1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

facebookの共通の友人数 統計(63)

Last updated at Posted at 2022-03-27

データに関する記事を書こう!
https://qiita.com/official-events/30be12dd14c0aad2c1c2

テーマ2『データに関する記事を書こう!』参加記事です。

今日は、ある知人の誕生日です。

その知人とfacebookでの共通の友人数が100人を超えていた。

そこで、その知人との共通の友人が100人以上の方の数を数えた。
35人だった。35人と私との共通の友人が100人以上の友人の数を数えた。

friends:その人のfacebookの友人数。公開していない場合は0.
common:私との共通の友人数。
over 100:共通の友人のうち、共通の友人と私との共通の友人の数が100人以上の数。
c/f %: 100 * common/friends。友人数非公開の場合は0.
o/c %: 100 * over100/common

o/c %の大きい順で、common, over 100が多い順。

friendsが0は共通の友達以外非公開にしている場合。

friends common over 100 c/f % o/c %
837 112 41 13 36
1,084 100 34 9 34
3,997 109 37 2 33
1,185 112 36 9 32
434 104 34 23 32
384 152 48 39 31
483 110 35 22 31
243 105 33 43 31
148 102 32 68 31
802 141 43 17 30
539 139 43 25 30
200 119 36 59 30
0 121 34 0 28
232 107 31 46 28
386 137 38 35 27
356 103 28 28 27
817 175 45 21 25
666 148 38 22 25
641 142 36 22 25
1,133 134 34 11 25
0 150 37 0 24
233 142 35 60 24
0 159 37 0 23
334 117 27 35 23
0 108 25 0 23
1,675 160 36 9 22
196 124 28 63 22
1,767 254 55 14 21
0 145 30 0 20
508 156 31 30 19
0 194 35 0 18
0 156 29 0 18
0 203 36 0 17
1,285 158 28 12 17
884 295 49 33 16
0 172 28 0 16
標準偏差 41.42 6.49 5.52
変動係数 0.73 0.23 0.21
平均 143.47 35.61 25.38
中央値 140 35 25

並べ直して、commonが多い順で、over 100が多い順。

friends common over 100 c/f % o/f %
884 295 49 33 16
1,767 254 55 14 21
0 203 36 0 17
0 194 35 0 18
817 175 45 21 25
0 172 28 0 16
1,675 160 36 9 22
0 159 37 0 23
1,285 158 28 12 17
508 156 31 30 19
0 156 29 0 18
384 152 48 39 31
0 150 37 0 24
666 148 38 22 25
0 145 30 0 20
641 142 36 22 25
233 142 35 60 24
802 141 43 17 30
539 139 43 25 30
386 137 38 35 27
1,133 134 34 11 25
196 124 28 63 22
0 121 34 0 28
200 119 36 59 30
334 117 27 35 23
837 112 41 13 36
1,185 112 36 9 32
483 110 35 22 31
3,997 109 37 2 33
0 108 25 0 23
232 107 31 46 28
243 105 33 43 31
434 104 34 23 32
356 103 28 28 27
148 102 32 68 31
1,084 100 34 9 34
標準偏差 41.42 6.49 5.52
変動係数 0.73 0.23 0.21
平均 143.47 35.61 25.38
中央値 140 35 25

中央値

中央値と平均値があまりはずれていない。分布の形として、偏った形ではないことを仮定してもいいかもしれない。
共通の友人数が99人以下の人を統計から外しており、正規分布は仮定しない方がよいかもしれない。

知人との共通の友人が35人だった。
その35人の友人と共通の友人が100人以上数の中央値が35人だった。
これは、偶然というものだが、共通する友人の核が35人前後なのかもしれない。

変動係数

o/c % と over 100の変動係数があまり違わない。
背景はまだ解析案はできていない。

雑感

自分の友人で、共通の友人の数が100人以上の総数を数えようとしたらハングしてしまった。
ハードディスクの空き容量が足りないらしい。

共通の友人数の多さは、普段の情報交換の比率にはほぼ比例していない。

<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words in order.

関連資料

' @kazuo_reve 私が効果を確認した「小川メソッド」
https://qiita.com/kazuo_reve/items/a3ea1d9171deeccc04da

' @kazuo_reve 新人の方によく展開している有益な情報
https://qiita.com/kazuo_reve/items/d1a3f0ee48e24bba38f1

' @kazuo_reve Vモデルについて勘違いしていたと思ったこと
https://qiita.com/kazuo_reve/items/46fddb094563bd9b2e1e

Engineering Festa 2024前に必読記事一覧

登壇直後版 色使い(JIS安全色) Qiita Engineer Festa 2023〜私しか得しないニッチな技術でLT〜 スライド編 0.15
https://qiita.com/kaizen_nagoya/items/f0d3070d839f4f735b2b

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

逆も真:社会人が最初に確かめるとよいこと。OSEK(69)、Ethernet(59)
https://qiita.com/kaizen_nagoya/items/39afe4a728a31b903ddc

統計の嘘。仮説(127)
https://qiita.com/kaizen_nagoya/items/63b48ecf258a3471c51b

自分の言葉だけで論理展開できるのが天才なら、文章の引用だけで論理展開できるのが秀才だ。仮説(136)
https://qiita.com/kaizen_nagoya/items/97cf07b9e24f860624dd

参考文献駆動執筆(references driven writing)・デンソークリエイト編
https://qiita.com/kaizen_nagoya/items/b27b3f58b8bf265a5cd1

「何を」よりも「誰を」。10年後のために今見習いたい人たち
https://qiita.com/kaizen_nagoya/items/8045978b16eb49d572b2

Qiitaの記事に3段階または5段階で到達するための方法
https://qiita.com/kaizen_nagoya/items/6e9298296852325adc5e

出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840

coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68

あなたは「勘違いまとめ」から、勘違いだと言っていることが勘違いだといくつ見つけられますか。人間の間違い(human error(125))の種類と対策
https://qiita.com/kaizen_nagoya/items/ae391b77fffb098b8fb4

プログラマの「プログラムが書ける」思い込みは強みだ。3つの理由。仮説(168)統計と確率(17) , OSEK(79)
https://qiita.com/kaizen_nagoya/items/bc5dd86e414de402ec29

出力(output)と呼ばないで。これは状態(state)です。
https://qiita.com/kaizen_nagoya/items/80b8b5913b2748867840

これからの情報伝達手段の在り方について考えてみよう。炎上と便乗。
https://qiita.com/kaizen_nagoya/items/71a09077ac195214f0db

ISO/IEC JTC1 SC7 Software and System Engineering
https://qiita.com/kaizen_nagoya/items/48b43f0f6976a078d907

アクセシビリティの知見を発信しよう!(再び)
https://qiita.com/kaizen_nagoya/items/03457eb9ee74105ee618

統計論及確率論輪講(再び)
https://qiita.com/kaizen_nagoya/items/590874ccfca988e85ea3

読者の心をグッと惹き寄せる7つの魔法
https://qiita.com/kaizen_nagoya/items/b1b5e89bd5c0a211d862

@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b

ソースコードで議論しよう。日本語で議論するの止めましょう(あるプログラミング技術の議論報告)
https://qiita.com/kaizen_nagoya/items/8b9811c80f3338c6c0b0

脳内コンパイラの3つの危険
https://qiita.com/kaizen_nagoya/items/7025cf2d7bd9f276e382

心理学の本を読むよりはコンパイラ書いた方がよくね。仮説(34)
https://qiita.com/kaizen_nagoya/items/fa715732cc148e48880e

NASAを超えるつもりがあれば読んでください。
https://qiita.com/kaizen_nagoya/items/e81669f9cb53109157f6

データサイエンティストの気づき!「勉強して仕事に役立てない人。大嫌い!!」『それ自分かも?』ってなった!!!
https://qiita.com/kaizen_nagoya/items/d85830d58d8dd7f71d07

「ぼくの好きな先生」「人がやらないことをやれ」プログラマになるまで。仮説(37) 
https://qiita.com/kaizen_nagoya/items/53e4bded9fe5f724b3c4

なぜ経済学徒を辞め、計算機屋になったか(経済学部入学前・入学後・卒業後対応) 転職(1)
https://qiita.com/kaizen_nagoya/items/06335a1d24c099733f64

プログラミング言語教育のXYZ。 仮説(52)
https://qiita.com/kaizen_nagoya/items/1950c5810fb5c0b07be4

【24卒向け】9ヶ月後に年収1000万円を目指す。二つの関門と三つの道。
https://qiita.com/kaizen_nagoya/items/fb5bff147193f726ad25

「【25卒向け】Qiita Career Meetup for STUDENT」予習の勧め
https://qiita.com/kaizen_nagoya/items/00eadb8a6e738cb6336f

大学入試不合格でも筆記試験のない大学に入って卒業できる。卒業しなくても博士になれる。
https://qiita.com/kaizen_nagoya/items/74adec99f396d64b5fd5

全世界の不登校の子供たち「博士論文」を書こう。世界子供博士論文遠隔実践中心 安全(99)
https://qiita.com/kaizen_nagoya/items/912d69032c012bcc84f2

views 20,000越え自己記事一覧
https://qiita.com/kaizen_nagoya/items/58e8bd6450957cdecd81

Views1万越え、もうすぐ1万記事一覧 最近いいねをいただいた213記事
https://qiita.com/kaizen_nagoya/items/d2b805717a92459ce853

自己記事一覧

Qiitaで逆リンクを表示しなくなったような気がする。時々、スマフォで表示するとあらわっることがあり、完全に削除したのではなさそう。

4月以降、せっせとリンクリストを作り、統計を取って確率を説明しようとしている。
2025年2月末を目標にしている。

物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff

量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4

数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d

統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba

図(0) state, sequence and timing. UML and お絵描き
https://qiita.com/kaizen_nagoya/items/60440a882146aeee9e8f

品質一覧
https://qiita.com/kaizen_nagoya/items/2b99b8e9db6d94b2e971

言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6

医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82

自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5

通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7

日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68

英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d

転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe

仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df

音楽 一覧(0)
https://qiita.com/kaizen_nagoya/items/b6e5f42bbfe3bbe40f5d

@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b

Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6

鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/26bda595f341a27901a0

安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3

Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68

プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

「はじめての」シリーズ  ベクタージャパン 
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb

AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

LaTeX(0) 一覧 
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

Rust(0) 一覧 
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927

100以上いいねをいただいた記事16選
https://qiita.com/kaizen_nagoya/items/f8d958d9084ffbd15d2a

小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on my individual experience. It has nothing to do with the organization or business to which I currently belong.

文書履歴(document history)

ver. 0.01 初稿  20240728

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?