1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

AI・機械学習関連論文Advent Calendar 2024

Day 8

MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI, AI(8)

Last updated at Posted at 2024-11-10

AI・機械学習関連論文 Calendar 2024
https://qiita.com/advent-calendar/2024/aiml
Day 8投稿予定記事です。

最初は、
LLM(Large Language Model) Advent Calendar 2024
https://qiita.com/advent-calendar/2024/llm
3日目投稿予定でした。

MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI
Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, Wenhu Chen
https://arxiv.org/abs/2311.16502v4

参考文献は、番号が一部抜けています。順次追記します。
単語帳は、一部、単語がうまく分割できず、現在、単語分解するか方法を検討中です。
今しばらくお待ちください。よい方法があれば、コメント欄にご記入いただけると幸いです。

<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words and/or centences in order.

References

[1] Blaise Agu ̈era y Arcas and Peter Norvig. Artificial general intelligence is already here. Noema Magazine, 2023. 1
[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. In Advances in Neural Information Processing Systems, 2022. 3, 5
[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh. VQA: Visual Question Answering. In International Conference on Computer Vision (ICCV), 2015. 2, 3
[4] AnasAwadalla,IrenaGao,JoshGardner,JackHessel,Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open- source framework for training large autoregressive vision- language models. arXiv preprint arXiv:2308.01390, 2023. 3, 5, 6, 15, 16, 17, 18, 19, 20, 21
[5] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for un- derstanding, localization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023. 5, 6, 7, 15, 16, 17, 18, 19, 20, 21
[6] Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and Sag ̆nak Tas ̧ırlar. Introducing our multimodal models, 2023. 3, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21
[7] Se ́bastienBubeck,VarunChandrasekaran,RonenEldan,Jo- hannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023. 1
[8] Bunny. Bunny-3b. https://github.com/cappuch/ Bunny-Qwen, 2024. GitHub Repository. 15, 16, 17, 18, 19, 20, 21
[9] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Carlos Riquelme Ruiz, Se- bastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a multilingual vision and language model. arXiv preprint arXiv:2305.18565, 2023. 2
[10] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter: Universal image-text representation learning. In European Conference on Computer Vision, pages 104–120, 2020. 3
[11] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation mod- els and aligning for generic visual-linguistic tasks. arXiv preprint arXiv:2312.14238, 2023. 6, 15, 16, 17, 18, 19, 20, 21
[12] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhang- hao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yong- hao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, 2023. 3, 5, 6, 15, 16, 17, 18, 19, 20, 21
[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022. 1
[14] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416, 2022. 3, 5, 6, 15, 16, 17, 18, 19, 20, 21
[15] Chenhang Cui, Yiyang Zhou, Xinyu Yang, Shirley Wu, Lin- jun Zhang, James Zou, and Huaxiu Yao. Holistic analysis of hallucination in gpt-4v (ision): Bias and interference chal- lenges. arXiv preprint arXiv:2311.03287, 2023. 3, 8
[16] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general- purpose vision-language models with instruction tuning. arXiv preprint arXiv:2305.06500, 2023. 2, 3, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21
[17] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei, Songyang Zhang, Haodong Duan, Maosong Cao, et al. Internlm-xcomposer2: Mastering free-form text-image composition and compre- hension in vision-language large model. arXiv preprint arXiv:2401.16420, 2024. 6, 15, 16, 17, 18, 19, 20, 21
[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl- vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representa- tions, 2021. 3
[19] Adept Fuyu Team. Adept fuyu-heavy: A new multimodal model. https://www.adept.ai/blog/adept- fuyu-heavy, 2024. 15, 16, 17, 18, 19, 20, 21
[20] Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu, Conghui He, Xi- angyu Yue, et al. Llama-adapter v2: Parameter-efficient vi- sual instruction model. arXiv preprint arXiv:2304.15010, 2023. 3, 5
[21] Yingqiang Ge, Wenyue Hua, Jianchao Ji, Juntao Tan, Shuyuan Xu, and Yongfeng Zhang. Openagi: When llm meets domain experts. arXiv preprint arXiv:2304.04370, 2023. 1
[22] Google Gemini Team. Gemini: A family of highly capable multimodal models. https : / / storage . googleapis . com / deepmind - media / gemini / gemini_1_report.pdf, 2023. 15, 16, 17, 18, 19, 20, 21, 119
[23] Google Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. https: //storage.googleapis.com/deepmind-media/ gemini/gemini_v1_5_report.pdf, 2024. 6, 15, 119
[24] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba- tra, and Devi Parikh. Making the v in vqa matter: Elevating
the role of image understanding in visual question answer- ing. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6904–6913, 2017. 2, 3
[25] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Mea- suring massive multitask language understanding. In Inter- national Conference on Learning Representations, 2020. 2
[26] Yupan Huang, Zaiqiao Meng, Fangyu Liu, Yixuan Su, Col- lier Nigel, and Yutong Lu. Sparkles: Unlocking chats across multiple images for multimodal instruction-following mod- els. arXiv preprint arXiv:2308.16463, 2023. 3
[27] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In Proceedings of the IEEE/CVF con- ference on computer vision and pattern recognition, pages 6700–6709, 2019. 3
[28] HyperGAI.Revolutionizingthefuturewithhypergenerative ai. 2024. 15, 16, 17, 18, 19, 20, 21
[29] ChaoJia,YinfeiYang,YeXia,Yi-TingChen,ZaranaParekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representa- tion learning with noisy text supervision. In International conference on machine learning, pages 4904–4916. PMLR, 2021. 3
[30] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to objects in pho- tographs of natural scenes. In Proceedings of the 2014 con- ference on empirical methods in natural language processing (EMNLP), pages 787–798, 2014. 2
[31] Kunlun. Agi and aigc business skywork. 2024. 15, 16, 17, 18, 19, 20, 21
[32] Ehsan Latif, Gengchen Mai, Matthew Nyaaba, Xuansheng Wu, Ninghao Liu, Guoyu Lu, Sheng Li, Tianming Liu, and Xiaoming Zhai. Artificial general intelligence (agi) for edu- cation. arXiv preprint arXiv:2304.12479, 2023. 1
[33] Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix- iao Ge, and Ying Shan. Seed-bench: Benchmarking mul- timodal llms with generative comprehension. arXiv preprint arXiv:2307.16125, 2023. 2, 3
[34] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei Liu. Otter: A multi-modal model with in-context instruction tuning. arXiv preprint arXiv:2305.03726, 2023. 3, 5, 15, 16, 17, 18, 19, 20, 21
[35] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. Inter- national Conference on Machine Learning, 2023. 2, 3, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21
[36] Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi Wang, Shuhuai Ren, Mukai Li, Yazheng Yang, Jingjing Xu, Xu Sun, et al. M3it: A large-scale dataset towards multi- modal multilingual instruction tuning. arXiv preprint arXiv:2306.04387, 2023. 3
[37] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language tasks. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16, pages 121–137. Springer, 2020. 3
[38] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucina- tion in large vision-language models. arXiv preprint arXiv:2305.10355, 2023. 3
[39] Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov, Andrew Tao, Huizi Mao, Jan Kautz, Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models. arXiv preprint arXiv:2312.07533, 2023. 6, 15, 16, 17, 18, 19, 20, 21
[40] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolla ́r, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014. 2, 3
[41] ZiyiLin,ChrisLiu,RenruiZhang,PengGao,LongtianQiu, Han Xiao, Han Qiu, Chen Lin, Wenqi Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for multi-modal large language models. arXiv preprint arXiv:2311.07575, 2023. 15, 16, 17, 18, 19, 20, 21
[42] Fuxiao Liu, Tianrui Guan, Zongxia Li, Lichang Chen, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusion- bench: You see what you think? or you think what you see? an image-context reasoning benchmark challenging for gpt- 4v (ision), llava-1.5, and other multi-modality models. arXiv preprint arXiv:2310.14566, 2023. 3
[43] Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Aligning large multi-modal model with robust instruction tuning. arXiv preprint arXiv:2306.14565, 2023. 3
[44] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. arXiv preprint arXiv:2310.03744, 2023. 2, 3, 5, 7, 15, 16, 17, 18, 19, 20, 21
[45] HaotianLiu,ChunyuanLi,QingyangWu,andYongJaeLee. Visual instruction tuning. arXiv preprint arXiv:2304.08485, 2023. 3
[46] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Im- proved reasoning, ocr, and world knowledge. 2024. 6, 15, 16, 17, 18, 19, 20, 21
[47] YuanLiu,HaodongDuan,YuanhanZhang,BoLi,Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? arXiv preprint arXiv:2307.06281, 2023. 2, 3
[48] Yuliang Liu, Zhang Li, Hongliang Li, Wenwen Yu, Mingxin Huang, Dezhi Peng, Mingyu Liu, Mingrui Chen, Chunyuan Li, Lianwen Jin, et al. On the hidden mystery of ocr in large multimodal models. arXiv preprint arXiv:2305.07895, 2023. 3
[49] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. Advances in neural information processing systems, 32, 2019. 3
[50] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question answering. Advances in Neural Information Processing Systems, 35:2507–2521, 2022. 2
[51] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathemat- ical reasoning of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023. 3
[52] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question answering benchmark requiring external knowledge. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019. 3
[53] Gre ́goireMialon,Cle ́mentineFourrier,CraigSwift,Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023. 1, 3
[54] MiniCPM. Minicpm-v. https://github.com/ OpenBMB/MiniCPM, 2024. GitHub Repository. 15, 16, 17, 18, 19, 20, 21
[55] MiniCPM. Minicpm-v-2, 2024. 15, 16, 17, 18, 19, 20, 21
[56] Masoud Monajatipoor, Liunian Harold Li, Mozhdeh Rouhsedaghat, Lin F Yang, and Kai-Wei Chang. Metavl: Transferring in-context learning ability from language models to vision-language models. arXiv preprint
arXiv:2306.01311, 2023. 3
[57] MeredithRingelMorris,JaschaSohl-dickstein,NoahFiedel,
Tris Warkentin, Allan Dafoe, Aleksandra Faust, Clement Farabet, and Shane Legg. Levels of agi: Opera- tionalizing progress on the path to agi. arXiv preprint arXiv:2311.02462, 2023. 1, 3, 8
[58] OminiLMM. Ominilmm-12b. https://github.com/ OpenBMB/OmniLMM, 2024. GitHub Repository. 15, 16, 17, 18, 19, 20, 21
[59] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. 1, 6, 15, 16, 17, 18, 19, 20, 21
[60] OpenAI. Gpt-4v(ision) system card, 2023. 2, 6, 7, 15, 16, 17, 18, 19, 20, 21
[61] OpenAI. Gpt-4o. 2024. 6, 15, 119
[62] Aitor Ormazabal, Che Zheng, Cyprien de Masson d’Autume,
Dani Yogatama, Deyu Fu, Donovan Ong, et al. Reka core, flash, and edge: A series of powerful multimodal language models. https://publications.reka.ai/reka- core-tech-report.pdf, 2024. 15, 16, 17, 18, 19, 20, 21, 119
[63] Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei. Kosmos-2: Ground- ing multimodal large language models to the world. arXiv preprint arXiv:2306.14824, 2023. 5, 6, 15, 16, 17, 18, 19, 20, 21
[64] Qwen. Qwen-vl-plus. https://github.com/ QwenLM/Qwen-VL?tab=readme-ov-file#qwen- vl-plus, 2023. GitHub Repository. 15, 16, 17, 18, 19, 20, 21
[65] Qwen. Qwen-vl-max. https : / / github . com / QwenLM/Qwen-VL?tab=readme-ov-file#qwen- vl-max, 2024. GitHub Repository. 6, 15, 16, 17, 18, 19, 20, 21
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervi- sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021. 3, 5
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information process- ing systems, 28, 2015. 3
sensenova. Sensechat-vision, 2024. 6, 15, 16, 17, 18, 19, 20, 21
Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE Con- ference on Computer Vision and Pattern Recognition, pages 8317–8326, 2019. 2
Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Zhengxiong Luo, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun Huang, et al. Generative multimodal models are in-context learners. arXiv preprint arXiv:2312.13286, 2023. 15, 16, 17, 18, 19, 20, 21
Hao Tan and Mohit Bansal. Lxmert: Learning cross- modality encoder representations from transformers. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP), pages 5100–5111, 2019. 3
Claude Team. Introducing the next generation of claude.
https://www.anthropic.com/news/claude-3- family, 2024. 6, 15, 119
InfiMM Team. Infimm: Advancing multimodal understand- ing from flamingo’s legacy through diverse llm integration, 2024. 15, 16, 17, 18, 19, 20, 21
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothe ́e Lacroix, Baptiste Rozie`re, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 1, 5
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 6, 15, 16, 17, 18, 19, 20, 21
Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng Shi, Chenlin Zhao, Haiyang Xu, Qinghao Ye, Ming Yan, Ji Zhang, Jihua Zhu, et al. Evaluation and analysis of hal- lucination in large vision-language models. arXiv preprint arXiv:2308.15126, 2023. 3
Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv preprint arXiv:2311.03079, 2023. 2, 5, 6, 15, 16, 17, 18, 19, 20, 21
[78] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. Simvlm: Simple visual language model pretraining with weak supervision. In International Conference on Learning Representations, 2021. 3
[79] Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo Liu, Meng Lei, Fanqing Meng, Siyuan Huang, Yu Qiao, and Ping Luo. Lvlm-ehub: A comprehensive evaluation benchmark for large vision-language models. arXiv preprint arXiv:2306.09265, 2023. 3
[80] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint arXiv:2309.17421, 2023. 2
[81] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models with multimodality. arXiv preprint arXiv:2304.14178, 2023. 3
[82] Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Haowei Liu, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou. mplug-owl2: Revolutionizing multi-modal large language model with modality collaboration. arXiv preprint arXiv:2311.04257, 2023. 3, 5, 15, 16, 17, 18, 19, 20, 21
[83] Zhenfei Yin, Jiong Wang, Jianjian Cao, Zhelun Shi, Dingn- ing Liu, Mukai Li, Lu Sheng, Lei Bai, Xiaoshui Huang, Zhiyong Wang, et al. Lamm: Language-assisted multi- modal instruction-tuning dataset, framework, and bench- mark. arXiv preprint arXiv:2306.06687, 2023. 2, 3
[84] AlexYoung,BeiChen,ChaoLi,ChengenHuang,GeZhang, Guanwei Zhang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint arXiv:2403.04652, 2024. 6, 15, 16, 17, 18, 19, 20, 21
[85] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mo- jtaba Seyedhosseini, and Yonghui Wu. Coca: Contrastive captioners are image-text foundation models. TMLR, 2022. 3
[86] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv preprint arXiv:2308.02490, 2023. 2, 3
[87] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5579–5588, 2021. 3
[88] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init attention. arXiv preprint arXiv:2303.16199, 2023. 3, 6, 15, 16, 17, 18, 19, 20, 21
[89] Bo Zhao, Boya Wu, and Tiejun Huang. Svit: Scaling up visual instruction tuning. arXiv preprint arXiv:2307.04087, 2023. 3, 15, 16, 17, 18, 19, 20, 21

term list

no wprd count
1 the 523
2 and 459
3 of 455
4 a 442
5 to 379
6 b 320
7 image 277
8 in 258
9 v 195
10 back 172
11 error 168
12 c 164
13 d 145
14 gpt 132
15 models 125
16 table 125
17 figure 124
18 is 119
19 arxiv 101
20 case 101
21 for 101
22 figures 96
23 on 95
24 sample 94
25 subfield 93
26 index 88
27 list 87
28 groundtruth 86
29 option 86
30 vl 82
31 t 81
32 as 80
33 we 80
34 with 76
35 reasoning 74
36 perceptual 66
37 s 64
38 category 62
39 mmmu 62
40 from 59
41 m 57
42 text 57
43 language 56
44 questions 56
45 expert 54
46 art 52
47 multimodal 52
48 correct 51
49 e 51
50 visual 51
51 knowledge 50
52 preprint 50
53 that 48
54 however 46
55 results 46
56 are 45
57 data 45
58 errorcategory 45
59 design 44
60 li 44
61 this 44
62 vision 43
63 by 42
64 llava 42
65 model 42
66 engineering 41
67 it 41
68 or 41
69 science 40
70 so 40
71 medicine 39
72 open 38
73 correctcase 37
74 benchmark 36
75 errorerrorreason 36
76 large 36
77 qwen 36
78 be 34
79 chat 34
80 history 34
81 wang 34
82 an 33
83 choice 33
84 different 33
85 lack 33
86 question 33
87 zhang 33
88 h 32
89 lmms 32
90 flan 31
91 xxl 31
92 chemistry 30
93 performance 30
94 types 30
95 r 29
96 these 29
97 best 28
98 gemini 28
99 images 27
100 liu 27
101 test 27
102 validation 27
103 perceptualerror 26
104 therefore 26
105 understanding 26
106 where 26
107 al 25
108 et 25
109 fuyu 25
110 ocr 25
111 shot 25
112 subjects 25
113 each 24
114 k 24
115 level 24
116 llama 24
117 music 24
118 only 24
119 blip 23
120 health 23
121 such 23
122 clinical 22
123 input 22
124 overall 22
125 reka 22
126 set 22
127 source 22
128 but 21
129 chen 21
130 our 21
131 vicuna 21
132 yi 21
133 agi 20
134 biology 20
135 both 20
136 computer 20
137 geography 20
138 has 20
139 instructblip 20
140 instruction 20
141 minicpm 20
142 mm 20
143 provided 20
144 subject 20
145 authors 19
146 benchmarks 19
147 can 19
148 conference 19
149 i 19
150 learning 19
151 llms 19
152 psychology 19
153 tasks 19
154 theory 19
155 answer 18
156 like 18
157 materials 18
158 multi 18
159 multiple 18
160 plus 18
161 should 18
162 which 18
163 appendix 17
164 caption 17
165 errors 17
166 internvl 17
167 math 17
168 th 17
169 thus 17
170 x 17
171 yu 17
172 adept 16
173 context 16
174 disciplines 16
175 economics 16
176 given 16
177 have 16
178 literature 16
179 more 16
180 paper 16
181 rad 16
182 reasoningerror 16
183 social 16
184 agriculture 15
185 all 15
186 analysis 15
187 college 15
188 dataset 15
189 human 15
190 its 15
191 let 15
192 lin 15
193 marco 15
194 openflamingo 15
195 other 15
196 physiology 15
197 specific 15
198 u 15
199 while 15
200 also 14
201 at 14
202 business 14
203 difficulty 14
204 domain 14
205 evaluation 14
206 foundation 14
207 information 14
208 ision 14
209 ln 14
210 not 14
211 otter 14
212 p 14
213 pro 14
214 their 14
215 tuning 14
216 xl 14
217 accounting 13
218 across 13
219 added 13
220 annotators 13
221 arrow 13
222 basic 13
223 between 13
224 challenges 13
225 electronics 13
226 github 13
227 hpt 13
228 https 13
229 management 13
230 marketing 13
231 nation 13
232 now 13
233 q 13
234 research 13
235 second 13
236 thecorrectansweris 13
237 there 13
238 towards 13
239 adapter 12
240 existing 12
241 few 12
242 finance 12
243 general 12
244 knowledgeerrorreason 12
245 lackofknowledge 12
246 lu 12
247 medium 12
248 norepinephrine 12
249 options 12
250 owl 12
251 pages 12
252 pathology 12
253 pharmacy 12
254 processing 12
255 random 12
256 shows 12
257 significant 12
258 sociology 12
259 st 12
260 tech 12
261 various 12
262 vqa 12
263 will 12
264 yang 12
265 annotation 11
266 based 11
267 been 11
268 bunny 11
269 challenging 11
270 cogvlm 11
271 crepe 11
272 diagnostics 11
273 diverse 11
274 frequent 11
275 heavy 11
276 humanities 11
277 kosmos 11
278 lens 11
279 max 11
280 mechanical 11
281 mechanics 11
282 medical 11
283 minigpt 11
284 mplug 11
285 no 11
286 report 11
287 subfields 11
288 total 11
289 training 11
290 type 11
291 ultra 11
292 wei 11
293 would 11
294 zhou 11
295 advanced 10
296 ai 10
297 animal 10
298 ca 10
299 cl 10
300 core 10
301 f 10
302 fine 10
303 flash 10
304 huang 10
305 infimm 10
306 internlm 10
307 laboratory 10
308 light 10
309 manage 10
310 modal 10
311 perception 10
312 performing 10
313 physics 10
314 pressure 10
315 problems 10
316 quality 10
317 representation 10
318 sensechat 10
319 sphinx 10
320 study 10
321 svit 10
322 team 10
323 textbooks 10
324 up 10
325 vila 10
326 xcomposer 10
327 abilities 9
328 annotated 9
329 architecture 9
330 author 9
331 claude 9
332 com 9
333 complex 9
334 control 9
335 example 9
336 experts 9
337 financial 9
338 first 9
339 if 9
340 interleaved 9
341 international 9
342 landsat 9
343 omnilmm 9
344 physical 9
345 point 9
346 preview 9
347 proceedings 9
348 process 9
349 project 9
350 public 9
351 recognition 9
352 see 9
353 selected 9
354 shares 9
355 sharesat 9
356 skywork 9
357 step 9
358 still 9
359 structure 9
360 sun 9
361 textual 9
362 through 9
363 tyramine 9
364 without 9
365 world 9
366 xu 9
367 you 9
368 yue 9
369 achieve 8
370 additionally 8
371 advantage 8
372 answers 8
373 any 8
374 bold 8
375 capabilities 8
376 cm 8
377 collection 8
378 comparative 8
379 contributed 8
380 cost 8
381 depth 8
382 detailed 8
383 diagrams 8
384 discipline 8
385 easy 8
386 edge 8
387 emu 8
388 evaluating 8
389 format 8
390 g 8
391 gao 8
392 historyquestion 8
393 including 8
394 intelligence 8
395 into 8
396 json 8
397 kai 8
398 kj 8
399 most 8
400 nh 8
401 one 8
402 peng 8
403 plant 8
404 playground 8
405 power 8
406 representations 8
407 significantly 8
408 systems 8
409 underlined 8
410 when 8
411 worst 8
412 wu 8
413 xiang 8
414 zephyr 8
415 zhao 8
416 accuracy 7
417 air 7
418 airbase 7
419 approximately 7
420 aqua 7
421 artificial 7
422 computerscience 7
423 distribution 7
424 drug 7
425 due 7
426 effect 7
427 energy 7
428 explanation 7
429 further 7
430 inorganic 7
431 ji 7
432 lei 7
433 less 7
434 market 7
435 mmhg 7
436 natural 7
437 next 7
438 pe 7
439 pre 7
440 production 7
441 response 7
442 se 7
443 sources 7
444 su 7
445 theansweris 7
446 transaction 7
447 understand 7
448 university 7
449 veh 7
450 very 7
451 y 7
452 year 7
453 zheng 7
454 among 6
455 bd 6
456 breadth 6
457 broad 6
458 captioning 6
459 cause 6
460 ch 6
461 chang 6
462 chemical 6
463 chunyuan 6
464 comprehensive 6
465 consider 6
466 direction 6
467 ended 6
468 european 6
469 evaluate 6
470 examples 6
471 file 6
472 fixed 6
473 flamingo 6
474 fluid 6
475 following 6
476 genetics 6
477 han 6
478 hard 6
479 hu 6
480 interpretation 6
481 j 6
482 jianfeng 6
483 key 6
484 leading 6
485 lee 6
486 massive 6
487 mathematical 6
488 mc 6
489 minimal 6
490 n 6
491 ni 6
492 oc 6
493 organic 6
494 over 6
495 painting 6
496 pattern 6
497 perform 6
498 relatively 6
499 scaling 6
500 terra 6
501 thescaleofthephotographsis 6
502 trade 6
503 two 6
504 use 6
505 weget 6
506 well 6
507 were 6
508 what 6
509 ye 6
510 yin 6
511 zhu 6
512 adults 5
513 advances 5
514 after 5
515 answering 5
516 available 5
517 baselines 5
518 because 5
519 besides 5
520 blood 5
521 calculus 5
522 carbon 5
523 charts 5
524 clinicalmedicine 5
525 collected 5
526 collecting 5
527 common 5
528 conducted 5
529 cover 5
530 cpu 5
531 critical 5
532 curation 5
533 current 5
534 designed 5
535 double 5
536 dynamics 5
537 efficient 5
538 epidemiology 5
539 experiments 5
540 fields 5
541 find 5
542 focus 5
543 forstate 5
544 fp 5
545 ge 5
546 graph 5
547 here 5
548 hox 5
549 improvement 5
550 instances 5
551 instead 5
552 levels 5
553 lijuan 5
554 ma 5
555 made 5
556 main 5
557 major 5
558 mi 5
559 microbiology 5
560 might 5
561 modality 5
562 nature 5
563 often 5
564 paintings 5
565 pan 5
566 part 5
567 per 5
568 pharmacology 5
569 phenelzine 5
570 photographs 5
571 principle 5
572 progress 5
573 protocol 5
574 range 5
575 reject 5
576 repository 5
577 require 5
578 requires 5
579 root 5
580 scale 5
581 secondary 5
582 section 5
583 sheng 5
584 signal 5
585 since 5
586 single 5
587 six 5
588 skilled 5
589 state 5
590 statistics 5
591 students 5
592 synthesis 5
593 system 5
594 tables 5
595 three 5
596 units 5
597 updated 5
598 within 5
599 yan 5
600 yes 5
601 ab 4
602 absolute 4
603 accurate 4
604 anatomy 4
605 ande 4
606 approach 4
607 arts 4
608 assess 4
609 atom 4
610 average 4
611 axis 4
612 bandc 4
613 barrel 4
614 batra 4
615 biochemistry 4
616 block 4
617 bo 4
618 bothtimeseriesaremeanstationary 4
619 breakdown 4
620 calculations 4
621 cao 4
622 cardiovascular 4
623 change 4
624 chemistryquestion 4
625 civil 4
626 co 4
627 cocaine 4
628 comparison 4
629 compiler 4
630 complexity 4
631 considerations 4
632 contamination 4
633 contemporary 4
634 contribution 4
635 converging 4
636 copyright 4
637 corporate 4
638 correctly 4
639 covering 4
640 dec 4
641 deliberate 4
642 derive 4
643 devi 4
644 diagnosticsandlabmedicine 4
645 directlabor 4
646 eliminate 4
647 embedding 4
648 end 4
649 eng 4
650 eric 4
651 even 4
652 exams 4
653 finishes 4
654 follow 4
655 foot 4
656 force 4
657 fpr 4
658 gap 4
659 generation 4
660 geometric 4
661 hallucination 4
662 handling 4
663 hao 4
664 heterogeneous 4
665 highly 4
666 huan 4
667 identify 4
668 ieee 4
669 indexvalueatt 4
670 introduces 4
671 joint 4
672 kevin 4
673 law 4
674 lead 4
675 liang 4
676 linjie 4
677 llm 4
678 long 4
679 machine 4
680 macroeconomics 4
681 mapping 4
682 mask 4
683 means 4
684 meng 4
685 ming 4
686 minor 4
687 mri 4
688 must 4
689 necessary 4
690 neural 4
691 neuropathology 4
692 new 4
693 non 4
694 number 4
695 o 4
696 objects 4
697 ofhand 4
698 openai 4
699 optical 4
700 outputs 4
701 parallel 4
702 parikh 4
703 path 4
704 perfect 4
705 personyears 4
706 peter 4
707 pharmaceutical 4
708 photo 4
709 physiologyquestion 4
710 present 4
711 presents 4
712 pretraining 4
713 probability 4
714 prompt 4
715 provide 4
716 qwenvl 4
717 radiology 4
718 regions 4
719 resources 4
720 role 4
721 samples 4
722 sci 4
723 selection 4
724 shi 4
725 show 4
726 shown 4
727 skills 4
728 solution 4
729 some 4
730 song 4
731 specialized 4
732 stage 4
733 starts 4
734 statement 4
735 states 4
736 strong 4
737 structures 4
738 surveying 4
739 tail 4
740 than 4
741 thecorrectoptionis 4
742 thedouble 4
743 thefatheriscomparedtoagypsy 4
744 thegeographicextentofthemonetizationofeurasianeconomies 4
745 theorderisfromlefttoright 4
746 thermodynamics 4
747 thespeedofaishalfthatofb 4
748 they 4
749 tianyu 4
750 tn 4
751 toptobottom 4
752 tuned 4
753 using 4
754 vaultedroofing 4
755 velocity 4
756 vet 4
757 wenhu 4
758 whichofthefollowingisthemostlikelydiagnosis 4
759 whorl 4
760 work 4
761 yuan 4
762 yuansheng 4
763 zero 4
764 ability 3
765 achieves 3
766 add 3
767 addition 3
768 adhere 3
769 adherence 3
770 administration 3
771 adopted 3
772 adult 3
773 aligning 3
774 andc 3
775 andstate 3
776 aob 3
777 aorta 3
778 architectureandengineering 3
779 area 3
780 areproductionzonesofprovenoilreserves 3
781 around 3
782 arttheory 3
783 aspect 3
784 atestoftwoindependentmeans 3
785 att 3
786 attention 3
787 au 3
788 augmented 3
789 bai 3
790 beam 3
791 being 3
792 believe 3
793 better 3
794 beyond 3
795 biological 3
796 bod 3
797 body 3
798 bothmovetostate 3
799 buttheydifferoninput 3
800 capability 3
801 capable 3
802 carefully 3
803 categories 3
804 cbt 3
805 cell 3
806 changes 3
807 chao 3
808 character 3
809 child 3
810 choosingthematchingterm 3
811 chung 3
812 classical 3
813 clef 3
814 clip 3
815 cod 3
816 comics 3
817 conclusion 3
818 consistent 3
819 contain 3
820 contains 3
821 contributions 3
822 crepes 3
823 criticism 3
824 ctr 3
825 cui 3
826 dandy 3
827 deep 3
828 demonstrate 3
829 details 3
830 determine 3
831 develop 3
832 development 3
833 dhruv 3
834 diagram 3
835 directmaterials 3
836 discussions 3
837 disease 3
838 do 3
839 dong 3
840 drama 3
841 drawing 3
842 duan 3
843 econometrics 3
844 effects 3
845 egoism 3
846 electrocardiography 3
847 elements 3
848 empirical 3
849 employed 3
850 encoder 3
851 engineeringquestion 3
852 ensure 3
853 epidemiologyquestion 3
854 essential 3
855 ethical 3
856 evident 3
857 evolution 3
858 exchange 3
859 expertise 3
860 expressions 3
861 fails 3
862 falsepositives 3
863 family 3
864 features 3
865 findings 3
866 formats 3
867 four 3
868 fromthetable 3
869 fundamental 3
870 future 3
871 generative 3
872 genes 3
873 geographyquestion 3
874 geometry 3
875 go 3
876 goal 3
877 gqa 3
878 graphic 3
879 grounding 3
880 haiyang 3
881 haotian 3
882 he 3
883 head 3
884 heart 3
885 height 3
886 higher 3
887 how 3
888 iii 3
889 illustrated 3
890 imperialist 3
891 importance 3
892 improved 3
893 incorrect 3
894 increase 3
895 indicating 3
896 industrial 3
897 inputs 3
898 insights 3
899 insteadof 3
900 instructions 3
901 introduce 3
902 investment 3
903 involve 3
904 isms 3
905 itislikelytobesn 3
906 jae 3
907 jingjing 3
908 jun 3
909 junyang 3
910 justinian 3
911 kpa 3
912 layer 3
913 led 3
914 length 3
915 licensing 3
916 limitations 3
917 line 3
918 linear 3
919 literaturequestion 3
920 lower 3
921 making 3
922 many 3
923 maoi 3
924 maturenewborn 3
925 may 3
926 measure 3
927 mechanicalengineering 3
928 meet 3
929 meticulously 3
930 mmbench 3
931 modalities 3
932 modern 3
933 months 3
934 musicquestion 3
935 mutant 3
936 name 3
937 naming 3
938 need 3
939 needs 3
940 netincome 3
941 notable 3
942 note 3
943 object 3
944 oninput 3
945 online 3
946 ophthalmic 3
947 opportunity 3
948 optics 3
949 opus 3
950 out 3
951 overhead 3
952 overheadrate 3
953 oxygen 3
954 pathologyquestion 3
955 pdf 3
956 phentolamine 3
957 photography 3
958 possible 3
959 posterior 3
960 prior 3
961 proprietary 3
962 publichealth 3
963 qinghao 3
964 qiu 3
965 queries 3
966 quizzes 3
967 rather 3
968 rays 3
969 redistribution 3
970 reduction 3
971 reference 3
972 region 3
973 regulations 3
974 relatedhand 3
975 ren 3
976 renrui 3
977 represents 3
978 respiratory 3
979 responses 3
980 room 3
981 rule 3
982 ruoqi 3
983 rupturedberryaneurysm 3
984 savior 3
985 scans 3
986 scienceqa 3
987 sciences 3
988 seed 3
989 seen 3
990 sense 3
991 separate 3
992 shapes 3
993 sheets 3
994 short 3
995 shortpastern 3
996 solvefor 3
997 space 3
998 standard 3
999 starting 3
1000 startsandfinisheswithoutanyinterleaving 3
1001 stateerror 3
1002 steven 3
1003 strategic 3
1004 structural 3
1005 substantial 3
1006 suggests 3
1007 sulfur 3
1008 supervision 3
1009 surgery 3
1010 symptom 3
1011 tallbacksofchairsandlampsatthecornersofdiningtables 3
1012 tan 3
1013 task 3
1014 theconfigurationatc 3
1015 them 3
1016 then 3
1017 thepainting 3
1018 thepontomedullaryjunction 3
1019 theyarenotequivalent 3
1020 third 3
1021 thomas 3
1022 those 3
1023 top 3
1024 totaldirectlabordollars 3
1025 totalfactoryoverhead 3
1026 typically 3
1027 typo 3
1028 united 3
1029 usingtheequation 3
1030 visionmayberestoredwithconcavelensandrefractivesurgery 3
1031 walkersyndrome 3
1032 way 3
1033 weighted 3
1034 wide 3
1035 writing 3
1036 xi 3
1037 xia 3
1038 xiao 3
1039 yiyang 3
1040 yong 3
1041 yuanhan 3
1042 _ 2
1043 _report 2
1044 aandb 2
1045 abarbicanandbattlements 2
1046 able 2
1047 above 2
1048 abstract 2
1049 accepting 2
1050 accuracies 2
1051 accurately 2
1052 address 2
1053 adjacent 2
1054 adrenergic 2
1055 advancements 2
1056 adversarial 2
1057 advertisements 2
1058 advice 2
1059 agieval 2
1060 ahigherrooftomakeupfortheshortcolumns 2
1061 ahmed 2
1062 aim 2
1063 aims 2
1064 algebra 2
1065 algorithm 2
1066 align 2
1067 along 2
1068 alpha 2
1069 ambiguities 2
1070 amoatandcrenellations 2
1071 amothertellshersontostopwhining 2
1072 amount 2
1073 analog 2
1074 analyzed 2
1075 anda 2
1076 andcpu 2
1077 anddemocraticgovernments 2
1078 andm 2
1079 andmouthdiseaseintheplacebogroup 2
1080 andn 2
1081 andrequiresfurtherwork 2
1082 andsoon 2
1083 andthenthefirstonemightresume 2
1084 andthere 2
1085 andthisremainsunchanged 2
1086 aneurysm 2
1087 angle 2
1088 annotations 2
1089 another 2
1090 answererrorreason 2
1091 antagonist 2
1092 anterior 2
1093 anxietydisorder 2
1094 aojun 2
1095 apply 2
1096 areas 2
1097 artsquestion 2
1098 asaresult 2
1099 ascending 2
1100 assistedinsitukeratomileusis 2
1101 associated 2
1102 attachedgroupsandtheiratomicnumbers 2
1103 avoid 2
1104 avoided 2
1105 bansal 2
1106 baptiste 2
1107 bar 2
1108 basedmethod 2
1109 basedontheimageprovided 2
1110 basicmedicalscience 2
1111 beginningretainedearnings 2
1112 benchmarking 2
1113 beta 2
1114 betweensphere 2
1115 bias 2
1116 biodiversity 2
1117 biostatistics 2
1118 blocked 2
1119 blocks 2
1120 bone 2
1121 botany 2
1122 boyuan 2
1123 breast 2
1124 bridge 2
1125 brownstemrot 2
1126 butitfailedtocorrectlymaptheidstothecorrespondingillustrationsinthefigure 2
1127 cal 2
1128 calculatethemanufacturingcostperunitforproducta 2
1129 calculatethetotalmanufacturingcostforproducta 2
1130 calculatethetotaloverheadrate 2
1131 calculatethework 2
1132 calculation 2
1133 calculusquestion 2
1134 candd 2
1135 cartoon 2
1136 cartoons 2
1137 cases 2
1138 categorize 2
1139 cbtismoreeffectivethannotreatmentandmoreeffectivethanmeditation 2
1140 cbtisnotaseffectiveasmeditation 2
1141 cd 2
1142 chains 2
1143 challenge 2
1144 challenginghimtoconsiderthemultitudeofinterpretationsthepaintingrepresents 2
1145 chaotic 2
1146 cheng 2
1147 chi 2
1148 children 2
1149 chlorine 2
1150 chris 2
1151 chun 2
1152 cini 2
1153 circuit 2
1154 circulatory 2
1155 clark 2
1156 clc 2
1157 clearly 2
1158 close 2
1159 closed 2
1160 coauthors 2
1161 coca 2
1162 collaboration 2
1163 collect 2
1164 collectiveeffervescence 2
1165 commonsense 2
1166 completes 2
1167 comprehension 2
1168 comprising 2
1169 concave 2
1170 conceived 2
1171 conceptualization 2
1172 conghui 2
1173 considered 2
1174 consistency 2
1175 consistently 2
1176 consumerismandnationalidentities 2
1177 contrast 2
1178 converge 2
1179 copying 2
1180 corresponding 2
1181 correspondstoregionssuchasnortherncanadaandpartsofrussia 2
1182 cotton 2
1183 could 2
1184 covers 2
1185 creating 2
1186 cross 2
1187 crucial 2
1188 ct 2
1189 cu 2
1190 cvf 2
1191 dai 2
1192 daily 2
1193 datasets 2
1194 dawn 2
1195 decorativerhythmandrepetition 2
1196 decrease 2
1197 deeply 2
1198 deepmind 2
1199 default 2
1200 definition 2
1201 degradation 2
1202 degrees 2
1203 dehghani 2
1204 demonstrates 2
1205 dental 2
1206 depositionequilibrium 2
1207 designquestion 2
1208 designs 2
1209 despair 2
1210 detection 2
1211 determinethechangeininternalenergy 2
1212 deterministicfiniteautomaton 2
1213 dev 2
1214 developed 2
1215 diastolic 2
1216 difficult 2
1217 difficulties 2
1218 digital 2
1219 diminished 2
1220 direct 2
1221 disparity 2
1222 disred 2
1223 distributions 2
1224 dividends 2
1225 documents 2
1226 doesn 2
1227 doing 2
1228 domainis 2
1229 domains 2
1230 dongxu 2
1231 du 2
1232 duetothelackofspecificknowledgeabout 2
1233 dynamicsquestion 2
1234 eachofmass 2
1235 easyquestion 2
1236 eccv 2
1237 ecology 2
1238 effectively 2
1239 ehub 2
1240 eisblue 2
1241 electrical 2
1242 electromagnetism 2
1243 elementary 2
1244 embeddings 2
1245 energyandpower 2
1246 enhanced 2
1247 enhancements 2
1248 enhancing 2
1249 equilibrium 2
1250 ers 2
1251 etc 2
1252 evalai 2
1253 exhibit 2
1254 exists 2
1255 explanations 2
1256 explicitly 2
1257 expressed 2
1258 extensive 2
1259 external 2
1260 extraction 2
1261 faisal 2
1262 falls 2
1263 faster 2
1264 fe 2
1265 fiction 2
1266 finding 2
1267 firstly 2
1268 flawed 2
1269 focal 2
1270 focallength 2
1271 follows 2
1272 forc 2
1273 forchoice 2
1274 forexample 2
1275 foribssuffererswithoutananxietydisorder 2
1276 formula 2
1277 forsphere 2
1278 found 2
1279 framework 2
1280 free 2
1281 fromthegivenimage 2
1282 fromwhich 2
1283 frozen 2
1284 furu 2
1285 fuxiao 2
1286 gaia 2
1287 gas 2
1288 gene 2
1289 geneinamousewasreplacedwithahox 2
1290 geneticsquestion 2
1291 geotechnical 2
1292 give 2
1293 giventhis 2
1294 gives 2
1295 google 2
1296 googleapis 2
1297 goyal 2
1298 gpa 2
1299 groundheight 2
1300 group 2
1301 guardcells 2
1302 guo 2
1303 guohai 2
1304 haiku 2
1305 handpart 2
1306 haodong 2
1307 hardsubject 2
1308 heat 2
1309 help 2
1310 helping 2
1311 hence 2
1312 hg 2
1313 hidden 2
1314 hierarchical 2
1315 hierarchicalscale 2
1316 highlight 2
1317 highlights 2
1318 hoi 2
1319 holistic 2
1320 horizontal 2
1321 horror 2
1322 houdong 2
1323 hugo 2
1324 humanpapillomavirusinfection 2
1325 humans 2
1326 hydrogen 2
1327 hypertensive 2
1328 hyung 2
1329 ican 2
1330 ifahox 2
1331 immediacy 2
1332 immunology 2
1333 improve 2
1334 inaccuracies 2
1335 incidencedensity 2
1336 include 2
1337 included 2
1338 includes 2
1339 incorrectly 2
1340 increases 2
1341 indeed 2
1342 indicate 2
1343 indicates 2
1344 initial 2
1345 instance 2
1346 intercept 2
1347 interface 2
1348 interleavedprocessingoccurswhentwotransactionsareprocessedalternately 2
1349 interleaving 2
1350 internet 2
1351 interpret 2
1352 interval 2
1353 inthepoliticalcartoon 2
1354 inthepradomuseuminmadrid 2
1355 inthesecondimage 2
1356 inthestudyofkingphilipiv 2
1357 intricate 2
1358 introducing 2
1359 introduction 2
1360 involving 2
1361 io 2
1362 ipit 2
1363 ipitdisplaysastrongseasonality 2
1364 isminimal 2
1365 istheaccelerationduetogravity 2
1366 italy 2
1367 jack 2
1368 jacob 2
1369 james 2
1370 jiabo 2
1371 jiahui 2
1372 jiaming 2
1373 jiang 2
1374 jiasen 2
1375 jingren 2
1376 jointly 2
1377 junnan 2
1378 kgak 2
1379 kln 2
1380 labor 2
1381 lamm 2
1382 laser 2
1383 later 2
1384 lawrence 2
1385 le 2
1386 leaderboard 2
1387 leads 2
1388 leaving 2
1389 left 2
1390 leftventricle 2
1391 legg 2
1392 lewis 2
1393 limit 2
1394 limited 2
1395 linguistic 2
1396 llfollowthesesteps 2
1397 lmm 2
1398 log 2
1399 logic 2
1400 lone 2
1401 longer 2
1402 longpasternbone 2
1403 lookatthesituationinthe 2
1404 low 2
1405 luo 2
1406 lvlm 2
1407 lxmert 2
1408 macroeconomicsquestion 2
1409 magnitude 2
1410 managerial 2
1411 manuscript 2
1412 mao 2
1413 maps 2
1414 marks 2
1415 mathvista 2
1416 meaningthatonestarts 2
1417 meanwhile 2
1418 measuring 2
1419 mechanicsquestion 2
1420 meconiumaspirationsyndrome 2
1421 media 2
1422 medicinal 2
1423 mediumsubject 2
1424 meeting 2
1425 metavl 2
1426 methods 2
1427 mfroma 2
1428 mg 2
1429 middle 2
1430 mishra 2
1431 mitralregurgitation 2
1432 mmicl 2
1433 mmocr 2
1434 modernhistory 2
1435 module 2
1436 mohammad 2
1437 monochromatic 2
1438 moreover 2
1439 morris 2
1440 mostafa 2
1441 moving 2
1442 mukai 2
1443 multilingual 2
1444 multimodality 2
1445 nano 2
1446 narrative 2
1447 nationxhascomparativeadvantageinpaperproductionandshouldtradepapertonationyinexchangeforcrepes 2
1448 nationygivesupproducing 2
1449 network 2
1450 neurosciences 2
1451 nogpt 2
1452 noneoftheotheranswers 2
1453 normally 2
1454 notsure 2
1455 nuclear 2
1456 occur 2
1457 offered 2
1458 ohm 2
1459 ok 2
1460 ominilmm 2
1461 once 2
1462 ones 2
1463 openbmb 2
1464 operating 2
1465 opportunitycostof 2
1466 oppressor 2
1467 optic 2
1468 oscar 2
1469 others 2
1470 ov 2
1471 overview 2
1472 pairs 2
1473 panningblur 2
1474 parameter 2
1475 participated 2
1476 pathophysiology 2
1477 patientswithnon 2
1478 patterns 2
1479 pengcheng 2
1480 pengchuan 2
1481 percentile 2
1482 personality 2
1483 peutz 2
1484 phalanx 2
1485 photos 2
1486 photoscale 2
1487 phrases 2
1488 ping 2
1489 piotr 2
1490 pivotal 2
1491 played 2
1492 plots 2
1493 pmlr 2
1494 poetry 2
1495 pointe 2
1496 pointf 2
1497 posed 2
1498 poses 2
1499 potential 2
1500 presence 2
1501 price 2
1502 primarily 2
1503 primary 2
1504 principles 2
1505 priorityorder 2
1506 privacy 2
1507 processingquestion 2
1508 producing 2
1509 producta 2
1510 productasalesquantity 2
1511 productb 2
1512 productc 2
1513 prohibit 2
1514 projects 2
1515 pronounced 2
1516 propranolol 2
1517 prosperity 2
1518 providing 2
1519 psychologyquestion 2
1520 ptosisalready 2
1521 purpose 2
1522 puts 2
1523 pwave 2
1524 qi 2
1525 qiao 2
1526 qrscomplex 2
1527 qwenlm 2
1528 ran 2
1529 rapid 2
1530 rate 2
1531 rateofreturn 2
1532 ratio 2
1533 ray 2
1534 reach 2
1535 readme 2
1536 real 2
1537 reason 2
1538 recalling 2
1539 recent 2
1540 recently 2
1541 receptors 2
1542 referring 2
1543 refine 2
1544 refractive 2
1545 regular 2
1546 rejecttoanswer 2
1547 rekacore 2
1548 release 2
1549 relevant 2
1550 religion 2
1551 remedy 2
1552 reported 2
1553 represent 2
1554 represented 2
1555 representing 2
1556 repurposed 2
1557 requiring 2
1558 researchquestion 2
1559 respectively 2
1560 result 2
1561 retainedearningstobereported 2
1562 review 2
1563 revolutionizing 2
1564 right 2
1565 rightventricle 2
1566 rigorous 2
1567 robust 2
1568 robustness 2
1569 roomwithinaroom 2
1570 round 2
1571 sa 2
1572 sampled 2
1573 savingthemfrompovertyoroppressionandbringingthemtrade 2
1574 scene 2
1575 scenes 2
1576 scope 2
1577 sculpture 2
1578 sebastian 2
1579 select 2
1580 selective 2
1581 selects 2
1582 sequence 2
1583 several 2
1584 shade 2
1585 shall 2
1586 shao 2
1587 share 2
1588 sheet 2
1589 shen 2
1590 shijie 2
1591 shortcomings 2
1592 showingawillingnesstobecomparedtogreatspanishpaintersofthepast 2
1593 shuai 2
1594 simpedanceinthes 2
1595 simple 2
1596 simvlm 2
1597 sites 2
1598 siyuan 2
1599 size 2
1600 sketches 2
1601 sleg 2
1602 socialsci 2
1603 solid 2
1604 songyang 2
1605 sonnet 2
1606 sparkles 2
1607 speciesbdescendedfromspeciesa 2
1608 specifically 2
1609 springer 2
1610 square 2
1611 standardized 2
1612 standards 2
1613 startsafterafinishesandcompleteswithoutbeinginterleavedwithanyothertransaction 2
1614 statistical 2
1615 stem 2
1616 steps 2
1617 storage 2
1618 stored 2
1619 student 2
1620 subarachnoidspace 2
1621 success 2
1622 sufficient 2
1623 sustained 2
1624 synthesisquestion 2
1625 tab 2
1626 tackle 2
1627 tasked 2
1628 taxonomy 2
1629 tay 2
1630 technical 2
1631 technique 2
1632 testing 2
1633 textualunderstandingerror 2
1634 theartist 2
1635 thecabinisdepressurizedandtheoxygenmaskfallsfromtheceiling 2
1636 thecorrectcalculationshouldbe 2
1637 thedangeroflettinggoofadream 2
1638 thediffusionofculturaltraditionsalongeurasiantraderoutes 2
1639 theentranceoflightandairintothehall 2
1640 theextenttowhichgovernmenteconomicpoliciesineurasiaintheperiod 2
1641 theincidencedensity 2
1642 theinequitiesofsocieties 2
1643 thejamdensity 2
1644 themodel 2
1645 themostlikelydiagnosisis 2
1646 themousemaydevelopnoheadandtwotails 2
1647 themousemaydeveloptwoheadsandnotail 2
1648 thentheotherstartsbeforethefirstonefinishes 2
1649 theorderis 2
1650 theoryquestion 2
1651 thepatientisapost 2
1652 theperspectiveofthecartoonististhattheunitedstateshasbeenasaviortothenationsbroughtunderitscontrol 2
1653 theregionboundedbythegraphasshownabove 2
1654 thesearethecaseswherebothtestsarepositive 2
1655 thesewomenwanttheirchildrentobeeducated 2
1656 thespreadoftechnologicalinnovationsacrossregionsineurasia 2
1657 thetypeofalkylsubstituentbpresent 2
1658 thetypeofheterocyclicringcpresent 2
1659 thetypeofsubstituentaonthearomaticring 2
1660 theunitedstatesisseenasfulfillingwhichofthefollowingroles 2
1661 thevalueoftheindexis 2
1662 think 2
1663 thisconditionoftenoccursinelderlypeople 2
1664 thisisincorrect 2
1665 thisphenomenoncannotbefixedbylasik 2
1666 thisquestioncallsforknowledgerelatedtothestimulusmaterial 2
1667 thisstatementappearstobetrue 2
1668 thistumormayrepresentthemostcommontypeofintraocularneoplasm 2
1669 tiejun 2
1670 timelines 2
1671 tofind 2
1672 tofindthesteady 2
1673 took 2
1674 tool 2
1675 tot 2
1676 totalmanufacturingcostforproducta 2
1677 touvron 2
1678 train 2
1679 trainable 2
1680 trained 2
1681 transactionaoncpu 2
1682 transactionboncpu 2
1683 transformers 2
1684 trend 2
1685 truenegatives 2
1686 underscore 2
1687 underscores 2
1688 unit 2
1689 uniter 2
1690 universal 2
1691 unknown 2
1692 unlocking 2
1693 uponinspection 2
1694 uptodistinguishitfrommelanoma 2
1695 url 2
1696 used 2
1697 va 2
1698 variable 2
1699 vaultedroof 2
1700 vb 2
1701 vce 2
1702 vdoesn 2
1703 ventriculardepolarization 2
1704 version 2
1705 vfailstointerprettheimage 2
1706 vilbert 2
1707 vinvl 2
1708 visionmayberestoredwithconvexlensandrefractivesurgery 2
1709 visually 2
1710 vit 2
1711 vrecalledtherightknowledgeandmadetherightreasoning 2
1712 w 2
1713 weak 2
1714 web 2
1715 wecan 2
1716 wecandeduce 2
1717 weightedindexofthethreestocksforthefirstperiod 2
1718 weightedindexvalueat 2
1719 wenqi 2
1720 whatisthemostlikelydiagnosis 2
1721 whichisincorrect 2
1722 whichisnotexplicitlymarkedinthefigurebutisonlydescribedintext 2
1723 whichofthesepicturesshowsthereconciliationofegoismandother 2
1724 willbeactivatedandinhibittheseedlingtripleresponse 2
1725 withthehpointingtothebackground 2
1726 withtheswitchinposition 2
1727 won 2
1728 wouldn 2
1729 www 2
1730 xiaowei 2
1731 xing 2
1732 xiujun 2
1733 yacoob 2
1734 yao 2
1735 yaser 2
1736 years 2
1737 yifan 2
1738 ying 2
1739 youaretravelingonaplanewithasmallchild 2
1740 yuhang 2
1741 yuheng 2
1742 zhai 2
1743 zhe 2
1744 zhengyuan 2
1745 zhong 2
1746 zhuang 2
1747 zicheng 2
1748 zirui 2
1749 zitnick 2
1750 ziwei 2
1751 ziyi 2
1752 zou 2
合計 5,688 20,849

合計は出現数1の単語を含みます。

<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words and/or centences in order.

Qiita Calendar 2024

2024 参加・主催Calendarと投稿記事一覧 Qiita(248)
https://qiita.com/kaizen_nagoya/items/d80b8fbac2496df7827f

主催Calendar2024分析 Qiita(254)
https://qiita.com/kaizen_nagoya/items/15807336d583076f70bc

Calendar 統計
https://qiita.com/kaizen_nagoya/items/e315558dcea8ee3fe43e

LLM 関連 Calendar 2024
https://qiita.com/kaizen_nagoya/items/c36033cf66862d5496fa

Large Language Model Related Calendar
https://qiita.com/kaizen_nagoya/items/3beb0bc3fb71e3ae6d66

博士論文 Calendar 2024 を開催します。
https://qiita.com/kaizen_nagoya/items/51601357efbcaf1057d0

博士論文(0)関連記事一覧
https://qiita.com/kaizen_nagoya/items/8f223a760e607b705e78

自己記事一覧

Qiitaで逆リンクを表示しなくなったような気がする。時々、スマフォで表示するとあらわっることがあり、完全に削除したのではなさそう。

4月以降、せっせとリンクリストを作り、統計を取って確率を説明しようとしている。
2025年2月末を目標にしている。

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df

Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6

Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

C++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53

安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409

プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909

転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe

技術士(0)一覧
https://qiita.com/kaizen_nagoya/items/ce4ccf4eb9c5600b89ea

Reserchmap(0) 一覧
https://qiita.com/kaizen_nagoya/items/506c79e562f406c4257e

物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff

量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4

数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d

coq(0) 一覧
https://qiita.com/kaizen_nagoya/items/d22f9995cf2173bc3b13

統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba

図(0) state, sequence and timing. UML and お絵描き
https://qiita.com/kaizen_nagoya/items/60440a882146aeee9e8f

色(0) 記事100書く切り口
https://qiita.com/kaizen_nagoya/items/22331c0335ed34326b9b

品質一覧
https://qiita.com/kaizen_nagoya/items/2b99b8e9db6d94b2e971

言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6

医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82

水の資料集(0) 方針と成果
https://qiita.com/kaizen_nagoya/items/f5dbb30087ea732b52aa

自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5

通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7

日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68

英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d

音楽 一覧(0)
https://qiita.com/kaizen_nagoya/items/b6e5f42bbfe3bbe40f5d

@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b

鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/faa4ea03d91d901a618a

OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3

coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

「はじめての」シリーズ  ベクタージャパン 
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb

AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

LaTeX(0) 一覧 
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

Rust(0) 一覧 
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927

関連資料

' @kazuo_reve 私が効果を確認した「小川メソッド」
https://qiita.com/kazuo_reve/items/a3ea1d9171deeccc04da

' @kazuo_reve 新人の方によく展開している有益な情報
https://qiita.com/kazuo_reve/items/d1a3f0ee48e24bba38f1

' @kazuo_reve Vモデルについて勘違いしていたと思ったこと
https://qiita.com/kazuo_reve/items/46fddb094563bd9b2e1e

Engineering Festa 2024前に必読記事一覧

programの本質は計画だ。programは設計だ。
https://qiita.com/kaizen_nagoya/items/c8545a769c246a458c27

登壇直後版 色使い(JIS安全色) Qiita Engineer Festa 2023〜私しか得しないニッチな技術でLT〜 スライド編 0.15
https://qiita.com/kaizen_nagoya/items/f0d3070d839f4f735b2b

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

逆も真:社会人が最初に確かめるとよいこと。OSEK(69)、Ethernet(59)
https://qiita.com/kaizen_nagoya/items/39afe4a728a31b903ddc

統計の嘘。仮説(127)
https://qiita.com/kaizen_nagoya/items/63b48ecf258a3471c51b

自分の言葉だけで論理展開できるのが天才なら、文章の引用だけで論理展開できるのが秀才だ。仮説(136)
https://qiita.com/kaizen_nagoya/items/97cf07b9e24f860624dd

参考文献駆動執筆(references driven writing)・デンソークリエイト編
https://qiita.com/kaizen_nagoya/items/b27b3f58b8bf265a5cd1

「何を」よりも「誰を」。10年後のために今見習いたい人たち
https://qiita.com/kaizen_nagoya/items/8045978b16eb49d572b2

Qiitaの記事に3段階または5段階で到達するための方法
https://qiita.com/kaizen_nagoya/items/6e9298296852325adc5e

出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840

coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68

あなたは「勘違いまとめ」から、勘違いだと言っていることが勘違いだといくつ見つけられますか。人間の間違い(human error(125))の種類と対策
https://qiita.com/kaizen_nagoya/items/ae391b77fffb098b8fb4

プログラマの「プログラムが書ける」思い込みは強みだ。3つの理由。仮説(168)統計と確率(17) , OSEK(79)
https://qiita.com/kaizen_nagoya/items/bc5dd86e414de402ec29

出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840

これからの情報伝達手段の在り方について考えてみよう。炎上と便乗。
https://qiita.com/kaizen_nagoya/items/71a09077ac195214f0db

ISO/IEC JTC1 SC7 Software and System Engineering
https://qiita.com/kaizen_nagoya/items/48b43f0f6976a078d907

アクセシビリティの知見を発信しよう!(再び)
https://qiita.com/kaizen_nagoya/items/03457eb9ee74105ee618

統計論及確率論輪講(再び)
https://qiita.com/kaizen_nagoya/items/590874ccfca988e85ea3

読者の心をグッと惹き寄せる7つの魔法
https://qiita.com/kaizen_nagoya/items/b1b5e89bd5c0a211d862

@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b

ソースコードで議論しよう。日本語で議論するの止めましょう(あるプログラミング技術の議論報告)
https://qiita.com/kaizen_nagoya/items/8b9811c80f3338c6c0b0

脳内コンパイラの3つの危険
https://qiita.com/kaizen_nagoya/items/7025cf2d7bd9f276e382

心理学の本を読むよりはコンパイラ書いた方がよくね。仮説(34)
https://qiita.com/kaizen_nagoya/items/fa715732cc148e48880e

NASAを超えるつもりがあれば読んでください。
https://qiita.com/kaizen_nagoya/items/e81669f9cb53109157f6

データサイエンティストの気づき!「勉強して仕事に役立てない人。大嫌い!!」『それ自分かも?』ってなった!!!
https://qiita.com/kaizen_nagoya/items/d85830d58d8dd7f71d07

「ぼくの好きな先生」「人がやらないことをやれ」プログラマになるまで。仮説(37) 
https://qiita.com/kaizen_nagoya/items/53e4bded9fe5f724b3c4

なぜ経済学徒を辞め、計算機屋になったか(経済学部入学前・入学後・卒業後対応) 転職(1)
https://qiita.com/kaizen_nagoya/items/06335a1d24c099733f64

プログラミング言語教育のXYZ。 仮説(52)
https://qiita.com/kaizen_nagoya/items/1950c5810fb5c0b07be4

【24卒向け】9ヶ月後に年収1000万円を目指す。二つの関門と三つの道。
https://qiita.com/kaizen_nagoya/items/fb5bff147193f726ad25

「【25卒向け】Qiita Career Meetup for STUDENT」予習の勧め
https://qiita.com/kaizen_nagoya/items/00eadb8a6e738cb6336f

大学入試不合格でも筆記試験のない大学に入って卒業できる。卒業しなくても博士になれる。
https://qiita.com/kaizen_nagoya/items/74adec99f396d64b5fd5

全世界の不登校の子供たち「博士論文」を書こう。世界子供博士論文遠隔実践中心 安全(99)
https://qiita.com/kaizen_nagoya/items/912d69032c012bcc84f2

小川メソッド 覚え(書きかけ)
https://qiita.com/kaizen_nagoya/items/3593d72eca551742df68

DoCAP(ドゥーキャップ)って何ですか?
https://qiita.com/kaizen_nagoya/items/47e0e6509ab792c43327

views 20,000越え自己記事一覧
https://qiita.com/kaizen_nagoya/items/58e8bd6450957cdecd81

Views1万越え、もうすぐ1万記事一覧 最近いいねをいただいた213記事
https://qiita.com/kaizen_nagoya/items/d2b805717a92459ce853

amazon 殿堂入りNo1レビュアになるまで。仮説(102)
https://qiita.com/kaizen_nagoya/items/83259d18921ce75a91f4

100以上いいねをいただいた記事16選
https://qiita.com/kaizen_nagoya/items/f8d958d9084ffbd15d2a

小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on my individual experience. It has nothing to do with the organization or business to which I currently belong.

文書履歴(document history)

ver. 0.01 初稿  20241128

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?