Bennett, L., Hassabis, D., Kavukcuoglu, K., and Irving, G. Scaling language models: Methods, analysis & insights from training Gopher. CoRR, abs/2112.11446, 2021.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.
Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero: Memory optimizations toward training trillion parameter models. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.
Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and He, Y. Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–14, 2021.
Raji, I. D., Bender, E. M., Paullada, A., Denton, E., and Hanna, A. AI and the everything in the whole wide
world benchmark. CoRR, abs/2111.15366, 2021. URL https://arxiv.org/abs/2111.15366.
Rajpurkar, P., Jia, R., and Liang, P. Know what you don’t know: Unanswerable questions for SQuAD. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 784–789, 2018. URL https://aclanthology.org/P18-2124.
Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 3505–3506, 2020.
Reddy, S., Chen, D., and Manning, C. D. Coqa: A conversational question answering challenge. CoRR,
abs/1808.07042, 2018. URL http://arxiv.org/abs/1808.07042.
Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O., Yang, S., Zhang, M., Li, D., and He, Y. {ZeRO- Offload}: Democratizing {Billion-Scale} model training. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pp. 551–564, 2021.
Reynolds, L. and McDonell, K. Prompt programming for large language models: Beyond the few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–7, 2021.
Roberts, A., Chung, H. W., Levskaya, A., Mishra, G., Bradbury, J., Andor, D., Narang, S., Lester, B., Gaffney, C., Mohiuddin, A., Hawthorne, C., Lewkowycz, A., Salcianu, A., van Zee, M., Austin, J., Goodman, S., Soares, L. B., Hu, H., Tsvyashchenko, S., Chowdhery, A., Bastings, J., Bulian, J., Garcia, X., Ni, J., Chen, A., Kenealy, K., Clark, J. H., Lee, S., Garrette, D., Lee-Thorp, J., Raffel, C., Shazeer, N., Ritter, M., Bosma, M., Passos, A., Maitin-Shepard, J., Fiedel, N., Omernick, M., Saeta, B., Sepassi, R., Spiridonov, A., Newlan, J., and Gesmundo, A. Scaling up models and data with t5x and seqio. arXiv preprint arXiv:2203.17189, 2022. URL https://arxiv.org/abs/2203.17189.
Ro ̈ttger, P., Vidgen, B., Nguyen, D., Waseem, Z., Margetts, H., and Pierrehumbert, J. HateCheck: Functional tests for hate speech detection models. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 41–58, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.4. URL https://aclanthology.org/2021.acl-long.4.
Roy, A., Saffar, M., Vaswani, A., and Grangier, D. Efficient content-based sparse attention with routing transformers. arXiv preprint arXiv:2003.05997, 2020.
Rudinger, R., Naradowsky, J., Leonard, B., and Van Durme, B. Gender bias in coreference resolution. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 8–14, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2002. URL https:// aclanthology.org/N18-2002.
Sakaguchi, K., Le Bras, R., Bhagavatula, C., and Choi, Y. WinoGrande: An adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8732–8740, 2020. URL https://arxiv.org/abs/1907.10641.
Sambasivan, N., Arnesen, E., Hutchinson, B., Doshi, T., and Prabhakaran, V. Re-imagining algorithmic fairness in India and beyond. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, FAccT ’21, pp. 315–328, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445896. URL https://doi.org/10.1145/3442188.3445896.
Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L., Raja, A., et al. Multitask prompted training enables zero-shot task generalization. Proceedings of the International Conference on Learning Representations, 2021. URL https://arxiv.org/abs/2110.08207.
Sap, M., Card, D., Gabriel, S., Choi, Y., and Smith, N. A. The risk of racial bias in hate speech detection. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1668–1678, 2019.
Schuster, R., Song, C., Tromer, E., and Shmatikov, V. You autocomplete me: Poisoning vulnerabilities in neural code completion. In 30th USENIX Security Symposium (USENIX Security 21), 2020.
Scialom, T., Dray, P.-A., Lamprier, S., Piwowarski, B., and Staiano, J. MLSUM: The multilingual summariza- tion corpus. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8051–8067, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.647. URL https://www.aclweb.org/anthology/2020.emnlp-main.647. Shazeer, N. Fast transformer decoding: One write-head is all you need. arXiv preprint arXiv:1911.02150,
2019.
Shazeer, N. GLU variants improve transformer. CoRR, abs/2002.05202, 2020. URL https://arxiv.org/
abs/2002.05202.
Shazeer, N. and Stern, M. Adafactor: Adaptive learning rates with sublinear memory cost. In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018. URL https://arxiv.org/abs/1804.
04235.
Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In ICLR (Poster). OpenReview.net, 2017. URL http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#ShazeerMMDLHD17.
Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A., Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young, C., et al. Mesh-TensorFlow: Deep learning for supercomputers. In Advances in Neural Information Processing Systems, pp. 10414–10423, 2018.
Sheng, E., Chang, K., Natarajan, P., and Peng, N. Societal biases in language generation: Progress and challenges. CoRR, abs/2105.04054, 2021. URL https://arxiv.org/abs/2105.04054.
Siddhant, A., Johnson, M., Tsai, H., Ari, N., Riesa, J., Bapna, A., Firat, O., and Raman, K. Evaluating the cross-lingual effectiveness of massively multilingual neural machine translation. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 8854–8861, 2020.
Singh, A., Ong, J., Agarwal, A., Anderson, G., Armistead, A., Bannon, R., Boving, S., Desai, G., Felderman, B., Germano, P., et al. Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network. ACM SIGCOMM computer communication review, 45(4):183–197, 2015.
Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G., Korthikanti, V., et al. Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990, 2022.
Smith, S. L., Kindermans, P.-J., and Le, Q. V. Don’t decay the learning rate, increase the batch size. In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id= B1Yy1BxCZ.
Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. MASS: Masked sequence to sequence pre-training for language generation. Proceedings of the International Conference on Machine Learning, 2019. URL https://arxiv.org/abs/1905.02450.
Stanovsky, G., Smith, N. A., and Zettlemoyer, L. Evaluating gender bias in machine translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1679–1684, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1164. URL https://aclanthology.org/P19-1164.
Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer: Enhanced transformer with rotary position embedding. CoRR, abs/2104.09864, 2021. URL https://arxiv.org/abs/2104.09864.
Sue, D. W. The invisible whiteness of being: Whiteness, white supremacy, white privilege, and racism. 2006. Sustainability, G. Sustainability at Google.Carbon neutral since 2007.Carbon free by 2030., 2022. URL
https://sustainability.google/.
Talmor, A., Herzig, J., Lourie, N., and Berant, J. CommonsenseQA: A question answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.
Tay, Y., Bahri, D., Yang, L., Metzler, D., and Juan, D.-C. Sparse sinkhorn attention, 2020.
Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239, 2022. URL https://arxiv.org/pdf/2201.08239.
Toral, A., Edman, L., Yeshmagambetova, G., and Spenader, J. Neural machine translation for English–Kazakh with morphological segmentation and synthetic data. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pp. 386–392, Florence, Italy, August 2019. Association
for Computational Linguistics. doi: 10.18653/v1/W19-5343. URL https://aclanthology.org/W19-5343. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. CoRR, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.
Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. Superglue: A stickier benchmark for general-purpose language understanding systems. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alch ́e-Buc, F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019a. URL https://proceedings. neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.
Wang, B. and Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https: //github.com/kingoflolz/mesh-transformer-jax, May 2021.
Wang, Y., Xia, Y., He, T., Tian, F., Qin, T., Zhai, C., and Liu, T.-Y. Multi-agent dual learning. In Proceedings of the International Conference on Learning Representations (ICLR) 2019, 2019b. URL https://openreview.net/forum?id=HyGhN2A5tm.
Webster, K. and Pitler, E. Scalable cross lingual pivots to model pronoun gender for translation, 2020.
Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language models are zero-shot learners. Proceedings of the International Conference on Learning Representations (ICLR), 2022a. URL https://openreview.net/forum?id=gEZrGCozdqR.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., and Zhou, D. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022b. URL https://arxiv. org/pdf/2201.11903.
Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P., Cheng, M., Glaese, M., Balle, B., Kasirzadeh, A., Kenton, Z., Brown, S., Hawkins, W., Stepleton, T., Biles, C., Birhane, A., Haas, J., Rimell, L., Hendricks, L. A., Isaac, W. S., Legassick, S., Irving, G., and Gabriel, I. Ethical and social risks of harm from language models. CoRR, abs/2112.04359, 2021. URL https://arxiv.org/abs/2112.04359.
Welbl, J., Glaese, A., Uesato, J., Dathathri, S., Mellor, J., Hendricks, L. A., Anderson, K., Kohli, P., Coppin, B., and Huang, P.-S. Challenges in detoxifying language models. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 2447–2469, Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.210. URL https: //aclanthology.org/2021.findings-emnlp.210.
Xia, Y., Tan, X., Tian, F., Gao, F., He, D., Chen, W., Fan, Y., Gong, L., Leng, Y., Luo, R., Wang, Y., Wu, L., Zhu, J., Qin, T., and Liu, T.-Y. Microsoft Research Asia’s systems for WMT19. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pp. 424–433, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5348. URL https://aclanthology.org/W19-5348.
XLA. XLA: Optimizing compiler for TensorFlow. https://www.tensorflow.org/xla, 2019. [Online; accessed September-2019].
Xu, Y., Lee, H., Chen, D., Hechtman, B., Huang, Y., Joshi, R., Krikun, M., Lepikhin, D., Ly, A., Maggioni, M., Pang, R., Shazeer, N., Wang, S., Wang, T., Wu, Y., and Chen, Z. GSPMD: general and scalable parallelization for ml computation graphs. arXiv preprint arXiv:2105.04663, 2021.
Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts, A., and Raffel, C. ByT5: Towards a token-free future with pre-trained byte-to-byte models. CoRR, abs/2105.13626, 2021a. URL https://arxiv.org/abs/2105.13626.
Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua, A., and Raffel, C. mT5: A massively multilingual pre-trained text-to-text transformer. In NAACL, 2021b.
Yasunaga, M. and Liang, P. Graph-based, self-supervised program repair from diagnostic feedback. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 10799–10808. PMLR, 2020.
URL http://proceedings.mlr.press/v119/yasunaga20a.html.
Yasunaga, M. and Liang, P. Break-it-fix-it: Unsupervised learning for program repair. In Meila, M. and Zhang, T. (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 11941–11952.
PMLR, 2021. URL http://proceedings.mlr.press/v139/yasunaga21a.html.
Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., Yang, L., et al. Big bird: Transformers for longer sequences. Advances in Neural Information Processing Systems, 33:17283–17297, 2020.
Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y. Hellaswag: Can a machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.
Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang, X., Yang, Z., Wang, K., Zhang, X., et al. Pangu-α: Large-scale autoregressive pretrained chinese language models with auto-parallel computation. arXiv preprint arXiv:2104.12369, 2021.
Zhang, J., Zhao, Y., Saleh, M., and Liu, P. J. PEGASUS: pre-training with extracted gap-sentences for abstractive summarization. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 11328–11339. PMLR, 2020. URL http://proceedings.mlr.press/v119/zhang20ae.html.
Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean, J., Shazeer, N., and Fedus, W. Designing effective sparse expert models. arXiv preprint arXiv:2202.08906, 2022.
5 FinGPT
Yang, Hongyang, Xiao-Yang Liu, and Christina Dan Wang. "FinGPT: Open-Source Financial Large Language Models." arXiv preprint arXiv:2306.06031 (2023).
https://arxiv.org/pdf/2306.06031
References on 5
[Araci, 2019] Dogu Araci. Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063, 2019.
[Bao et al., 2021] Siqi Bao, Huang He, Fan Wang, Hua Wu, Haifeng Wang, Wenquan Wu, Zhihua Wu, Zhen Guo, Hua Lu, Xinxian Huang, et al. Plato-xl: Exploring the large- scale pre-training of dialogue generation. arXiv preprint arXiv:2109.09519, 2021.
[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ry- der, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari- wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in Neural Information Processing Sys- tems, 33:1877–1901, 2020.
[DeLucia et al., 2022] Alexandra DeLucia, Shijie Wu, Aaron Mueller, Carlos Aguirre, Philip Resnik, and Mark Dredze. Bernice: a multilingual pre-trained encoder for twitter. In Proceedings of the 2022 conference on empirical methods in natural language processing, pages 6191–6205, 2022.
[Dettmers et al., 2023] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Ef- ficient finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.
[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken- ton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805, 2018.
[Dredze et al., 2016] Mark Dredze, Prabhanjan Kambadur, Gary Kazantsev, Gideon Mann, and Miles Osborne. How twitter is changing the nature of financial news discovery. In proceedings of the second international workshop on data science for macro-modeling, pages 1–5, 2016.
[Ethayarajh, 2019] Kawin Ethayarajh. How contextual are contextualized word representations? comparing the ge- ometry of bert, elmo, and gpt-2 embeddings. arXiv preprint arXiv:1909.00512, 2019.
[Hu et al., 2021] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. International Conference on Learning Representations, 2021.
[Lewis et al., 2019] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: De- noising sequence-to-sequence pre-training for natural lan- guage generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.
[Lewisetal.,2020] PatrickLewis,MyleOtt,JingfeiDu,and Veselin Stoyanov. Pretrained language models for biomed- ical and clinical tasks: understanding and extending the state-of-the-art. In Proceedings of the 3rd Clinical Natural Language Processing Workshop, pages 146–157, 2020.
[Liu et al., 2021] Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang. FinRL: Deep reinforce- ment learning framework to automate trading in quantita- tive finance. ACM International Conference on AI in Fi- nance (ICAIF), 2021.
[Liu et al., 2022] Xiao-Yang Liu, Ziyi Xia, Jingyang Rui, Jiechao Gao, Hongyang Yang, Ming Zhu, Christina Dan Wang, Zhaoran Wang, and Jian Guo. FinRL-Meta: Mar- ket environments and benchmarks for data-driven financial reinforcement learning. NeurIPS, 2022.
[Radford et al., 2018] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. OpenAI, 2018.
[Thoppilan et al., 2022] Romal Thoppilan, Daniel De Fre- itas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog ap- plications. arXiv preprint arXiv:2201.08239, 2022.
[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal- lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol- ume 30. Curran Associates, Inc., 2017.
[Wu et al., 2023] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab- hanjan Kambadur, David Rosenberg, and Gideon Mann. BloombergGPT: A large language model for finance. arXiv preprint arXiv:2303.17564, 2023.
6 Finetuned language models are zero-shot learners.
Wei, Jason, et al. "Finetuned language models are zero-shot learners." arXiv preprint arXiv:2109.01652 (2021).
https://arxiv.org/pdf/2109.01652
REFERENCES on 6
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and Sonal Gupta. Muppet: Massive multi-task representations with pre-finetuning. arXiv preprint arXiv:2101.11038, 2021. URL https://arxiv.org/abs/2101.11038.
Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim Krikun, Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, et al. Massively multilingual neural machine translation in the wild: Findings and challenges. arXiv preprint arXiv:1907.05019, 2019. URL https://arxiv.org/abs/1907.05019.
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large language models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/abs/ 2108.07732.
Amittai Axelrod, Xiaodong He, and Jianfeng Gao. Domain adaptation via pseudo in-domain data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 355–362, 2011. URL https://aclanthology.org/D11-1033.
Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L. Forcada, Amir Kamran, Faheem Kirefu, Philipp Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere, Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec, Brian Thompson, William Waites, Dion Wiggins, and Jaume Zaragoza. ParaCrawl: Web-scale acquisition of parallel corpora. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4555–4567, 2020. URL https://aclanthology.org/2020.acl-main.417.
Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form, and under- standing in the age of data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5185–5198, 2020. URL https://aclanthology.org/ 2020.acl-main.463.
Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 610–623. Association for Computing Machinery, 2021. URL https://doi.org/10.1145/3442188. 3445922.
Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The Fifth PASCAL Recognizing Textual Entailment Challenge. In TAC, 2009. URL https://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf.
Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020. URL https://arxiv.org/abs/1911.11641.
Ondˇrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Christof Monz, Matt Post, and Lucia Specia (eds.). Proceedings of the Ninth Workshop on Statistical Machine Translation, 2014. URL https://aclanthology.org/W14-3300.
Ondˇrej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Liane Guillou, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Aurélie Névéol, Mariana Neves, Pavel Pecina, Martin Popel, Philipp Koehn, Christof Monz, Matteo Negri, Matt Post, Lucia Specia, Karin Verspoor, Jörg Tiedemann, and Marco Turchi (eds.). Proceedings of the First Conference on Machine Translation: Volume 1, Research Papers, 2016. URL https://aclanthology.org/W16-2200.
Rishi Bommasani, Drew A. Hudson, E. Adeli, R. Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, E. Brynjolfsson, S. Buch, D. Card, Rodrigo Castellon, Niladri S. Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, S. Ermon, J. Etchemendy, Kawin Ethayarajh, L. Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie, Karan Goel, Noah D. Good- man, S. Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho,
Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, G. Keeling, Fereshte Khani, O. Khattab, Pang Wei Koh, M. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, J. Leskovec, Is- abelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir P. Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, D. Narayanan, Ben Newman, Allen Nie, J. C. Niebles, H. Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, C. Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Robert Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher R’e, D. Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, K. Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, M. Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021. URL https://arxiv.org/abs/2108.07258.
Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 632–642, 2015. URL https: //aclanthology.org/D15-1075.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information Pro- cessing Systems, volume 33, pp. 1877–1901, 2020. URL https://proceedings.neurips. cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
Duo Chai, Wei Wu, Qinghong Han, Fei Wu, and Jiwei Li. Description based text classification with reinforcement learning. In Proceedings of the International Conference on Machine Learning, pp. 1371–1382. PMLR, 2020. URL http://proceedings.mlr.press/v119/chai20a/ chai20a.pdf.
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL https://arxiv.org/abs/2107. 03374.
Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. QuAC: Question answering in context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2174–2184, 2018. URL https: //aclanthology.org/D18-1241.
Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, 2019a. URL https://aclanthology.org/N19-1300.
Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D. Manning, and Quoc V. Le. BAM! born-again multi-task networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5931–5937, 2019b. URL https://aclanthology.org/P19-1595.
Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.
Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12:2493–2537, 2011. URL https://www.jmlr.org/papers/volume12/ collobert11a/collobert11a.pdf.
Michele Corazza, Stefano Menini, Elena Cabrio, Sara Tonelli, and Serena Villata. Hybrid emoji- based masked language models for zero-shot abusive language detection. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 943–949, 2020. URL https: //aclanthology.org/2020.findings-emnlp.84.
Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL Recognising Textual Entailment challenge. In Proceedings of the First International Conference on Machine Learning Challenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recognizing Textual Entail- ment, MLCW’05, pp. 177–190, 2005. URL https://doi.org/10.1007/11736790_9.
Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Proceedings of the Confer- ence on Neural Information Processing Systems, 2015. URL https://papers.nips.cc/ paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf.
Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The CommitmentBank: Investigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung, pp. 107–124, 2019. URL https://ojs.ub.uni-konstanz.de/sub/index.php/sub/ article/view/601.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Con- ference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019. URL https://aclanthology.org/N19-1423.
William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https://aclanthology.org/I05-5002.
Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. GLaM: Efficient scaling of language models with mixture-of-experts. arXiv preprint arXiv:2112.06905, 2021. URL https:// arxiv.org/pdf/2112.06905.
Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Com- putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2368–2378, 2019. URL https://aclanthology.org/N19-1246.
Nadir Durrani, Barry Haddow, Philipp Koehn, and Kenneth Heafield. Edinburgh’s phrase-based machine translation systems for WMT-14. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 97–104, 2014. URL https://aclanthology.org/W14-3309.
Ondˇrej Dušek, David M. Howcroft, and Verena Rieser. Semantic noise matters for neural natural language generation. In Proceedings of the 12th International Conference on Natural Language Generation, pp. 421–426, 2019. URL https://aclanthology.org/W19-8652.
Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 489–500, 2018. URL https://aclanthology.org/D18-1045.
Avia Efrat and Omer Levy. The Turking Test: Can language models understand instructions? arXiv preprint arXiv:2010.11982, 2020. URL https://arxiv.org/abs/2010.11982.
Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. Multi-news: A large-scale multi-document summarization dataset and abstractive hierarchical model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1074–1084, 2019. URL https://aclanthology.org/P19-1102.
Fast.AI. Yelp Sentiment Classification Dataset. https://course.fast.ai/datasets.
William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021. URL https: //arxiv.org/abs/2101.03961.
Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning (ICML), pp. 1126–1135, 2017. URL https://arxiv.org/abs/1703.03400.
Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguis- tics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3816–3830, 2021. URL https://aclanthology.org/2021.acl-long. 295.
Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The WebNLG challenge: Generating text from RDF data. In Proceedings of the 10th International Conference on Natural Language Generation, pp. 124–133, 2017. URL https://aclanthology.org/ W17-3518.
Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi, An- uoluwapo Aremu, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna-Adriana Clinciu, Dipanjan Das, Kaustubh Dhole, Wanyu Du, Esin Durmus, Ondˇrej Dušek, Chris Chinenye Emezue, Varun Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre Niyongabo Rubungo, Salomey Osei, Ankur Parikh, Laura Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego Rodriguez, Sashank San- thanam, João Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco Antonio Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola, and Jiawei Zhou. The GEM benchmark: Natural language generation, its evaluation and metrics. In Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), pp. 96–120, 2021. URL https://aclanthology.org/2021.gem-1.10.
Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 1–9, 2007. URL https://aclanthology.org/W07-1401.
Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human- annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop on New Frontiers in Summarization, pp. 70–79, 2019. URL https://aclanthology.org/ D19-5409.
Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision. CS224N project report, Stanford, 1(12):2009, 2009. URL https://www-cs.stanford. edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf.
Dan Goldwasser and Dan Roth. Learning from natural instructions. Machine learn- ing, 94(2):205–232, 2014. URL https://link.springer.com/article/10.1007/ s10994-013-5407-y.
Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A dataset of 1.3 million summaries with diverse extractive strategies. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 708–719, 2018. URL https://aclanthology.org/N18-1065.
R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor. The Second PASCAL Recognising Textual Entailment Challenge. In Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, 2006. URL http://www.cs.biu.ac.il/~szpekti/papers/RTE2-organizers.pdf.
Luheng He, Mike Lewis, and Luke Zettlemoyer. Question-answer driven semantic role labeling: Using natural language to annotate natural language. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 643–653, 2015. URL https: //aclanthology.org/D15-1076.
Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. Surface form competition: Why the highest probability answer isn’t always right. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021. URL https: //aclanthology.org/2021.emnlp-main.564.
Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-Yew Lin, and Deepak Ravichandran. To- ward semantics-based answer pinpointing. In Proceedings of the First International Confer- ence on Human Language Technology Research, 2001. URL https://www.aclweb.org/ anthology/H01-1069.
Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 328–339, 2018. URL https://aclanthology.org/P18-1031.
Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Cosmos QA: Machine reading comprehension with contextual commonsense reasoning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2391–2401, 2019. URL https:// aclanthology.org/D19-1243.
Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s multilingual neural machine translation system: Enabling zero-shot transla- tion. Transactions of the Association for Computational Linguistics, 5:339–351, 2017. URL https://aclanthology.org/Q17-1024.
Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601– 1611, 2017. URL https://aclanthology.org/P17-1147.
Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking beyond the surface: A challenge set for reading comprehension over multiple sentences. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Compu- tational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 252–262, 2018. URL https://aclanthology.org/N18-1023.
Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Hannaneh Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA system. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1896–1907, 2020. URL https://aclanthology.org/2020.findings-emnlp.171.
Dimitrios Kotzias, Misha Denil, Nando de Freitas, and Padhraic Smyth. From group to individual labels using deep features. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015. URL https://dl.acm.org/doi/10. 1145/2783258.2783380.
Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pp. 66–71. Association for Computational Linguistics, 2018. doi: 10.18653/v1/d18-2012. URL https://doi.org/10.18653/v1/d18-2012.
Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory networks for natural language processing. In Proceedings of the International Conference on Machine Learning, pp. 1378–1387. PMLR, 2016. URL https://arxiv.org/abs/1506.07285.
Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural Questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019. URL https://aclanthology. org/Q19-1026.
Faisal Ladhak, Esin Durmus, Claire Cardie, and Kathleen McKeown. WikiLingua: A new benchmark dataset for cross-lingual abstractive summarization. In Findings of the Associ- ation for Computational Linguistics: EMNLP 2020, pp. 4034–4048, 2020. URL https: //aclanthology.org/2020.findings-emnlp.360.
Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE, 2009. URL https://ieeexplore.ieee.org/ document/5206594.
Anne Lauscher, Vinit Ravishankar, Ivan Vulic ́, and Goran Glavaš. From zero to hero: On the limitations of zero-shot language transfer with multilingual Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4483–4499, 2020. URL https://aclanthology.org/2020.emnlp-main.363.
Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open domain question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 6086–6096, 2019. URL https://aclanthology.org/ P19-1612.
Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic sharding. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=qrwe7XHTmYb.
Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021. URL https://arxiv.org/abs/2104.08691.
Hector Levesque, Ernest Davis, and Leora Morgenstern. The Winograd Schema Challenge. In Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning, 2012. URL https://dl.acm.org/doi/10.5555/3031843.3031909.
Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading comprehension. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pp. 333–342, 2017. URL https://aclanthology. org/K17-1034.
Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020. URL https://aclanthology.org/2020.acl-main.703.
Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, 2021. URL https://aclanthology.org/2021.acl-long.353.
Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong Han, Fei Wu, and Jiwei Li. A unified MRC framework for named entity recognition. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pp. 5849–5859, 2020. URL https: //aclanthology.org/2020.acl-main.519.
Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International Confer- ence on Computational Linguistics, 2002. URL https://www.aclweb.org/anthology/ C02-1150.
Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang Ren. CommonGen: A constrained text generation challenge for generative commonsense reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1823–1840, 2020. URL https://aclanthology.org/2020.findings-emnlp.165.
Han Liu, Xiaotong Zhang, Lu Fan, Xuandi Fu, Qimai Li, Xiao-Ming Wu, and Albert Y.S. Lam. Reconstructing capsule networks for zero-shot intent classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4799–4809, 2019a. URL https://aclanthology.org/D19-1486.
Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhenbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586, 2021. URL https://arxiv.org/abs/2107.13586.
Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4487–4496, 2019b. URL https://aclanthology.org/ P19-1441.
Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics, 8:726–742, 2020. URL https: //aclanthology.org/2020.tacl-1.47.
Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task sequence to sequence learning. Proceedings of ICLR, 2016. URL https://arxiv.org/ abs/1511.06114.
Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http: //www.aclweb.org/anthology/P11-1015.
Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018. URL https://arxiv.org/abs/1806.08730.
John McCarthy. Programs with common sense. RLE and MIT computation center, 1960. URL http://jmc.stanford.edu/articles/mcc59/mcc59.pdf.
Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? A new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018. URL https://aclanthology.org/D18-1260.
Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in context. arXiv preprint arXiv:2110.15943, 2021. URL https://arxiv.org/abs/2110. 15943.
Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Natural Instructions: Benchmarking generalization to new tasks from natural language instructions. arXiv preprint arXiv:2104.08773, 2021. URL https://arxiv.org/abs/2104.08773.
Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander- wende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 839–849, 2016. URL https://aclanthology.org/N16-1098.
Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto, Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Rajani. DART: Open-domain structured data record to text generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 432–447, 2021. URL https://aclanthology.org/ 2021.naacl-main.37.
Courtney Napoles, Matthew Gormley, and Benjamin Van Durme. Annotated Gigaword. In Pro- ceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEX), pp. 95–100, 2012. URL https://aclanthology. org/W12-3018.
Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1797–1807, 2018. URL https://aclanthology.org/D18-1206.
Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adversarial NLI: A new benchmark for natural language understanding. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4885–4901, 2020. URL https: //aclanthology.org/2020.acl-main.441.
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. Preprint, 2022. URL https://cdn.openai.com/papers/Training_language_models_ to_follow_instructions_with_human_feedback.pdf.
Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, 2018. URL https: //aclanthology.org/N18-1202.
Ngoc-Quan Pham, Jan Niehues, Thanh-Le Ha, and Alexander Waibel. Improving zero-shot translation with language-independent constraints. In Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers), pp. 13–23, 2019. URL https://aclanthology. org/W19-5202.
Mohammad Taher Pilehvar and Jose Camacho-Collados. WiC: the word-in-context dataset for evaluating context-sensitive meaning representations. In Proceedings of the 2019 Confer- ence of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers), pp. 1267–1273, 2019. URL https://aclanthology.org/N19-1128.
Vineel Pratap, Anuroop Sriram, Paden Tomasello, Awni Hannun, Vitaliy Liptchinsky, Gabriel Synnaeve, and Ronan Collobert. Massively multilingual ASR: 50 languages, 1 model, 1 billion parameters. arXiv preprint arXiv:2007.03001, 2020. URL https://arxiv.org/abs/2007. 03001.
Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft prompts. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 5203–5212, 2021. URL http://cs.jhu.edu/~jason/papers/#qin-eisner-2021.
Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. https://blog.openai.com/ language-unsupervised, 2018.
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. URL https://d4mucfpksywv.cloudfront.net/better-language-models/ language_models_are_unsupervised_multitask_learners.pdf.
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.
Altaf Rahman and Vincent Ng. Resolving complex cases of definite pronouns: The Winograd schema challenge. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 777–789, 2012. URL https://aclanthology.org/D12-1071.
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392, 2016. URL https://aclanthology.org/ D16-1264.
Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 784–789, 2018. URL https://aclanthology. org/P18-2124.
Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A conversational question answering challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019. URL https://aclanthology.org/Q19-1016.
Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris Callison-Burch, and Jason Wei. A recipe for arbitrary text style transfer with large language models. arXiv preprint arXiv:2109.03910, 2021. URL https://arxiv.org/abs/2109.03910.
Melissa Roemmele, Cosmin Bejan, and Andrew Gordon. Choice of plausible alternatives: An evaluation of commonsense causal reasoning. In AAAI Spring Symposium Series, 2011. URL https://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418.
Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple approach to zero-shot learning. In Proceedings of the International Conference on Machine Learning, pp. 2152–2161, 2015. URL https://proceedings.mlr.press/v37/romera-paredes15.pdf.
Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098, 2017. URL https://arxiv.org/abs/1706.05098.
Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An adver- sarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8732–8740, 2020. URL https://arxiv.org/abs/1907.10641.
Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables zero-shot task generalization. Proceedings of the International Conference on Learning Representations, 2021. URL https://arxiv.org/abs/2110.08207.
David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning abilities of neural models. Proceedings of the International Conference on Learning Representations, 2019. URL https://arxiv.org/pdf/1904.01557.
Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and natural language inference. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 255–269, 2021. URL https://aclanthology.org/2021.eacl-main.20.
Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, 2017. URL https:// aclanthology.org/P17-1099.
Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for WMT 16. In Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers, pp. 371–376, 2016. URL https://aclanthology.org/W16-2323.
Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018. URL https://arxiv.org/abs/1804.04235.
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642, 2013. URL https://aclanthology.org/D13-1170.
Irene Solaiman and Christy Dennison. Process for adapting language models to society (palms) with values-targeted datasets. arXiv preprint arXiv:2106.10328, 2021. URL https://arxiv.org/ abs/2106.10328.
Shashank Srivastava, Igor Labutov, and Tom Mitchell. Zero-shot learning of classifiers from natural language quantification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 306–316, 2018. URL https:// aclanthology.org/P18-1029.
Derek Tam, Menton Rakesh R., Mohit Bansal, Shashank Srivastava, and Colin Raffel. Improving and simplifying pattern exploiting training. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021. URL https://arxiv.org/pdf/ 2103.11955.
Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239, 2022. URL https://arxiv.org/pdf/ 2201.08239.
Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018. URL https://arxiv.org/abs/1810.03548.
Marc Velay and Fabrice Daniel. Seq2seq and multi-task learning for joint intent and content extraction for domain specific interpreters. arXiv preprint arXiv:1808.00423, 2018. URL https: //arxiv.org/abs/1808.00423.
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, 2018. URL https://aclanthology.org/W18-5446.
Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Superglue: A stickier benchmark for general-purpose language understanding systems. Conference on Neural Information Processing Systems (NeurIPS), 2019a. URL https://arxiv.org/abs/1905.00537.
Lu Wang and Wang Ling. Neural network-based abstract generation for opinions and arguments. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 47–57, 2016. URL https: //www.aclweb.org/anthology/N16-1007.
Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Multi- agent dual learning. In Proceedings of the International Conference on Learning Representations (ICLR) 2019, 2019b. URL https://openreview.net/forum?id=HyGhN2A5tm.
Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao. Towards zero-label language learning. arXiv preprint arXiv:2109.09193, 2021. URL https://arxiv.org/abs/2109.09193.
Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments. Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/ tacl_a_00290. URL https://aclanthology.org/Q19-1040.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022. URL https://arxiv.org/pdf/2201.11903.
Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceedings of the 2018 Conference of the North Ameri- can Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1112–1122, 2018. URL http://aclweb.org/anthology/ N18-1101.
Joseph Worsham and J. Kalita. Multi-task learning for natural language processing in the 2020s: where are we going? arXiv preprint arXiv:2007.16008, 2020. URL https://arxiv.org/ abs/2007.16008.
Jeff Wu, Long Ouyang, Daniel M Ziegler, Nissan Stiennon, Ryan Lowe, Jan Leike, and Paul Chris- tiano. Recursively summarizing books with human feedback. arXiv preprint arXiv:2109.10862, 2021. URL https://arxiv.org/abs/2109.10862.
Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei Li. CorefQA: Coreference resolution as query-based span prediction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6953–6963, 2020. URL https://aclanthology.org/ 2020.acl-main.622.
Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. Crossfit: A few-shot learning challenge for cross-task generalization in NLP. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021. URL https://arxiv.org/abs/2104.08835.
Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking zero-shot text classification: Datasets, evaluation and entailment approach. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3914–3923, 2019. URL https://aclanthology.org/ D19-1404.
Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4791–4800, 2019. URL https://aclanthology.org/ P19-1472.
Rui Zhang and Joel Tetreault. This email could save your life: Introducing the task of email subject line generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019. URL https://aclanthology.org/P19-1043.
Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme. Record: Bridging the gap between human and machine commonsense reading comprehension. CoRR, abs/1810.12885, 2018. URL http://arxiv.org/abs/1810.12885.
Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas- sification. In NIPS, 2015. URL https://proceedings.neurips.cc/paper/2015/ file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.
Yuan Zhang, Jason Baldridge, and Luheng He. PAWS: Paraphrase adversaries from word scrambling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1298–1308, 2019. URL https://aclanthology.org/N19-1131.
Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. Meta-tuning language models to answer prompts better. arXiv preprint arXiv:2104.04670, 2021. URL https://arxiv.org/abs/ 2104.04670.
7 Introducing FLAN:
Google Research “Introducing FLAN: More generalizable Language Models with Instruction Fine-Tuning”
https://research.google/blog/introducing-flan-more-generalizable-language-models-with-instruction-fine-tuning/
8 flan2021_submix_original
404 Sorry, we can't find the page you are looking for.
https://huggingface.co/datasets/DataProvenanceInitiative/flan2021_submix_original
9 Finetuned language models are zero-shot learners
Wei, Jason, et al. "Finetuned language models are zero-shot learners." arXiv preprint arXiv:2109.01652 (2021).
https://arxiv.org/pdf/2109.01652
REFERENCES on 9
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and Sonal Gupta. Muppet: Massive multi-task representations with pre-finetuning. arXiv preprint arXiv:2101.11038, 2021. URL https://arxiv.org/abs/2101.11038.
Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim Krikun, Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, et al. Massively multilingual neural machine translation in the wild: Findings and challenges. arXiv preprint arXiv:1907.05019, 2019. URL https://arxiv.org/abs/1907.05019.
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large language models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/abs/ 2108.07732.
Amittai Axelrod, Xiaodong He, and Jianfeng Gao. Domain adaptation via pseudo in-domain data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 355–362, 2011. URL https://aclanthology.org/D11-1033.
Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L. Forcada, Amir Kamran, Faheem Kirefu, Philipp Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere, Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec, Brian Thompson, William Waites, Dion Wiggins, and Jaume Zaragoza. ParaCrawl: Web-scale acquisition of parallel corpora. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4555–4567, 2020. URL https://aclanthology.org/2020.acl-main.417.
Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form, and under- standing in the age of data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5185–5198, 2020. URL https://aclanthology.org/ 2020.acl-main.463.
Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 610–623. Association for Computing Machinery, 2021. URL https://doi.org/10.1145/3442188. 3445922.
Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The Fifth PASCAL Recognizing Textual Entailment Challenge. In TAC, 2009. URL https://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf.
Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020. URL https://arxiv.org/abs/1911.11641.
Ondˇrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Christof Monz, Matt Post, and Lucia Specia (eds.). Proceedings of the Ninth Workshop on Statistical Machine Translation, 2014. URL https://aclanthology.org/W14-3300.
Ondˇrej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Liane Guillou, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Aurélie Névéol, Mariana Neves, Pavel Pecina, Martin Popel, Philipp Koehn, Christof Monz, Matteo Negri, Matt Post, Lucia Specia, Karin Verspoor, Jörg Tiedemann, and Marco Turchi (eds.). Proceedings of the First Conference on Machine Translation: Volume 1, Research Papers, 2016. URL https://aclanthology.org/W16-2200.
Rishi Bommasani, Drew A. Hudson, E. Adeli, R. Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, E. Brynjolfsson, S. Buch, D. Card, Rodrigo Castellon, Niladri S. Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, S. Ermon, J. Etchemendy, Kawin Ethayarajh, L. Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie, Karan Goel, Noah D. Good- man, S. Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho,
Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, G. Keeling, Fereshte Khani, O. Khattab, Pang Wei Koh, M. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, J. Leskovec, Is- abelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir P. Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, D. Narayanan, Ben Newman, Allen Nie, J. C. Niebles, H. Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, C. Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Robert Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher R’e, D. Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, K. Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, M. Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021. URL https://arxiv.org/abs/2108.07258.
Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 632–642, 2015. URL https: //aclanthology.org/D15-1075.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information Pro- cessing Systems, volume 33, pp. 1877–1901, 2020. URL https://proceedings.neurips. cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
Duo Chai, Wei Wu, Qinghong Han, Fei Wu, and Jiwei Li. Description based text classification with reinforcement learning. In Proceedings of the International Conference on Machine Learning, pp. 1371–1382. PMLR, 2020. URL http://proceedings.mlr.press/v119/chai20a/ chai20a.pdf.
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL https://arxiv.org/abs/2107. 03374.
Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. QuAC: Question answering in context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2174–2184, 2018. URL https: //aclanthology.org/D18-1241.
Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, 2019a. URL https://aclanthology.org/N19-1300.
Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D. Manning, and Quoc V. Le. BAM! born-again multi-task networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5931–5937, 2019b. URL https://aclanthology.org/P19-1595.
Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.
Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12:2493–2537, 2011. URL https://www.jmlr.org/papers/volume12/ collobert11a/collobert11a.pdf.
Michele Corazza, Stefano Menini, Elena Cabrio, Sara Tonelli, and Serena Villata. Hybrid emoji- based masked language models for zero-shot abusive language detection. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 943–949, 2020. URL https: //aclanthology.org/2020.findings-emnlp.84.
Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL Recognising Textual Entailment challenge. In Proceedings of the First International Conference on Machine Learning Challenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recognizing Textual Entail- ment, MLCW’05, pp. 177–190, 2005. URL https://doi.org/10.1007/11736790_9.
Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Proceedings of the Confer- ence on Neural Information Processing Systems, 2015. URL https://papers.nips.cc/ paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf.
Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The CommitmentBank: Investigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung, pp. 107–124, 2019. URL https://ojs.ub.uni-konstanz.de/sub/index.php/sub/ article/view/601.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Con- ference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019. URL https://aclanthology.org/N19-1423.
William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https://aclanthology.org/I05-5002.
Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. GLaM: Efficient scaling of language models with mixture-of-experts. arXiv preprint arXiv:2112.06905, 2021. URL https:// arxiv.org/pdf/2112.06905.
Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Com- putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2368–2378, 2019. URL https://aclanthology.org/N19-1246.
Nadir Durrani, Barry Haddow, Philipp Koehn, and Kenneth Heafield. Edinburgh’s phrase-based machine translation systems for WMT-14. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 97–104, 2014. URL https://aclanthology.org/W14-3309.
Ondˇrej Dušek, David M. Howcroft, and Verena Rieser. Semantic noise matters for neural natural language generation. In Proceedings of the 12th International Conference on Natural Language Generation, pp. 421–426, 2019. URL https://aclanthology.org/W19-8652.
Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 489–500, 2018. URL https://aclanthology.org/D18-1045.
Avia Efrat and Omer Levy. The Turking Test: Can language models understand instructions? arXiv preprint arXiv:2010.11982, 2020. URL https://arxiv.org/abs/2010.11982.
Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. Multi-news: A large-scale multi-document summarization dataset and abstractive hierarchical model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1074–1084, 2019. URL https://aclanthology.org/P19-1102.
Fast.AI. Yelp Sentiment Classification Dataset. https://course.fast.ai/datasets.
William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021. URL https: //arxiv.org/abs/2101.03961.
Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning (ICML), pp. 1126–1135, 2017. URL https://arxiv.org/abs/1703.03400.
Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguis- tics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3816–3830, 2021. URL https://aclanthology.org/2021.acl-long. 295.
Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The WebNLG challenge: Generating text from RDF data. In Proceedings of the 10th International Conference on Natural Language Generation, pp. 124–133, 2017. URL https://aclanthology.org/ W17-3518.
Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi, An- uoluwapo Aremu, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna-Adriana Clinciu, Dipanjan Das, Kaustubh Dhole, Wanyu Du, Esin Durmus, Ondˇrej Dušek, Chris Chinenye Emezue, Varun Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre Niyongabo Rubungo, Salomey Osei, Ankur Parikh, Laura Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego Rodriguez, Sashank San- thanam, João Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco Antonio Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola, and Jiawei Zhou. The GEM benchmark: Natural language generation, its evaluation and metrics. In Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), pp. 96–120, 2021. URL https://aclanthology.org/2021.gem-1.10.
Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 1–9, 2007. URL https://aclanthology.org/W07-1401.
Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human- annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop on New Frontiers in Summarization, pp. 70–79, 2019. URL https://aclanthology.org/ D19-5409.
Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision. CS224N project report, Stanford, 1(12):2009, 2009. URL https://www-cs.stanford. edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf.
Dan Goldwasser and Dan Roth. Learning from natural instructions. Machine learn- ing, 94(2):205–232, 2014. URL https://link.springer.com/article/10.1007/ s10994-013-5407-y.
Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A dataset of 1.3 million summaries with diverse extractive strategies. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 708–719, 2018. URL https://aclanthology.org/N18-1065.
R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor. The Second PASCAL Recognising Textual Entailment Challenge. In Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, 2006. URL http://www.cs.biu.ac.il/~szpekti/papers/RTE2-organizers.pdf.
Luheng He, Mike Lewis, and Luke Zettlemoyer. Question-answer driven semantic role labeling: Using natural language to annotate natural language. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 643–653, 2015. URL https: //aclanthology.org/D15-1076.
Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. Surface form competition: Why the highest probability answer isn’t always right. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021. URL https: //aclanthology.org/2021.emnlp-main.564.
Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-Yew Lin, and Deepak Ravichandran. To- ward semantics-based answer pinpointing. In Proceedings of the First International Confer- ence on Human Language Technology Research, 2001. URL https://www.aclweb.org/ anthology/H01-1069.
Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 328–339, 2018. URL https://aclanthology.org/P18-1031.
Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Cosmos QA: Machine reading comprehension with contextual commonsense reasoning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2391–2401, 2019. URL https:// aclanthology.org/D19-1243.
Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s multilingual neural machine translation system: Enabling zero-shot transla- tion. Transactions of the Association for Computational Linguistics, 5:339–351, 2017. URL https://aclanthology.org/Q17-1024.
Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601– 1611, 2017. URL https://aclanthology.org/P17-1147.
Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking beyond the surface: A challenge set for reading comprehension over multiple sentences. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Compu- tational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 252–262, 2018. URL https://aclanthology.org/N18-1023.
Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Hannaneh Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA system. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1896–1907, 2020. URL https://aclanthology.org/2020.findings-emnlp.171.
Dimitrios Kotzias, Misha Denil, Nando de Freitas, and Padhraic Smyth. From group to individual labels using deep features. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015. URL https://dl.acm.org/doi/10. 1145/2783258.2783380.
Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pp. 66–71. Association for Computational Linguistics, 2018. doi: 10.18653/v1/d18-2012. URL https://doi.org/10.18653/v1/d18-2012.
Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory networks for natural language processing. In Proceedings of the International Conference on Machine Learning, pp. 1378–1387. PMLR, 2016. URL https://arxiv.org/abs/1506.07285.
Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural Questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019. URL https://aclanthology. org/Q19-1026.
Faisal Ladhak, Esin Durmus, Claire Cardie, and Kathleen McKeown. WikiLingua: A new benchmark dataset for cross-lingual abstractive summarization. In Findings of the Associ- ation for Computational Linguistics: EMNLP 2020, pp. 4034–4048, 2020. URL https: //aclanthology.org/2020.findings-emnlp.360.
Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE, 2009. URL https://ieeexplore.ieee.org/ document/5206594.
Anne Lauscher, Vinit Ravishankar, Ivan Vulic ́, and Goran Glavaš. From zero to hero: On the limitations of zero-shot language transfer with multilingual Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4483–4499, 2020. URL https://aclanthology.org/2020.emnlp-main.363.
Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open domain question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 6086–6096, 2019. URL https://aclanthology.org/ P19-1612.
Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic sharding. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=qrwe7XHTmYb.
Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021. URL https://arxiv.org/abs/2104.08691.
Hector Levesque, Ernest Davis, and Leora Morgenstern. The Winograd Schema Challenge. In Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning, 2012. URL https://dl.acm.org/doi/10.5555/3031843.3031909.
Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading comprehension. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pp. 333–342, 2017. URL https://aclanthology. org/K17-1034.
Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020. URL https://aclanthology.org/2020.acl-main.703.
Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, 2021. URL https://aclanthology.org/2021.acl-long.353.
Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong Han, Fei Wu, and Jiwei Li. A unified MRC framework for named entity recognition. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pp. 5849–5859, 2020. URL https: //aclanthology.org/2020.acl-main.519.
Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International Confer- ence on Computational Linguistics, 2002. URL https://www.aclweb.org/anthology/ C02-1150.
Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang Ren. CommonGen: A constrained text generation challenge for generative commonsense reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1823–1840, 2020. URL https://aclanthology.org/2020.findings-emnlp.165.
Han Liu, Xiaotong Zhang, Lu Fan, Xuandi Fu, Qimai Li, Xiao-Ming Wu, and Albert Y.S. Lam. Reconstructing capsule networks for zero-shot intent classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4799–4809, 2019a. URL https://aclanthology.org/D19-1486.
Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhenbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586, 2021. URL https://arxiv.org/abs/2107.13586.
Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4487–4496, 2019b. URL https://aclanthology.org/ P19-1441.
Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics, 8:726–742, 2020. URL https: //aclanthology.org/2020.tacl-1.47.
Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task sequence to sequence learning. Proceedings of ICLR, 2016. URL https://arxiv.org/ abs/1511.06114.
Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http: //www.aclweb.org/anthology/P11-1015.
Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018. URL https://arxiv.org/abs/1806.08730.
John McCarthy. Programs with common sense. RLE and MIT computation center, 1960. URL http://jmc.stanford.edu/articles/mcc59/mcc59.pdf.
Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? A new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018. URL https://aclanthology.org/D18-1260.
Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in context. arXiv preprint arXiv:2110.15943, 2021. URL https://arxiv.org/abs/2110. 15943.
Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Natural Instructions: Benchmarking generalization to new tasks from natural language instructions. arXiv preprint arXiv:2104.08773, 2021. URL https://arxiv.org/abs/2104.08773.
Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander- wende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 839–849, 2016. URL https://aclanthology.org/N16-1098.
Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto, Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Rajani. DART: Open-domain structured data record to text generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 432–447, 2021. URL https://aclanthology.org/ 2021.naacl-main.37.
Courtney Napoles, Matthew Gormley, and Benjamin Van Durme. Annotated Gigaword. In Pro- ceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEX), pp. 95–100, 2012. URL https://aclanthology. org/W12-3018.
Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1797–1807, 2018. URL https://aclanthology.org/D18-1206.
Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adversarial NLI: A new benchmark for natural language understanding. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4885–4901, 2020. URL https: //aclanthology.org/2020.acl-main.441.
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. Preprint, 2022. URL https://cdn.openai.com/papers/Training_language_models_ to_follow_instructions_with_human_feedback.pdf.
Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, 2018. URL https: //aclanthology.org/N18-1202.
Ngoc-Quan Pham, Jan Niehues, Thanh-Le Ha, and Alexander Waibel. Improving zero-shot translation with language-independent constraints. In Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers), pp. 13–23, 2019. URL https://aclanthology. org/W19-5202.
Mohammad Taher Pilehvar and Jose Camacho-Collados. WiC: the word-in-context dataset for evaluating context-sensitive meaning representations. In Proceedings of the 2019 Confer- ence of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers), pp. 1267–1273, 2019. URL https://aclanthology.org/N19-1128.
Vineel Pratap, Anuroop Sriram, Paden Tomasello, Awni Hannun, Vitaliy Liptchinsky, Gabriel Synnaeve, and Ronan Collobert. Massively multilingual ASR: 50 languages, 1 model, 1 billion parameters. arXiv preprint arXiv:2007.03001, 2020. URL https://arxiv.org/abs/2007. 03001.
Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft prompts. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 5203–5212, 2021. URL http://cs.jhu.edu/~jason/papers/#qin-eisner-2021.
Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. https://blog.openai.com/ language-unsupervised, 2018.
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. URL https://d4mucfpksywv.cloudfront.net/better-language-models/ language_models_are_unsupervised_multitask_learners.pdf.
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.
Altaf Rahman and Vincent Ng. Resolving complex cases of definite pronouns: The Winograd schema challenge. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 777–789, 2012. URL https://aclanthology.org/D12-1071.
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392, 2016. URL https://aclanthology.org/ D16-1264.
Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 784–789, 2018. URL https://aclanthology. org/P18-2124.
Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A conversational question answering challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019. URL https://aclanthology.org/Q19-1016.
Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris Callison-Burch, and Jason Wei. A recipe for arbitrary text style transfer with large language models. arXiv preprint arXiv:2109.03910, 2021. URL https://arxiv.org/abs/2109.03910.
Melissa Roemmele, Cosmin Bejan, and Andrew Gordon. Choice of plausible alternatives: An evaluation of commonsense causal reasoning. In AAAI Spring Symposium Series, 2011. URL https://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418.
Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple approach to zero-shot learning. In Proceedings of the International Conference on Machine Learning, pp. 2152–2161, 2015. URL https://proceedings.mlr.press/v37/romera-paredes15.pdf.
Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098, 2017. URL https://arxiv.org/abs/1706.05098.
Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An adver- sarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8732–8740, 2020. URL https://arxiv.org/abs/1907.10641.
Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables zero-shot task generalization. Proceedings of the International Conference on Learning Representations, 2021. URL https://arxiv.org/abs/2110.08207.
David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning abilities of neural models. Proceedings of the International Conference on Learning Representations, 2019. URL https://arxiv.org/pdf/1904.01557.
Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and natural language inference. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 255–269, 2021. URL https://aclanthology.org/2021.eacl-main.20.
Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, 2017. URL https:// aclanthology.org/P17-1099.
Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for WMT 16. In Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers, pp. 371–376, 2016. URL https://aclanthology.org/W16-2323.
Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018. URL https://arxiv.org/abs/1804.04235.
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642, 2013. URL https://aclanthology.org/D13-1170.
Irene Solaiman and Christy Dennison. Process for adapting language models to society (palms) with values-targeted datasets. arXiv preprint arXiv:2106.10328, 2021. URL https://arxiv.org/ abs/2106.10328.
Shashank Srivastava, Igor Labutov, and Tom Mitchell. Zero-shot learning of classifiers from natural language quantification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 306–316, 2018. URL https:// aclanthology.org/P18-1029.
Derek Tam, Menton Rakesh R., Mohit Bansal, Shashank Srivastava, and Colin Raffel. Improving and simplifying pattern exploiting training. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021. URL https://arxiv.org/pdf/ 2103.11955.
Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239, 2022. URL https://arxiv.org/pdf/ 2201.08239.
Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018. URL https://arxiv.org/abs/1810.03548.
Marc Velay and Fabrice Daniel. Seq2seq and multi-task learning for joint intent and content extraction for domain specific interpreters. arXiv preprint arXiv:1808.00423, 2018. URL https: //arxiv.org/abs/1808.00423.
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, 2018. URL https://aclanthology.org/W18-5446.
Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Superglue: A stickier benchmark for general-purpose language understanding systems. Conference on Neural Information Processing Systems (NeurIPS), 2019a. URL https://arxiv.org/abs/1905.00537.
Lu Wang and Wang Ling. Neural network-based abstract generation for opinions and arguments. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 47–57, 2016. URL https: //www.aclweb.org/anthology/N16-1007.
Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Multi- agent dual learning. In Proceedings of the International Conference on Learning Representations (ICLR) 2019, 2019b. URL https://openreview.net/forum?id=HyGhN2A5tm.
Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao. Towards zero-label language learning. arXiv preprint arXiv:2109.09193, 2021. URL https://arxiv.org/abs/2109.09193.
Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments. Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/ tacl_a_00290. URL https://aclanthology.org/Q19-1040.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022. URL https://arxiv.org/pdf/2201.11903.
Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceedings of the 2018 Conference of the North Ameri- can Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1112–1122, 2018. URL http://aclweb.org/anthology/ N18-1101.
Joseph Worsham and J. Kalita. Multi-task learning for natural language processing in the 2020s: where are we going? arXiv preprint arXiv:2007.16008, 2020. URL https://arxiv.org/ abs/2007.16008.
Jeff Wu, Long Ouyang, Daniel M Ziegler, Nissan Stiennon, Ryan Lowe, Jan Leike, and Paul Chris- tiano. Recursively summarizing books with human feedback. arXiv preprint arXiv:2109.10862, 2021. URL https://arxiv.org/abs/2109.10862.
Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei Li. CorefQA: Coreference resolution as query-based span prediction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6953–6963, 2020. URL https://aclanthology.org/ 2020.acl-main.622.
Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. Crossfit: A few-shot learning challenge for cross-task generalization in NLP. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021. URL https://arxiv.org/abs/2104.08835.
Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking zero-shot text classification: Datasets, evaluation and entailment approach. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3914–3923, 2019. URL https://aclanthology.org/ D19-1404.
Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4791–4800, 2019. URL https://aclanthology.org/ P19-1472.
Rui Zhang and Joel Tetreault. This email could save your life: Introducing the task of email subject line generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019. URL https://aclanthology.org/P19-1043.
Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme. Record: Bridging the gap between human and machine commonsense reading comprehension. CoRR, abs/1810.12885, 2018. URL http://arxiv.org/abs/1810.12885.
Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas- sification. In NIPS, 2015. URL https://proceedings.neurips.cc/paper/2015/ file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.
Yuan Zhang, Jason Baldridge, and Luheng He. PAWS: Paraphrase adversaries from word scrambling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1298–1308, 2019. URL https://aclanthology.org/N19-1131.
Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. Meta-tuning language models to answer prompts better. arXiv preprint arXiv:2104.04670, 2021. URL https://arxiv.org/abs/2104.04670.
10 Stanford Center for Research on Foundation Models.
Taori, Rohan, et al. Stanford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html 3.6 (2023): 7.
11 Lima
Zhou, Chunting, et al. "Lima: Less is more for alignment." arXiv preprint arXiv:2305.11206 (2023).
https://arxiv.org/abs/2305.11206
References on 11
Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022a.
Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.
Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. The pushshift reddit dataset. In Proceedings of the international AAAI conference on web and social media, volume 14, pages 830–839, 2020.
Edward Beeching, Younes Belkada, Kashif Rasul, Lewis Tunstall, Leandro von Werra, Nazneen Rajani, and Nathan Lambert. Stackllama: An rl fine-tuned llama model for stack exchange question and answering, 2023. URL https://huggingface.co/blog/stackllama.
Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https: //lmsys.org/blog/2023-03-30-vicuna/.
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416, 2022.
Avia Efrat and Omer Levy. The turking test: Can language models understand instructions? arXiv preprint arXiv:2010.11982, 2020.
Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. In International Conference on Learning Representations, 2019.
Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning language models with (almost) no human labor, 2022.
Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. Ctrl: A conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858, 2019.
Yuval Kirstain, Patrick Lewis, Sebastian Riedel, and Omer Levy. A few more examples may be worth billions of parameters. arXiv preprint arXiv:2110.04374, 2021.
Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. In ICML 2022 Workshop on Knowledge Retrieval and Language Models, 2022.
Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and Alexander Mattick. Openassistant conversations – democratizing large language model alignment. arXiv preprint arXiv:2304.07327, 2023.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Natural instructions: Benchmarking generalization to new tasks from natural language instructions. arXiv preprint arXiv:2104.08773, pages 839–849, 2021.
OpenAI. Gpt-4 technical report, 2023.
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35: 27730–27744, 2022.
Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables zero-shot task generalization. In The Tenth International Conference on Learning Representations, 2022.
Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with minimal human supervision, 2023.
Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.
Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions, 2022a.
Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al. Super-naturalinstructions:generalization via declarative instructions on 1600+ tasks. In EMNLP, 2022b.
Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International Conference on Learning Representations, 2022a.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems, 2022b.
12 Llima 2
Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv preprint arXiv:2307.09288 (2023).
https://arxiv.org/pdf/2307.09288
Reference on 12
Daron Acemoglu and Pascual Restrepo. Artificial intelligence, automation, and work. In The economics of artificial intelligence: An agenda, pages 197–236. University of Chicago Press, 2018.
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints, 2023.
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. Falcon-40B: an open large language model with state-of-the-art performance. 2023.
Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report, 2023.
Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, and Chris Olah. A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861, 2021a.
Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861, 2021b.
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large language models, 2021.
David Autor and Anna Salomons. Is automation labor-displacing? productivity growth, employment, and the labor share. Technical report, National Bureau of Economic Research, 2018.
Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022a.
Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.
April H Bailey, Adina Williams, and Andrei Cimpian. Based on billions of words on the internet, people= men. Science Advances, 8(13):eabm2463, 2022.
Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Margaret Mitchell. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages 610–623, 2021a.
Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency, pages 610–623, 2021b.
A Stevie Bergman, Gavin Abercrombie, Shannon L Spruit, Dirk Hovy, Emily Dinan, Y-Lan Boureau, and Verena Rieser. Guiding the release of safer e2e conversational ai through value sensitive design. In Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 39–52, 2022.
Shaily Bhatt, Sunipa Dev, Partha Talukdar, Shachi Dave, and Vinodkumar Prabhakaran. Re-contextualizing fairness in nlp: The case of india, 2022.
Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence, pages 7432–7439, 2020.
Su Lin Blodgett, Gilsinia Lopez, Alexandra Olteanu, Robert Sim, and Hanna Wallach. Stereotyping norwegian salmon: An inventory of pitfalls in fairness benchmark datasets. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1004–1015, 2021.
Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. Enriching word vectors with subword information. CoRR, abs/1607.04606, 2016. URL http://arxiv.org/abs/1607.04606.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee- lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings. neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021.
Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impress- ing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.
Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. Quac: Question answering in context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2174–2184, 2018.
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab- hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022.
Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. Advances in neural information processing systems, 30, 2017.
Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Wei Yu, Vincent Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416, 2022.
Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044, 2019.
Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A. Smith. All that’s ‘human’ is not gold: Evaluating human evaluation of generated text. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 7282–7296, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.565. URL https://aclanthology.org/2021.acl-long.565.
Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018.
Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.
Jiawen Deng, Hao Sun, Zhexin Zhang, Jiale Cheng, and Minlie Huang. Recent advances towards safe, responsible, and moral dialogue systems: A survey. arXiv preprint arXiv:2302.09270, 2023.
Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam, and Marc’Aurelio Ranzato. Residual energy-based models for text generation. In International Conference on Learning Representations, 2019.
Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya Krishna, Yada Pruksachatkun, Kai-Wei Chang, and Rahul Gupta. BOLD: Dataset and metrics for measuring biases in open-ended language generation. In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency, pages 862–872, 2021.
Emily Dinan, Gavin Abercrombie, A Stevie Bergman, Shannon Spruit, Dirk Hovy, Y-Lan Boureau, and Verena Rieser. Anticipating safety issues in e2e conversational ai: Framework and tooling. arXiv preprint arXiv:2107.03451, 2021.
Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the colossal clean crawled corpus. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1286–1305, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.98. URL https://aclanthology.org/2021.emnlp-main. 98.
Jesse Dodge, Taylor Prewitt, Remi Tachet Des Combes, Erika Odmark, Roy Schwartz, Emma Strubell, Alexan- dra Sasha Luccioni, Noah A Smith, Nicole DeCario, and Will Buchanan. Measuring the carbon intensity of ai in cloud instances. arXiv preprint arXiv:2206.05229, 2022.
Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma, Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen, and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 5547–5569. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/du22c.html.
Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with V-usable information. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 5988–6008. PMLR, 17–23 Jul 2022.
Prakhar Ganesh, Hongyan Chang, Martin Strobel, and Reza Shokri. On the impact of machine learning randomness on group fairness. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pages 1789–1800, 2023.
Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858, 2022.
Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas Liao, Kamile ̇ Lukošiu ̄te ̇, Anna Chen, Anna Goldie, Azalia Mirhoseini, Catherine Olsson, Danny Hernandez, et al. The capacity for moral self-correction in large language models. arXiv preprint arXiv:2302.07459, 2023.
Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.5371628.
Sebastian Gehrmann, Elizabeth Clark, and Thibault Sellam. Repairing the cracked foundation: A survey of obstacles in evaluation practices for generated text. Journal of Artificial Intelligence Research, 77:103–166, 2023.
Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd-workers for text-annotation tasks. arXiv preprint arXiv:2303.15056, 2023.
Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and Dawn Song. The false promise of imitating proprietary llms. arXiv preprint arXiv:2305.15717, 2023.
Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S Lee, David Brooks, and Carole-Jean Wu. Act: designing sustainable computer systems with an architectural carbon modeling tool. In Proceedings of the 49th Annual International Symposium on Computer Architecture, pages 784–799, 2022a.
Udit Gupta, Young Guen Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin Sean Lee, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Chasing carbon: The elusive environmental footprint of computing. IEEE Micro, 2022b.
Kilem L. Gwet. Handbook of inter-rater reliability: The definitive guide to measuring the extent of agreement among raters. Advanced Analytics, LLC, 2014.
Kilem Li Gwet. Computing inter-rater reliability and its variance in the presence of high agreement. British Journal of Mathematical and Statistical Psychology, 61(1):29–48, 2008.
Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar. Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detection. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3309–3326, 2022.
Alex Havrilla. synthetic-instruct-gptj-pairwise. https://huggingface.co/datasets/Dahoas/ synthetic-instruct-gptj-pairwise.
Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.
Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong Song, and Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.
Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874, 2021.
Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.
Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id= rygGQyrFvH.
Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning language models with (almost) no human labor. arXiv preprint arXiv:2212.09689, 2022.
Saghar Hosseini, Hamid Palangi, and Ahmed Hassan Awadallah. An empirical study of metrics to measure representational harms in pre-trained language models. arXiv preprint arXiv:2301.09211, 2023.
Fan Huang, Haewoon Kwak, and Jisun An. Is chatgpt better than human annotators? potential and limitations of chatgpt in explaining implicit hate speech. arXiv preprint arXiv:2302.07736, 2023.
Clayton Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the international AAAI conference on web and social media, volume 8, pages 216–225, 2014.
Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.
Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.
Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens, Ab- dullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, et al. Openassistant conversations– democratizing large language model alignment. arXiv preprint arXiv:2304.07327, 2023.
Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L Buckley, Jason Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human preferences. arXiv preprint arXiv:2302.08582, 2023.
Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing, 2018.
Sachin Kumar, Vidhisha Balachandran, Lucille Njoo, Antonios Anastasopoulos, and Yulia Tsvetkov. Language generation models can cause harm: So what can we do about it? an actionable survey. arXiv preprint arXiv:2210.07700, 2022.
Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:453–466, 2019.
Nathan Lambert, Lewis Tunstall, Nazneen Rajani, and Tristan Thrush. Huggingface h4 stack exchange preference dataset. 2023. URL https://huggingface.co/datasets/HuggingFaceH4/ stack-exchange-preferences.
Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2022.
Kevin Lee and Shubho Sengupta. Introducing the ai research supercluster — meta’s cutting-edge ai super- computer for ai research, 2022. URL https://ai.facebook.com/blog/ai-rsc/.
Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods. arXiv preprint arXiv:2109.07958, 2021.
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective instruction tuning. arXiv preprint arXiv:2301.13688, 2023.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651, 2023.
Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al. Augmented language models: a survey. arXiv preprint arXiv:2302.07842, 2023.
Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.
Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting. CoRR, abs/1810.03993, 2018. URL http://arxiv.org/abs/1810.03993.
MosaicML NLP Team et al. Introducing mpt-7b: A new standard for open-source, commercially usable llms, 2023.
Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Lonbrown Ouyanbrown, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt: Browser-assisted question-answering with human feedback. In arXiv, 2021.
Cuong V. Nguyen, Alessandro Achille, Michael Lam, Tal Hassner, Vijay Mahadevan, and Stefano Soatto. Toward understanding catastrophic forgetting in continual learning. arXiv preprint arXiv:1908.01091, 2019.
OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774. URL https://doi.org/10.48550/arXiv.2303.08774.
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.
David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350, 2021.
Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon llm: Outperforming curated corpora with web data, and web data only, 2023.
Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference, 2022.
Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Al- bin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mel- lor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Mas- son d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training gopher, 2022.
Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for squad. arXiv preprint arXiv:1806.03822, 2018.
Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic forgetting in neural networks. In International Conference on Learning Representations, 2021.
Stephen Roller, Y-Lan Boureau, Jason Weston, Antoine Bordes, Emily Dinan, Angela Fan, David Gunning, Da Ju, Margaret Li, Spencer Poff, et al. Open-domain conversational agents: Current progress, open problems, and future directions. arXiv preprint arXiv:2006.12442, 2020.
Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.
Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.
Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.
Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano. Discrim- inative adversarial search for abstractive summarization. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 8555–8564. PMLR, 13–18 Jul 2020a. URL https://proceedings.mlr.press/v119/ scialom20a.html.
Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano. Coldgans: Taming language gans with cautious sampling strategies. Advances in Neural Information Processing Systems, 33:18978–18989, 2020b.
Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units, 2016.
Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong, Mor Geva, Jonathan Berant, and Omer Levy. SCROLLS: Standardized CompaRison over long language sequences. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 12007–12021, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.823.
Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019.
Noam Shazeer. Glu variants improve transformer, 2020.
Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism, 2019.
Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson. The curse of recursion: Training on generated data makes models forget. arXiv preprint arxiv:2305.17493, 2023.
Eric Michael Smith and Adina Williams. Hi, my name is martha: Using names to measure and mitigate bias in generative dialogue models. arXiv preprint arXiv:2109.03300, 2021.
Eric Michael Smith, Melissa Hall, Melanie Kambadur, Eleonora Presani, and Adina Williams. “i’m sorry to hear that”: Finding new biases in language models with a holistic descriptor dataset. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9180–9211, 2022.
Irene Solaiman, Zeerak Talat, William Agnew, Lama Ahmad, Dylan Baker, Su Lin Blodgett, Hal Daumé III, Jesse Dodge, Ellie Evans, Sara Hooker, et al. Evaluating the social impact of generative ai systems in systems and society. arXiv preprint arXiv:2306.05949, 2023.
Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In NeurIPS, 2020.
Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding, 2022.
Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of- thought can solve them. arXiv preprint arXiv:2210.09261, 2022.
Gabriel Synnaeve, Jonas Gehring, Zeming Lin, Daniel Haziza, Nicolas Usunier, Danielle Rothermel, Vegard Mella, Da Ju, Nicolas Carion, Laura Gustafson, et al. Growing up together: Structured exploration for large action spaces. 2019.
Yarden Tal, Inbal Magar, and Roy Schwartz. Fewer errors, but more stereotypes? the effect of model size on gender bias. In Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP), pages 112–120, Seattle, Washington, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.gebnlp-1.13. URL https://aclanthology.org/2022.gebnlp-1.13.
Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.
Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/ tatsu-lab/stanford_alpaca, 2023.
Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science. arXiv preprint arXiv:2211.09085, 2022.
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’elien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.
Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.
Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Han- naneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions. arXiv preprint arXiv:2212.10560, 2022.
Michael Webb. The impact of artificial intelligence on the labor market. Available at SSRN 3482150, 2019.
Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International Conference on Learning Representations, 2021.
Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International Conference on Learning Representations, 2022a. URL https://openreview.net/forum?id=gEZrGCozdqR.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems, 35:24824–24837, 2022b.
Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from language models. arXiv preprint arXiv:2112.04359, 2021.
Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John Mellor, Lisa Anne Hendricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. Challenges in detoxifying language models, 2021.
Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental implications, challenges and opportunities. Proceedings of Machine Learning and Systems, 4:795–813, 2022.
Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan. Recipes for safety in open-domain chatbots, 2021.
Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019a.
Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi. Defending against neural fake news. Advances in neural information processing systems, 32, 2019b.
Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.
Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.
Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, and Shen Li. Pytorch fsdp: Experiences on scaling fully sharded data parallel, 2023.
Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models. arXiv preprint arXiv:2304.06364, 2023.
Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206, 2023.
Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh International Conference on Learning Representations, 2022.
Terry Yue Zhuo, Yujin Huang, Chunyang Chen, and Zhenchang Xing. Exploring ai ethics of chatgpt: A diagnostic analysis. arXiv preprint arXiv:2301.12867, 2023.
13 Training language models to follow instructions with human feedback
Ouyang, Long, et al. Advances in Neural Information Processing Systems 35 (2022): 27730-27744.
https://proceedings.neurips.cc/paper/2022
Reference on 13
References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy optimization. In International Conference on Machine Learning, pages 22–31. PMLR.
Anthony, T., Tian, Z., and Barber, D. (2017). Thinking fast and slow with deep learning and tree search. arXiv preprint arXiv:1705.08439.
Aribandi, V., Tay, Y., Schuster, T., Rao, J., Zheng, H. S., Mehta, S. V., Zhuang, H., Tran, V. Q., Bahri, D., Ni, J., et al. (2021). Ext5: Towards extreme multi-task scaling for transfer learning. arXiv preprint arXiv:2111.10952.
Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al. (2021). A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861.
Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A., and Bengio, Y. (2016). An actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086.
Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., et al. (2022). Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862.
Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages 610–623.
Böhm, F., Gao, Y., Meyer, C. M., Shapira, O., Dagan, I., and Gurevych, I. (2019). Better rewards yield better summaries: Learning to summarise without references. arXiv preprint arXiv:1909.01214.
Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, C., Koehn, P., Logacheva, V., Monz, C., Negri, M., Post, M., Scarton, C., Specia, L., and Turchi, M. (2015). Findings of the 2015 workshop on statistical machine translation. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 1–46, Lisbon, Portugal. Association for Computational Linguistics.
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
Buchanan, B., Lohn, A., Musser, M., and Sedova, K. (2021). Truth, lies, and automation. Technical report, Center for the Study of Emerging Technology.
Caliskan, A., Bryson, J. J., and Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334):183–186.
Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, U., et al. (2021). Extracting training data from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pages 2633–2650.
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. (2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.
Cho, W. S., Zhang, P., Zhang, Y., Li, X., Galley, M., Brockett, C., Wang, M., and Gao, J. (2018). Towards coherent and cohesive long-form text generation. arXiv preprint arXiv:1811.00511.
Choi, E., He, H., Iyyer, M., Yatskar, M., Yih, W.-t., Choi, Y., Liang, P., and Zettlemoyer, L. (2018). Quac: Question answering in context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2174–2184.
Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017). Deep reinforce- ment learning from human preferences. In Advances in Neural Information Processing Systems, pages 4299–4307.
Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E., Molino, P., Yosinski, J., and Liu, R. (2019). Plug and play language models: A simple approach to controlled text generation. arXiv preprint arXiv:1912.02164.
Dhamala, J., Sun, T., Kumar, V., Krishna, S., Pruksachatkun, Y., Chang, K.-W., and Gupta, R. (2021). Bold: Dataset and metrics for measuring biases in open-ended language generation. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages 862–872.
Dinan, E., Humeau, S., Chintagunta, B., and Weston, J. (2019). Build it break it fix it for dialogue safety: Robustness from adversarial human attack. arXiv preprint arXiv:1908.06083.
Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S., and Gardner, M. (2019). Drop: A read- ing comprehension benchmark requiring discrete reasoning over paragraphs. arXiv preprint arXiv:1903.00161.
Fedus, W., Zoph, B., and Shazeer, N. (2021). Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961.
Gabriel, I. (2020). Artificial intelligence, values, and alignment. Minds and machines, 30(3):411–437. Gehman, S., Gururangan, S., Sap, M., Choi, Y., and Smith, N. A. (2020). Realtoxicityprompts:
Evaluating neural toxic degeneration in language models. arXiv preprint arXiv:2009.11462. Hancock, B., Bordes, A., Mazare, P.-E., and Weston, J. (2019). Learning from dialogue after
deployment: Feed yourself, chatbot! arXiv preprint arXiv:1901.05415.
Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and Amodei, D. (2018). Reward learning from human preferences and demonstrations in atari. In Advances in neural information processing systems, pages 8011–8023.
Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C., Lapedriza, A., Jones, N., Gu, S., and Picard, R. (2019). Way off-policy batch deep reinforcement learning of implicit human preferences in dialog. arXiv preprint arXiv:1907.00456.
Kenton, Z., Everitt, T., Weidinger, L., Gabriel, I., Mikulik, V., and Irving, G. (2021). Alignment of language agents. arXiv preprint arXiv:2103.14659.
Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C., and Socher, R. (2019). Ctrl: A conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858.
Khashabi, D., Min, S., Khot, T., Sabharwal, A., Tafjord, O., Clark, P., and Hajishirzi, H. (2020). Uni- fiedqa: Crossing format boundaries with a single qa system. arXiv preprint arXiv:2005.00700.
Kirk, H., Jun, Y., Iqbal, H., Benussi, E., Volpin, F., Dreyer, F. A., Shtedritski, A., and Asano, Y. M. (2021). How true is gpt-2? an empirical analysis of intersectional occupational biases. arXiv preprint arXiv:2102.04130.
Krause, B., Gotmare, A. D., McCann, B., Keskar, N. S., Joty, S., Socher, R., and Rajani, N. F. (2020). Gedi: Generative discriminator guided sequence generation. arXiv preprint arXiv:2009.06367.
Kreutzer, J., Khadivi, S., Matusov, E., and Riezler, S. (2018). Can neural machine translation be improved with user feedback? arXiv preprint arXiv:1804.05958.
Lawrence, C. and Riezler, S. (2018). Improving a neural semantic parser by counterfactual learning from human bandit feedback. arXiv preprint arXiv:1805.01252.
Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and Legg, S. (2018). Scalable agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871.
Liang, P. P., Wu, C., Morency, L.-P., and Salakhutdinov, R. (2021). Towards understanding and mitigating social biases in language models. In International Conference on Machine Learning, pages 6565–6576. PMLR.
Lin, S., Hilton, J., and Evans, O. (2021). Truthfulqa: Measuring how models mimic human falsehoods. arXiv preprint arXiv:2109.07958.
Manela, D. d. V., Errington, D., Fisher, T., van Breugel, B., and Minervini, P. (2021). Stereotype and skew: Quantifying gender bias in pre-trained and fine-tuned language models. arXiv preprint arXiv:2101.09688.
Mishra, S., Khashabi, D., Baral, C., and Hajishirzi, H. (2021). Cross-task generalization via natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773.
Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al. (2021). Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332.
Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al. (2016). Abstractive text summarization using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023.
Nangia, N., Vania, C., Bhalerao, R., and Bowman, S. R. (2020). CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Online. Association for Computational Linguistics.
Ngo, H., Raterink, C., Araújo, J. G., Zhang, I., Chen, C., Morisot, A., and Frosst, N. (2021). Mitigating harm in language models with conditional-likelihood filtration. arXiv preprint arXiv:2108.07790.
Perez, E., Karamcheti, S., Fergus, R., Weston, J., Kiela, D., and Cho, K. (2019). Finding generalizable evidence by learning to convince q&a models. arXiv preprint arXiv:1909.05863.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9.
Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., Aslanides, J., Henderson, S., Ring, R., Young, S., et al. (2021). Scaling language models: Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446.
Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable questions for squad. arXiv preprint arXiv:1806.03822.
Rudinger, R., Naradowsky, J., Leonard, B., and Van Durme, B. (2018). Gender bias in coreference resolution. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Louisiana. Association for Computational Linguistics.
Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L., Raja, A., et al. (2021). Multitask prompted training enables zero-shot task generalization. arXiv preprint arXiv:2110.08207.
Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-dimensional continuous control using generalized advantage estimation. In Proceedings of the International Conference on Learning Representations (ICLR).
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al. (2017). Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing, pages 1631–1642.
Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., Radford, A., Krueger, G., Kim, J. W., Kreps, S., et al. (2019). Release strategies and the social impacts of language models. arXiv preprint arXiv:1908.09203.
Solaiman, I. and Dennison, C. (2021). Process for adapting language models to society (palms) with values-targeted datasets. arXiv preprint arXiv:2106.10328.
Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe, R., Voss, C., Radford, A., Amodei, D., and Christiano, P. (2020). Learning to summarize from human feedback. arXiv preprint arXiv:2009.01325.
Tamkin, A., Brundage, M., Clark, J., and Ganguli, D. (2021). Understanding the capabilities, limitations, and societal impact of large language models. arXiv preprint arXiv:2102.02503.
Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., et al. (2022). Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239.
Völske, M., Potthast, M., Syed, S., and Stein, B. (2017). Tl; dr: Mining reddit to learn automatic summarization. In Proceedings of the Workshop on New Frontiers in Summarization, pages 59–63.
Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2019). Superglue: A stickier benchmark for general-purpose language understanding systems. arXiv preprint arXiv:1905.00537.
Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., and Le, Q. V. (2021). Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652.
Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., Cheng, M., Glaese, M., Balle, B., Kasirzadeh, A., et al. (2021). Ethical and social risks of harm from language models. arXiv preprint arXiv:2112.04359.
Wu, J., Ouyang, L., Ziegler, D. M., Stiennon, N., Lowe, R., Leike, J., and Christiano, P. (2021). Recursively summarizing books with human feedback. arXiv preprint arXiv:2109.10862.
Xu, J., Ju, D., Li, M., Boureau, Y.-L., Weston, J., and Dinan, E. (2020). Recipes for safety in open-domain chatbots. arXiv preprint arXiv:2010.07079.
Yi, S., Goel, R., Khatri, C., Cervone, A., Chung, T., Hedayatnia, B., Venkatesh, A., Gabriel, R., and Hakkani-Tur, D. (2019). Towards coherent and engaging spoken dialog response generation using automatic conversation evaluators. arXiv preprint arXiv:1904.13015.
Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y. (2019). Hellaswag: Can a machine really finish your sentence? In Association for Computational Linguistics, pages 4791–4800.
Zhou, W. and Xu, K. (2020). Learning to compare for better training and evaluation of open domain natural language generation models. arXiv preprint arXiv:2002.05058.
Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D., Christiano, P., and Irving, G. (2019). Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593.
14 SELF-INSTRUCT
Wang, Yizhong, et al. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions arXiv preprint arXiv:2212.10560 (2022).
https://arxiv.org/pdf/2212.10560
Reference on 14
References
Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto, Emilie Devijver, and Yury Maximov. 2022. Self- training: A survey. arXiv preprint arXiv:2202.12040.
Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Al- bert Webson, Colin Raffel, Nihal V Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, et al. 2022. PromptSource: An Integrated Development Environment and Repository for Nat- ural Language Prompts. In Annual Meeting of the Association for Computational Linguistics (ACL) - System Demonstrations.
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, and et al. 2020. Language models are few-shot learners. In Advances in Neural Information Processing Systems (NeurIPS).
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416.
Jingfei Du, Édouard Grave, Beliz Gunel, Vishrav Chaud- hary, Onur Celebi, Michael Auli, Veselin Stoyanov, and Alexis Conneau. 2021. Self-training improves pre-training for natural language understanding. In
Conference of the North American Chapter of the As- sociation for Computational Linguistics (NAACL): Human Language Technologies, pages 5408–5418.
Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chan- dar, Soroush Vosoughi, Teruko Mitamura, and Ed- uard Hovy. 2021. A survey of data augmentation approaches for nlp. In Annual Meeting of the Asso- ciation for Computational Linguistics (ACL) ACL- IJCNLP - Findings, pages 968–988.
Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. 2018. Speaker-follower models for vision-and-language navigation. In Advances in Neural Information Processing Systems (NeurIPS).
Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. 2019. Revisiting self-training for neural sequence generation. In International Conference on Learning Representations (ICLR).
Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge in a neural network. In Advances in Neural Information Processing Systems (NeurIPS) Workshop on Deep Learning.
Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. 2022a. Unnatural instructions: Tuning lan- guage models with (almost) no human labor. arXiv preprint arXiv:2212.09689.
Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. 2022b. Instruction induction: From few examples to natural language task descriptions. arXiv preprint arXiv:2205.10782.
Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022. Large language models can self-improve. arXiv preprint arXiv:2210.11610.
Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. 2022. Large language models struggle to learn long-tail knowledge. arXiv preprint arXiv:2211.08411.
Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi- lingual constituency parsing with self-attention and pre-training. In Annual Meeting of the Association for Computational Linguistics (ACL), pages 3499–3505.
Nikita Kitaev and Dan Klein. 2018. Constituency pars- ing with a self-attentive encoder. In Annual Meet- ing of the Association for Computational Linguistics (ACL), pages 2676–2686.
Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt tun- ing. In Conference on Empirical Methods in Natural Language Processing (EMNLP).
Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and Yejin Choi. 2022. WANLI: Worker and ai collabora- tion for natural language inference dataset creation.
In Conference on Empirical Methods in Natural Lan- guage Processing (EMNLP) - Findings.
Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn. 2022. Teaching small language models to reason. arXiv preprint arXiv:2212.08410.
Dheeraj Mekala, Tu Vu, Timo Schick, and Jingbo Shang. 2022. Leveraging qa datasets to improve generative data augmentation. arXiv preprint arXiv:2205.12604.
Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek Abdelzaher, and Jiawei Han. 2023. Tun- ing language models as training data generators for augmentation-enhanced few-shot learning. In Inter- national Conference on Machine Learning (ICML).
So Yeon Min, Devendra Singh Chaplot, Pradeep Raviku- mar, Yonatan Bisk, and Ruslan Salakhutdinov. 2022. FILM: Following Instructions in Language with Mod- ular Methods. In International Conference on Learn- ing Representations (ICLR).
Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022. Cross-Task Generaliza- tion via Natural Language Crowdsourcing Instruc- tions. In Annual Meeting of the Association for Com- putational Linguistics (ACL).
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car- roll L Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training Language Models to Follow Instruc- tions with Human Feedback. In Advances in Neural Information Processing Systems (NeurIPS).
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the lim- its of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research (JMLR).
Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. 2022. Impact of pretraining term frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206.
Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. In Advances in Neural Information Processing Systems (NeurIPS) Workshop on Energy Efficient Machine Learning and Cognitive Computing.
Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea San- tilli, Thibault Fevry, Jason Alan Fries, Ryan Tee- han, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. 2022. Multi- task Prompted Training Enables Zero-Shot Task Gen- eralization. In International Conference on Learning Representations (ICLR).
Timo Schick and Hinrich Schütze. 2021. Generating datasets with pretrained language models. In Con- ference on Empirical Methods in Natural Language Processing (EMNLP).
Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks. In IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR).
Chandan Singh, John X Morris, Jyoti Aneja, Alexan- der M Rush, and Jianfeng Gao. 2022. Explaining pat- terns in data with language models via interpretable autoprompting. arXiv preprint arXiv:2210.01848.
Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming Yang, and Chuang Gan. 2023. Principle-driven self- alignment of language models from scratch with minimal human supervision. arXiv preprint arXiv:2305.03047.
Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford al- paca: An instruction-following llama model. https: //github.com/tatsu-lab/stanford_alpaca.
Yizhong Wang, Swaroop Mishra, Pegah Alipoor- molabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Is- han Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Ku- mar Pal, Mehrad Moradshahi, Mihir Parmar, Mi- rali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, and Daniel Khashabi. 2022. Super-naturalinstructions: Generalization via declarative instructions on 1600+ tasks. In Confer- ence on Empirical Methods in Natural Language Pro- cessing (EMNLP).
Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao. 2021. Towards zero-label language learning. arXiv preprint arXiv:2109.09193.
Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. 2022. Finetuned Language Models are Zero-Shot Learners. In International Conference on Learning Representations (ICLR).
Nathaniel Weir, Xingdi Yuan, Marc-Alexandre Côté, Matthew Hausknecht, Romain Laroche, Ida Momen- nejad, Harm Van Seijen, and Benjamin Van Durme. 2022. One-Shot Learning from a Demonstration with Hierarchical Latent Language. arXiv preprint arXiv:2203.04806.
Sean Welleck, Ximing Lu, Peter West, Faeze Brah- man, Tianxiao Shen, Daniel Khashabi, and Yejin Choi. 2023. Generating sequences by learning to self-correct. In International Conference on Learn- ing Representations (ICLR).
Orion Weller, Nicholas Lourie, Matt Gardner, and Matthew Peters. 2020. Learning from Task Descrip- tions. In Conference on Empirical Methods in Natu- ral Language Processing (EMNLP).
Peter West, Chandra Bhagavatula, Jack Hessel, Jena D Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, Sean Welleck, and Yejin Choi. 2021. Symbolic knowledge distillation: from general language mod- els to commonsense models. In Conference of the North American Chapter of the Association for Com- putational Linguistics (NAACL).
Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. 2020. Self-training with noisy student improves imagenet classification. In IEEE Confer- ence on Computer Vision and Pattern Recognition (CVPR), pages 10687–10698.
Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. 2023. Baize: An open-source chat model with parameter-efficient tuning on self-chat data. arXiv preprint arXiv:2304.01196.
Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang, Chandra Bhagavatula, Yejin Choi, and Doug Downey. 2020. Generative data augmentation for common- sense reasoning. In Conference on Empirical Meth- ods in Natural Language Processing (EMNLP) - Find- ings.
Seonghyeon Ye, Doyoung Kim, Joel Jang, Joongbo Shin, and Minjoon Seo. 2022. Guess the instruction! making language models stronger zero-shot learners. arXiv preprint arXiv:2210.02969.
Eric Zelikman, Jesse Mu, Noah D Goodman, and Yuhuai Tony Wu. 2022. STar: Self-taught reasoner bootstrapping reasoning with reasoning. In Advances in Neural Information Processing Systems (NeurIPS).
Xuandong Zhao, Siqi Ouyang, Zhiguo Yu, Ming Wu, and Lei Li. 2022. Pre-trained language models can be fully zero-shot learners. arXiv preprint arXiv:2212.06950.
Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg- Kirkpatrick, and Graham Neubig. 2022a. Prompt Consistency for Zero-Shot Task Generalization. In Conference on Empirical Methods in Natural Lan- guage Processing (EMNLP) - Findings.
Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. 2022b. Large language models are human-level prompt engineers. arXiv preprint arXiv:2211.01910.
15 "Meta-learning via language model in-context tuning
Chen, Yanda, et al. "Meta-learning via language model in-context tuning." arXiv preprint arXiv:2110.07814 (2021).
https://arxiv.org/pdf/2110.07814
Reference on 15
Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, and Quoc V. Le. 2020. Towards a human-like open- domain chatbot.
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and Sonal Gupta. 2021. Muppet: Massive multi-task representations with pre-finetuning.
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019. Massively multilingual neural machine translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Compu- tational Linguistics: Human Language Technolo- gies, Volume 1 (Long and Short Papers), pages 3874–3884, Minneapolis, Minnesota. Association for Computational Linguistics.
Antreas Antoniou, Harrison Edwards, and Amos Storkey. 2019. How to train your MAML. In Inter- national Conference on Learning Representations.
Trapit Bansal, Rishikesh Jha, and Andrew McCallum. 2020. Learning to few-shot learn across diverse natural language classification tasks. In Proceed- ings of the 28th International Conference on Com- putational Linguistics, pages 5108–5123, Barcelona, Spain (Online). International Committee on Compu- tational Linguistics.
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc- Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learn- ers.
Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car- bonell, Quoc Le, and Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa- tional Linguistics, pages 2978–2988, Florence, Italy. Association for Computational Linguistics.
Shumin Deng, Ningyu Zhang, Jiaojian Kang, Yichi Zhang, Wei Zhang, and Huajun Chen. 2020. Meta- learning with dynamic-memory-based prototypical network for few-shot event detection. Proceedings of the 13th International Conference on Web Search and Data Mining.
Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos. 2019. Investigating meta-learning algorithms for low-resource natural language understanding tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 1192– 1197, Hong Kong, China. Association for Computa- tional Linguistics.
Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of deep networks.
Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot learners.
Ruiying Geng, Binhua Li, Yongbin Li, Xiaodan Zhu, Ping Jian, and Jian Sun. 2019. Induction networks for few-shot text classification. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3904–3913, Hong Kong, China. Association for Computational Linguistics.
Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li, and Kyunghyun Cho. 2018. Meta-learning for low- resource neural machine translation. In Proceed- ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3622–3631, Brussels, Belgium. Association for Computational Linguistics.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recog- nition. In 2016 IEEE Conference on Computer Vi- sion and Pattern Recognition (CVPR), pages 770– 778.
Dan Hendrycks and Thomas Dietterich. 2019. Bench- marking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261.
Nithin Holla, Pushkar Mishra, Helen Yannakoudakis, and Ekaterina Shutova. 2020. Learning to learn to disambiguate: Meta-learning for few-shot word sense disambiguation. In Findings of the Associa- tion for Computational Linguistics: EMNLP 2020, pages 4517–4533, Online. Association for Compu- tational Linguistics.
Xiang Jiang, Mohammad Havaei, Gabriel Chartrand, Hassan Chouaib, Thomas Vincent, Andrew Jesson, Nicolas Chapados, and Stan Matwin. 2019. Atten- tive task-agnostic meta-learning for few-shot text classification.
Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How Can We Know What Language Models Know? Transactions of the Association for Computational Linguistics, 8:423–438.
Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. 2019. Testing robustness against unforeseen adversaries. arXiv preprint arXiv:1908.08016.
Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.
Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Han- naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for- mat boundaries with a single QA system. In Find- ings of the Association for Computational Linguis- tics: EMNLP 2020, pages 1896–1907, Online. As- sociation for Computational Linguistics.
Brenden Lake and Marco Baroni. 2018. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. In In- ternational conference on machine learning, pages 2873–2882. PMLR.
Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenen- baum, and Samuel J. Gershman. 2016. Building ma- chines that learn and think like people.
Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. KaggleDBQA: Realistic evalu- ation of text-to-SQL parsers. In Proceedings of the 59th Annual Meeting of the Association for Compu- tational Linguistics and the 11th International Joint Conference on Natural Language Processing (Vol- ume 1: Long Papers), pages 2261–2273, Online. As- sociation for Computational Linguistics.
Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691.
Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 4582–4597, Online. Association for Computational Linguistics.
Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. 2021. What makes good in-context examples for gpt-3?
Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian- feng Gao. 2019. Multi-task deep neural networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 4487–4496, Florence, Italy. Association for Computational Linguistics.
Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han- naneh Hajishirzi. 2021. Metaicl: Learning to learn in context. arXiv preprint arXiv:2110.15943.
Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2021. Cross-task general- ization via natural language crowdsourcing instruc- tions.
Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-learning algorithms.
Dmitry Nikolaev, Ofir Arviv, Taelin Karidi, Neta Ken- neth, Veronika Mitnik, Lilja Maria Saeboe, and Omri Abend. 2020. Fine-grained analysis of cross- linguistic syntactic divergences. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1159–1176, On- line. Association for Computational Linguistics.
Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021. True few-shot learning with language models.
Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language models as knowl- edge bases? In Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 2463–2473, Hong Kong, China. As- sociation for Computational Linguistics.
Nina Poerner, Ulli Waltinger, and Hinrich Schütze. 2020. E-BERT: Efficient-yet-effective entity em- beddings for BERT. In Findings of the Associa- tion for Computational Linguistics: EMNLP 2020, pages 803–818, Online. Association for Computa- tional Linguistics.
Guanghui Qin and Jason Eisner. 2021. Learning how to ask: Querying LMs with mixtures of soft prompts. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 5203–5212, Online. Association for Compu- tational Linguistics.
Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.
Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. 2019. Meta-learning with im- plicit gradients. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.
Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. 2019. Distributionally robust neu- ral networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731.
Timo Schick and Hinrich Schütze. 2021a. Exploiting cloze-questions for few-shot text classification and natural language inference. In Proceedings of the 16th Conference of the European Chapter of the As- sociation for Computational Linguistics: Main Vol- ume, pages 255–269, Online. Association for Com- putational Linguistics.
Timo Schick and Hinrich Schütze. 2021b. It’s not just size that matters: Small language models are also few-shot learners. In Proceedings of the 2021 Con- ference of the North American Chapter of the Asso- ciation for Computational Linguistics: Human Lan- guage Technologies, pages 2339–2352, Online. As- sociation for Computational Linguistics.
David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre, George Driessche, Ju- lian Schrittwieser, Ioannis Antonoglou, Veda Pan- neershelvam, Marc Lanctot, Sander Dieleman, Do- minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Ko- ray Kavukcuoglu, Thore Graepel, and Demis Has- sabis. 2016. Mastering the game of go with deep neural networks and tree search. Nature, 529:484– 489.
Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken- ton Lee. 2020. Exploring unexplored generalization challenges for cross-database semantic parsing. In Proceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 8372– 8388, Online. Association for Computational Lin- guistics.
Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Linformer: Self-attention with linear complexity.
Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An- drew M. Dai, and Quoc V. Le. 2021. Finetuned lan- guage models are zero-shot learners.
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Huggingface’s transformers: State-of-the-art natural language processing.
Mitchell Wortsman, Gabriel Ilharco, Mike Li, Jong Wook Kim, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig Schmidt. 2021. Robust fine-tuning of zero-shot models. arXiv preprint arXiv:2109.01903.
Congying Xia, Wenpeng Yin, Yihao Feng, and Philip Yu. 2021. Incremental few-shot text classification with multi-round new classes: Formulation, dataset and system. In Proceedings of the 2021 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, pages 1351–1360, Online. As- sociation for Computational Linguistics.
Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021. Crossfit: A few-shot learning challenge for cross-task generalization in nlp. arXiv:2104.08835. arXiv preprint
Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald Tesauro, Haoyu Wang, and Bowen Zhou. 2018. Diverse few-shot text clas- sification with multiple metrics. In Proceedings of the 2018 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Pa- pers), pages 1206–1215, New Orleans, Louisiana. Association for Computational Linguistics.
Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before use: Improv- ing few-shot performance of language models.
Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. 2021. Adapting language models for zero-shot learning by meta-tuning on dataset and prompt col- lections.
16
Wei, Jerry, et al. "Symbol tuning improves in-context learning in language models." arXiv preprint arXiv:2305.08298 (2023).
https://arxiv.org/pdf/2305.08298
Rererence on 16
Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is in-context learning? Investigations with linear models. In International Conference on Learning Representations, 2023. URL https://arxiv.org/abs/2211.15661.
Neel Alex, Eli Lifland, Lewis Tunstall, Abhishek Thakur, Pegah Maham, C. Jess Riedel, Emmie Hine, Carolyn Ashurst, Paul Sedille, Alexis Carlier, Michael Noetel, and Andreas Stuhlmüller. RAFT: A real-world few-shot text classification benchmark. In Conference on Neural Information Processing Systems, 2021. URL https://arxiv.org/abs/2109.14076.
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti. SemEval-2019 Task 5: Multilingual detection of hate speech against immigrants and women in Twitter. In International Workshop on Semantic Evaluation, 2019. URL https://www.aclweb.org/anthology/S19-2007.
Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about physical commonsense in natural language. In Conference of the Association for the Advancement of Artificial Intelligence, 2020. URL https://arxiv.org/abs/1911.11641.
Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. In Conference on Empirical Methods in Natural Language Processing, 2015. URL https://aclanthology.org/D15-1075/.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In Conference on Neural Information Processing Systems, 2020. URL https://arxiv.org/abs/2005.14165.
Zihang Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. Quora question pairs, 2017. URL
https://www.kaggle.com/c/quora-question-pairs.
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, et al. PaLM: Scaling language modeling with Pathways, 2022. URL https://arxiv.org/abs/2204.02311.
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.
Alexis Conneau and Douwe Kiela. SentEval: An evaluation toolkit for universal sentence rep- resentations. In Conference on Language Resources and Evaluation, 2018. URL http: //arxiv.org/abs/1803.05449.
Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can GPT learn in- context? Language models secretly perform gradient descent as meta-optimizers. In Workshop on Understanding Foundation Models at the International Conference on Learning Representations, 2023. URL https://arxiv.org/abs/2212.10559.
Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn in- context? A case study of simple function classes. In Conference on Neural Information Processing Systems, 2022. URL https://arxiv.org/abs/2208.01066.
Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In International Conference on Learning Representations, 2021. URL https://arxiv.org/abs/2009.03300.
Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff Young, Xiang Zhou, Zongwei Zhou, and David Patterson. TPU v4: An optically reconfigurable supercomputer for machine learning with hardware support for embeddings, 2023. URL https://arxiv.org/abs/2304.01433.
Symbol tuning improves in-context learning in language models
Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. WinoGrande: An adversarial winograd schema challenge at scale. Communications of the Association for Computing Machinery, 2021. URL https://arxiv.org/abs/1907.10641.
Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In International Conference on the Principles of Knowledge Representation and Reasoning, 2012. URL https://cdn.aaai.org/ocs/4492/4492-21843-1-PB.pdf.
Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language models. In Conference on Neural Information Processing Systems, 2022. URL https: //arxiv.org/abs/2206.14858.
Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library for natural language processing. In Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 2021. URL https://arxiv.org/abs/2109.02846.
Xin Li and Dan Roth. Learning question classifiers. In Conference on Computational Linguistics, 2002. URL https://www.aclweb.org/anthology/C02-1150.
Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes two to tango, 2022. URL https://arxiv.org/abs/2209.07686.
Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn in context. In Conference of the North American Chapter of the Association for Computational Linguistics, 2022a. URL https://arxiv.org/abs/2110.15943.
Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In Conference on Empirical Methods in Natural Language Processing, 2022b. URL https://arxiv.org/abs/2202.12837.
Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general- ization via natural language crowdsourcing instructions. In Proceedings of the Association for Computational Linguistics, 2022. URL https://arxiv.org/abs/2104.08773.
Saif Mohammad, Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu, and Colin Cherry. SemEval- 2016 Task 6: Detecting stance in tweets. In International Workshop on Semantic Evaluation, 2016. URL https://aclanthology.org/S16-1003/.
Allen Newell. Physical symbol systems. Cognitive Science, 1980. URL https:// onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0402_2.
Allen Newell and Herbert A. Simon. Computer science as empirical inquiry: Symbols and search. In Communications of the Association for Computing Machinery, 1976. URL https://dl.acm. org/doi/10.1145/360018.360022.
OpenAI. GPT-4 technical report, 2023. URL https://arxiv.org/abs/2303.08774.
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In Conference on Neural Information Processing Systems, 2022. URL https://arxiv.org/abs/2203. 02155.
Symbol tuning improves in-context learning in language models
Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the Association for Computational Linguistics, 2005. URL https://arxiv.org/abs/cs/0506075.
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to- text transformer. Journal of Machine Learning Research, 2020. URL http://jmlr.org/ papers/v21/20-074.html.
Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse? towards understanding the effectiveness of MAML. In International Conference on Learning Representations, 2020. URL https://arxiv.org/abs/1909.09157.
Janarthanan Rajendran, Alexander Irpan, and Eric Jang. Meta-learning requires meta-augmentation. In Conference on Neural Information Processing Systems, 2020. URL https://arxiv.org/ abs/2007.05549.
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine comprehension of text. In Conference on Empirical Methods in Natural Language Processing, 2016. URL https://arxiv.org/abs/1606.052504.
Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-shot paradigm. In Extended Abstracts of the Conference on Human Factors in Computing Systems, 2021. URL https://arxiv.org/abs/2102.07350.
Sara Rosenthal, Noura Farra, and Preslav Nakov. SemEval-2017 Task 4: Sentiment analysis in twitter. In International Workshop on Semantic Evaluation, 2017. URL https://arxiv.org/abs/ 1912.00741.
Joshua S. Rule, Joshua B. Tenenbaum, and Steven T. Piantadosi. The child as hacker. Trends in Cog- nitive Sciences, 2020. URL https://www.sciencedirect.com/science/article/ abs/pii/S1364661320301741.
Joshua Stewart Rule. The child as hacker: building more human-like models of learning. PhD thesis, Massachusetts Institute of Technology, 2020. URL https://dspace.mit.edu/handle/ 1721.1/129232.
Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Man- ica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush. Multitask prompted training enables zero-shot task generalization. In International Conference on Learning Representations, 2022. URL https://arxiv.org/abs/2110.08207.
Adam Santoro, Andrew K. Lampinen, Kory W. Mathewson, Timothy P. Lillicrap, and David Raposo. Symbolic behaviour in artificial intelligence, 2021. URL https://arxiv.org/abs/2102. 03406.
Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In International Conference on Machine Learning, 2018. URL https://arxiv.org/abs/ 1804.04235.
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Conference on Empirical Methods in Natural Language Processing, 2013. URL https://www.aclweb.org/anthology/D13-1170.
Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models, 2022. URL https://arxiv.org/abs/2206.04615.
Symbol tuning improves in-context learning in language models
Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging BIG- Bench tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/ abs/2210.09261.
Jan Arne Telle, José Hernández-Orallo, and Cèsar Ferri. The teaching size: computable teachers and learners for universal languages. Machine Learning, 2019. URL https://link.springer. com/article/10.1007/s10994-019-05821-2.
Cynthia Van Hee, Els Lefever, and Véronique Hoste. SemEval-2018 Task 3: Irony detection in english tweets. In International Workshop on Semantic Evaluation, 2018. URL https: //aclanthology.org/S18-1005/.
Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent, 2022. URL https://arxiv.org/abs/2212.07677.
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In BlackboxNLP Workshop at the Conference on Empirical Methods in Natural Language Processing, 2018. URL https://arxiv.org/abs/1804.07461.
Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. SuperGLUE: A stickier benchmark for general-purpose language understanding systems. In Conference on Neural Information Processing Systems, 2019. URL https://arxiv.org/abs/1905.00537.
Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun. Towards understanding chain-of-thought prompting: An empirical study of what matters, 2022. URL https://arxiv.org/abs/2212.10001.
Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their prompts? In Conference of the North American Chapter of the Association for Computational Linguistics, 2022. URL https://arxiv.org/abs/2109.01247.
Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In International Conference on Learning Representations, 2022a. URL https://arxiv.org/ abs/2109.01652.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In Conference on Neural Information Processing Systems, 2022b. URL https:// arxiv.org/abs/2201.11903.
Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning differently, 2023. URL https://arxiv.org/abs/2303.03846.
Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. CrossFit: A few-shot learning challenge for cross-task generalization in NLP. In Conference on Empirical Methods in Natural Language Processing, 2021. URL https://arxiv.org/abs/2104.08835.
Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning without memorization. In International Conference on Learning Representations, 2020. URL https://arxiv.org/abs/1912.03820.
Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. SemEval-2019 Task 6: Identifying and categorizing offensive language in social media (offenseval). In International Workshop on Semantic Evaluation, 2019. URL https://arxiv.org/abs/ 2104.04871.
Symbol tuning improves in-context learning in language models
Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In Conference on Neural Information Processing Systems, 2015. URL https: //arxiv.org/abs/1509.01626.
Yuan Zhang, Jason Baldridge, and Luheng He. PAWS: Paraphrase Adversaries from Word Scrambling. In Proceedings of the North American Chapter of the Association for Computational Linguistics, 2019. URL https://arxiv.org/abs/1904.01130.
17 Lora
Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).
https://arxiv.org/pdf/2106.09685
Reference on 17
Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. arXiv:2012.13255 [cs], December 2020. URL http://arxiv.org/abs/2012.13255.
Zeyuan Allen-Zhu and Yuanzhi Li. What Can ResNet Learn Efficiently, Going Beyond Kernels? In NeurIPS, 2019. Full version available at http://arxiv.org/abs/1905.10337.
Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep learning. arXiv preprint arXiv:2001.04413, 2020a.
Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust deep learning. arXiv preprint arXiv:2005.10190, 2020b.
Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over- parameterization. In ICML, 2019. Full version available at http://arxiv.org/abs/1811. 03962.
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari- wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs], July 2020. URL http://arxiv.org/abs/2005.14165.
Jian-Feng Cai, Emmanuel J Candes, and Zuowei Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on optimization, 20(4):1956–1982, 2010. Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017. doi: 10.18653/ v1/s17-2001. URL http://dx.doi.org/10.18653/v1/S17-2001. Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th international conference on Machine learning, ICML ’08, pp. 160–167, New York, NY, USA, July 2008. Association for Computing Machinery. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390177. URL https://doi.org/10.1145/1390156.1390177. Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando de Freitas. Predicting parameters in deep learning, 2014. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019a. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs], May 2019b. URL http://arxiv.org/abs/1810.04805. arXiv: 1810.04805. William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https://aclanthology.org/I05-5002. Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The webnlg challenge: Generating text from rdf data. In Proceedings of the 10th International Conference on Natural Language Generation, pp. 124–133, 2017. 13 Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural networks outperform kernel methods? arXiv preprint arXiv:2006.13409, 2020. Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human- annotated dialogue dataset for abstractive summarization. CoRR, abs/1911.12237, 2019. URL http://arxiv.org/abs/1911.12237. Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013. Jihun Ham and Daniel D. Lee. Grassmann discriminant analysis: a unifying view on subspace-based learning. In ICML, pp. 376–383, 2008. URL https://doi.org/10.1145/1390156. 1390204. Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. WARP: Word-level Adversarial ReProgramming. arXiv:2101.00121 [cs], December 2020. URL http://arxiv.org/abs/ 2101.00121. arXiv: 2101.00121. Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with disentangled attention, 2021. Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-Efficient Transfer Learning for NLP. arXiv:1902.00751 [cs, stat], June 2019. URL http://arxiv.org/abs/1902. 00751. Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014. Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolo
Fusi. Initialization and regularization of factorized neural layers, 2021.
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic sharding, 2020.
Brian Lester, Rami Al-Rfou, and Noah Constant. The Power of Scale for Parameter-Efficient Prompt Tuning. arXiv:2104.08691 [cs], April 2021. URL http://arxiv.org/abs/2104.08691. arXiv: 2104.08691.
Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the Intrinsic Di- mension of Objective Landscapes. arXiv:1804.08838 [cs, stat], April 2018a. URL http: //arxiv.org/abs/1804.08838. arXiv: 1804.08838.
Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv:2101.00190 [cs], January 2021. URL http://arxiv.org/abs/2101.00190.
Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent on structured data. In Advances in Neural Information Processing Systems, 2018.
Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank ap- proximation via alternating minimization. In International Conference on Machine Learning, pp. 2358–2367. PMLR, 2016.
Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized matrix sensing and neural networks with quadratic activations. In Conference On Learning The- ory, pp. 2–47. PMLR, 2018b.
Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model via parameter-efficient transfer learning. In Findings of the Association for Computational Lin- guistics: EMNLP 2020, pp. 441–459, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.41. URL https://aclanthology. org/2020.findings-emnlp.41.
14
Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. GPT Understands, Too. arXiv:2103.10385 [cs], March 2021. URL http://arxiv.org/abs/ 2103.10385. arXiv: 2103.10385.
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.
Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank hypercomplex adapter layers, 2021.
Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al. Dart: Open-domain structured data record to text generation. arXiv preprint arXiv:2007.02871, 2020.
Jekaterina Novikova, Ondˇrej Dusˇek, and Verena Rieser. The e2e dataset: New challenges for end- to-end generation. arXiv preprint arXiv:1706.09254, 2017.
Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guaran- tees for neural networks via harnessing the low-rank structure of the jacobian. arXiv preprint arXiv:1906.05392, 2019.
Jonas Pfeiffer, Aishwarya Kamath, Andreas Ru ̈ckle ́, Kyunghyun Cho, and Iryna Gurevych. Adapter- fusion: Non-destructive task composition for transfer learning, 2021.
Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohammadi, and San- jeev Khudanpur. Semi-orthogonal low-rank matrix factorization for deep neural networks. In Interspeech, pp. 3743–3747, 2018.
Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language Under- standing by Generative Pre-Training. pp. 12, a.
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are Unsupervised Multitask Learners. pp. 24, b.
Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for squad. CoRR, abs/1806.03822, 2018. URL http://arxiv.org/abs/1806.03822.
Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with residual adapters. arXiv:1705.08045 [cs, stat], November 2017. URL http://arxiv.org/ abs/1705.08045. arXiv: 1705.08045.
Andreas Ru ̈ckle ́, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers, 2020.
Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low- rank matrix factorization for deep neural network training with high-dimensional output targets. In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655– 6659. IEEE, 2013.
Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par- allelism, 2020.
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa- tional Linguistics. URL https://aclanthology.org/D13-1170.
15
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st In- ternational Conference on Neural Information Processing Systems, pp. 6000–6010, 2017.
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.
Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language understanding systems, 2020.
Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments. arXiv preprint arXiv:1805.12471, 2018.
Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technolo- gies, Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1101. URL https://www.aclweb. org/anthology/N18-1101.
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Re ́mi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug- ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As- sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/ 2020.emnlp-demos.6.
Greg Yang and Edward J. Hu. Feature Learning in Infinite-Width Neural Networks. arXiv:2011.14522 [cond-mat], May 2021. URL http://arxiv.org/abs/2011.14522. arXiv: 2011.14522.
Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models, 2021.
Yu Zhang, Ekapol Chuangsuwanich, and James Glass. Extracting deep neural network bottleneck features using low-rank matrix factorization. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 185–189. IEEE, 2014.
Yong Zhao, Jinyu Li, and Yifan Gong. Low-rank plus diagonal adaptation for deep neural networks. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5005–5009. IEEE, 2016.
Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from natural language using reinforcement learning. CoRR, abs/1709.00103, 2017. URL http:// arxiv.org/abs/1709.00103.
18 強化学習,深層強化学習について大体の流れ
@ImAI_Eruel
https://twitter.com/ImAI_Eruel/status/1303677795806056451/photo/1
19 ざっくりわかるRLHF
(人間からのフィードバックを用いた強化学習)
https://blog.brainpad.co.jp/entry/2023/05/31/160719
T.B.D.
20 方策勾配法
補足: 強化学習を学ぶための資料
英語
21 Reinforcement Learning Specialization ̶
by Coursera
https://www.coursera.org/specializations/reinforcement-learning
22
Reinforcement Learning Lecture Series 2021 ̶ by DeepMind x UCL
Deepmind x UCL | Reinforcement Learning Course | 2021
https://github.com/yjavaherian/deepmind-x-ucl-rl
23 Stanford CS234:
Reinforcement Learning ̶ Winter 2019
https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u
24 Introduction to Reinforcement Learning
with David Silver
https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
25 UC Berkeley CS 285:
Deep Reinforcement Learning ̶ Fall 2021
https://www.youtube.com/playlist?list=PL_iWQOsE6TfXxKgI1GgyV1B_Xa0DxE5eH
26 Deep RL BootCamp
UC Berkeley
https://sites.google.com/view/deep-rl-bootcamp/lectures
27 Deep Reinforcement Learning Course
by HuggingFace
https://simoninithomas.github.io/deep-rl-course/
日本語
28 強化学習の基礎と深層強化学習
東京大学 松尾研究室 深層強化学習 サマースクール講義資料
https://www.slideshare.net/slideshow/rlssdeepreinforcementlearning/238476038
29 強化学習
30 Guide to RLHF LLMs
Benefits & Top Vendors
https://research.aimultiple.com/rlhf-llm/
<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words and/or centences in order.
Qiita Calendar 2024
2024 参加・主催Calendarと投稿記事一覧 Qiita(248)
https://qiita.com/kaizen_nagoya/items/d80b8fbac2496df7827f
主催Calendar2024分析 Qiita(254)
https://qiita.com/kaizen_nagoya/items/15807336d583076f70bc
博士論文 Calendar 2024 を開催します。
https://qiita.com/kaizen_nagoya/items/51601357efbcaf1057d0
博士論文(0)関連記事一覧
https://qiita.com/kaizen_nagoya/items/8f223a760e607b705e78
自己記事一覧
Qiitaで逆リンクを表示しなくなったような気がする。時々、スマフォで表示するとあらわっることがあり、完全に削除したのではなさそう。
4月以降、せっせとリンクリストを作り、統計を取って確率を説明しようとしている。
2025年2月末を目標にしている。
一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39
仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df
Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6
Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8
C++ Support(0)
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514
Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0
Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794
Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0
線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001
なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2
プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394
言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4
Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53
安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409
プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909
転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe
技術士(0)一覧
https://qiita.com/kaizen_nagoya/items/ce4ccf4eb9c5600b89ea
Reserchmap(0) 一覧
https://qiita.com/kaizen_nagoya/items/506c79e562f406c4257e
物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff
量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4
数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d
coq(0) 一覧
https://qiita.com/kaizen_nagoya/items/d22f9995cf2173bc3b13
統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba
図(0) state, sequence and timing. UML and お絵描き
https://qiita.com/kaizen_nagoya/items/60440a882146aeee9e8f
色(0) 記事100書く切り口
https://qiita.com/kaizen_nagoya/items/22331c0335ed34326b9b
品質一覧
https://qiita.com/kaizen_nagoya/items/2b99b8e9db6d94b2e971
言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6
医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82
水の資料集(0) 方針と成果
https://qiita.com/kaizen_nagoya/items/f5dbb30087ea732b52aa
自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5
通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7
日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68
英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d
音楽 一覧(0)
https://qiita.com/kaizen_nagoya/items/b6e5f42bbfe3bbe40f5d
「@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b
鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/faa4ea03d91d901a618a
OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3
coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68
官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3
「はじめての」シリーズ ベクタージャパン
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb
AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869
プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945
LaTeX(0) 一覧
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792
自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b
Rust(0) 一覧
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927
関連資料
' @kazuo_reve 私が効果を確認した「小川メソッド」
https://qiita.com/kazuo_reve/items/a3ea1d9171deeccc04da
' @kazuo_reve 新人の方によく展開している有益な情報
https://qiita.com/kazuo_reve/items/d1a3f0ee48e24bba38f1
' @kazuo_reve Vモデルについて勘違いしていたと思ったこと
https://qiita.com/kazuo_reve/items/46fddb094563bd9b2e1e
Engineering Festa 2024前に必読記事一覧
programの本質は計画だ。programは設計だ。
https://qiita.com/kaizen_nagoya/items/c8545a769c246a458c27
登壇直後版 色使い(JIS安全色) Qiita Engineer Festa 2023〜私しか得しないニッチな技術でLT〜 スライド編 0.15
https://qiita.com/kaizen_nagoya/items/f0d3070d839f4f735b2b
プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945
逆も真:社会人が最初に確かめるとよいこと。OSEK(69)、Ethernet(59)
https://qiita.com/kaizen_nagoya/items/39afe4a728a31b903ddc
統計の嘘。仮説(127)
https://qiita.com/kaizen_nagoya/items/63b48ecf258a3471c51b
自分の言葉だけで論理展開できるのが天才なら、文章の引用だけで論理展開できるのが秀才だ。仮説(136)
https://qiita.com/kaizen_nagoya/items/97cf07b9e24f860624dd
参考文献駆動執筆(references driven writing)・デンソークリエイト編
https://qiita.com/kaizen_nagoya/items/b27b3f58b8bf265a5cd1
「何を」よりも「誰を」。10年後のために今見習いたい人たち
https://qiita.com/kaizen_nagoya/items/8045978b16eb49d572b2
Qiitaの記事に3段階または5段階で到達するための方法
https://qiita.com/kaizen_nagoya/items/6e9298296852325adc5e
出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840
coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68
あなたは「勘違いまとめ」から、勘違いだと言っていることが勘違いだといくつ見つけられますか。人間の間違い(human error(125))の種類と対策
https://qiita.com/kaizen_nagoya/items/ae391b77fffb098b8fb4
プログラマの「プログラムが書ける」思い込みは強みだ。3つの理由。仮説(168)統計と確率(17) , OSEK(79)
https://qiita.com/kaizen_nagoya/items/bc5dd86e414de402ec29
出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840
これからの情報伝達手段の在り方について考えてみよう。炎上と便乗。
https://qiita.com/kaizen_nagoya/items/71a09077ac195214f0db
ISO/IEC JTC1 SC7 Software and System Engineering
https://qiita.com/kaizen_nagoya/items/48b43f0f6976a078d907
アクセシビリティの知見を発信しよう!(再び)
https://qiita.com/kaizen_nagoya/items/03457eb9ee74105ee618
統計論及確率論輪講(再び)
https://qiita.com/kaizen_nagoya/items/590874ccfca988e85ea3
読者の心をグッと惹き寄せる7つの魔法
https://qiita.com/kaizen_nagoya/items/b1b5e89bd5c0a211d862
「@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b
ソースコードで議論しよう。日本語で議論するの止めましょう(あるプログラミング技術の議論報告)
https://qiita.com/kaizen_nagoya/items/8b9811c80f3338c6c0b0
脳内コンパイラの3つの危険
https://qiita.com/kaizen_nagoya/items/7025cf2d7bd9f276e382
心理学の本を読むよりはコンパイラ書いた方がよくね。仮説(34)
https://qiita.com/kaizen_nagoya/items/fa715732cc148e48880e
NASAを超えるつもりがあれば読んでください。
https://qiita.com/kaizen_nagoya/items/e81669f9cb53109157f6
データサイエンティストの気づき!「勉強して仕事に役立てない人。大嫌い!!」『それ自分かも?』ってなった!!!
https://qiita.com/kaizen_nagoya/items/d85830d58d8dd7f71d07
「ぼくの好きな先生」「人がやらないことをやれ」プログラマになるまで。仮説(37)
https://qiita.com/kaizen_nagoya/items/53e4bded9fe5f724b3c4
なぜ経済学徒を辞め、計算機屋になったか(経済学部入学前・入学後・卒業後対応) 転職(1)
https://qiita.com/kaizen_nagoya/items/06335a1d24c099733f64
プログラミング言語教育のXYZ。 仮説(52)
https://qiita.com/kaizen_nagoya/items/1950c5810fb5c0b07be4
【24卒向け】9ヶ月後に年収1000万円を目指す。二つの関門と三つの道。
https://qiita.com/kaizen_nagoya/items/fb5bff147193f726ad25
「【25卒向け】Qiita Career Meetup for STUDENT」予習の勧め
https://qiita.com/kaizen_nagoya/items/00eadb8a6e738cb6336f
大学入試不合格でも筆記試験のない大学に入って卒業できる。卒業しなくても博士になれる。
https://qiita.com/kaizen_nagoya/items/74adec99f396d64b5fd5
全世界の不登校の子供たち「博士論文」を書こう。世界子供博士論文遠隔実践中心 安全(99)
https://qiita.com/kaizen_nagoya/items/912d69032c012bcc84f2
小川メソッド 覚え(書きかけ)
https://qiita.com/kaizen_nagoya/items/3593d72eca551742df68
DoCAP(ドゥーキャップ)って何ですか?
https://qiita.com/kaizen_nagoya/items/47e0e6509ab792c43327
views 20,000越え自己記事一覧
https://qiita.com/kaizen_nagoya/items/58e8bd6450957cdecd81
Views1万越え、もうすぐ1万記事一覧 最近いいねをいただいた213記事
https://qiita.com/kaizen_nagoya/items/d2b805717a92459ce853
amazon 殿堂入りNo1レビュアになるまで。仮説(102)
https://qiita.com/kaizen_nagoya/items/83259d18921ce75a91f4
100以上いいねをいただいた記事16選
https://qiita.com/kaizen_nagoya/items/f8d958d9084ffbd15d2a
小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on my individual experience. It has nothing to do with the organization or business to which I currently belong.
文書履歴(document history)
ver. 0.01 初稿 20241022
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.