この項は書きかけです。順次追記します。
1.すぐに利用したい方へ(as soon as)
「実践 Deep Learning ――PythonとTensorFlowで学ぶ次世代の機械学習アルゴリズム」Nikhil Buduma 著
https://www.oreilly.co.jp/books/9784873118321/
<この項は書きかけです。順次追記します。>
docker
dockerを導入し、Windows, Macではdockerを起動しておいてください。
Windowsでは、BiosでIntel Virtualizationをenableにしないとdockerが起動しない場合があります。
また、セキュリティの警告などが出ることがあります。
docker pull and run
$ docker pull kaizenjapan/anaconda-nikhil
$ docker run -it kaizenjapan/anaconda-nikhil /bin/bash
以下のshell sessionでは
(base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。
それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。
それぞれの章のフォルダに移動します。
dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。
ファイル共有または複写
dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。
複写の場合は、dockerを起動したOS側コマンドを実行しました。お使いのdockerの番号で置き換えてください。複写したファイルをブラウザで表示し内容確認しました。
第3章
(base) root@70104baf94c5:/# cd fundamentals-of-deep-learning-ja/
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja# ls
README.md fdl_examples requirements.txt
data fundamentals-of-deep-learning-ja.png
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja# cd fdl_examples/
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja/fdl_examples# ls
__init__.py chapter4 chapter6 chapter8 datatools
chapter3 chapter5 chapter7 chapter9
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja/fdl_examples# cd chapter3
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja/fdl_examples/chapter3# ls
README.md img multilayer_perceptron.py scope2.py
device.py logistic_regression.py scope1.py session.py
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja/fdl_examples/chapter3# python device.py
/opt/conda/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
2018-10-08 07:00:54.361703: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-10-08 07:00:54.370758: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
Device mapping: no known devices.
2018-10-08 07:00:54.370943: I tensorflow/core/common_runtime/direct_session.cc:288] Device mapping:
chapter3/scope1.py
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja/fdl_examples/chapter3# python scope1.py
Printing names of weight parameters
W_1:0 W_2:0 W_3:0
Printing names of bias parameters
biases_1:0 biases_2:0 biases_3:0
Printing names of weight parameters
W_1_1:0 W_2_1:0 W_3_1:0
Printing names of bias parameters
biases_1_1:0 biases_2_1:0 biases_3_1:0
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja/fdl_examples/chapter3# python scope2.py
chapter3/logistic_regression.py
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja/fdl_examples/chapter3# python logistic_regression.py
WARNING:tensorflow:From logistic_regression.py:5: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please write your own downloading logic.
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/base.py:252: _internal_retry.<locals>.wrap.<locals>.wrapped_fn (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please use urllib or similar directly.
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting data/train-labels-idx1-ubyte.gz
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.one_hot on tensors.
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
2018-10-08 08:11:41.989335: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-10-08 08:11:41.989777: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.
Epoch: 0001 cost: 1.176761562
Validation Error: 0.149399995803833
Epoch: 0002 cost: 0.662642708
Validation Error: 0.12959998846054077
Epoch: 0003 cost: 0.550728443
Validation Error: 0.12099999189376831
Epoch: 0004 cost: 0.496845487
Validation Error: 0.11640000343322754
Epoch: 0005 cost: 0.463774768
Validation Error: 0.10979998111724854
Epoch: 0006 cost: 0.440914543
Validation Error: 0.107200026512146
Epoch: 0007 cost: 0.423964346
Validation Error: 0.10460001230239868
Epoch: 0008 cost: 0.410656857
Validation Error: 0.10240000486373901
Epoch: 0009 cost: 0.399871363
Validation Error: 0.10159999132156372
Epoch: 0010 cost: 0.390941541
Validation Error: 0.09799998998641968
(中略)
Epoch: 0098 cost: 0.282698083
Validation Error: 0.07539999485015869
Epoch: 0099 cost: 0.282420104
Validation Error: 0.0756000280380249
Epoch: 0100 cost: 0.282150275
Validation Error: 0.07539999485015869
Optimization Finished!
Test Accuracy: 0.9222000241279602
第4章
編集したpythonファイル
- PNGファイル出力のおまじない:2行追記
import matplotlib as mpl
mpl.use('Agg')
- ファイル出力操作:2行追記、1行注釈化
fig = plt.figure()
#plt.show()
fig.savefig('Nikhil.png')
結果はnikhil.pngファイルとして出力
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
# add for DISPLAY
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
n_hidden_1 = 256
n_hidden_2 = 256
def layer(input, weight_shape, bias_shape):
weight_init = tf.random_normal_initializer(stddev=(2.0/weight_shape[0])**0.5)
bias_init = tf.constant_initializer(value=0)
W = tf.get_variable("W", weight_shape, initializer=weight_init)
b = tf.get_variable("b", bias_shape, initializer=bias_init)
return tf.nn.relu(tf.matmul(input, W) + b)
def inference(x):
with tf.variable_scope("hidden_1"):
hidden_1 = layer(x, [784, n_hidden_1], [n_hidden_1])
with tf.variable_scope("hidden_2"):
hidden_2 = layer(hidden_1, [n_hidden_1, n_hidden_2], [n_hidden_2])
with tf.variable_scope("output"):
output = layer(hidden_2, [n_hidden_2, 10], [10])
return output
def loss(output, y):
xentropy = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=y)
loss = tf.reduce_mean(xentropy)
return loss
mnist = input_data.read_data_sets("data", one_hot=True)
x = tf.placeholder("float", [None, 784])
y = tf.placeholder("float", [None, 10])
sess = tf.Session()
with tf.variable_scope("mlp_model") as scope:
output_opt = inference(x)
cost_opt = loss(output_opt, y)
saver = tf.train.Saver()
scope.reuse_variables()
var_list_opt = [
"hidden_1/W", "hidden_1/b",
"hidden_2/W", "hidden_2/b",
"output/W", "output/b"
]
var_list_opt = [tf.get_variable(v) for v in var_list_opt]
saver.restore(sess, "frozen_mlp_checkpoint/model-checkpoint-550000")
with tf.variable_scope("mlp_init") as scope:
output_rand = inference(x)
cost_rand = loss(output_rand, y)
scope.reuse_variables()
var_list_rand = [
"hidden_1/W", "hidden_1/b",
"hidden_2/W", "hidden_2/b",
"output/W", "output/b"
]
var_list_rand = [tf.get_variable(v) for v in var_list_rand]
init_op = tf.variables_initializer(var_list_rand)
sess.run(init_op)
with tf.variable_scope("mlp_inter") as scope:
alpha = tf.placeholder("float", [1, 1])
beta = 1 - alpha
h1_W_inter = var_list_opt[0] * beta + var_list_rand[0] * alpha
h1_b_inter = var_list_opt[1] * beta + var_list_rand[1] * alpha
h2_W_inter = var_list_opt[2] * beta + var_list_rand[2] * alpha
h2_b_inter = var_list_opt[3] * beta + var_list_rand[3] * alpha
o_W_inter = var_list_opt[4] * beta + var_list_rand[4] * alpha
o_b_inter = var_list_opt[5] * beta + var_list_rand[5] * alpha
h1_inter = tf.nn.relu(tf.matmul(x, h1_W_inter) + h1_b_inter)
h2_inter = tf.nn.relu(tf.matmul(h1_inter, h2_W_inter) + h2_b_inter)
o_inter = tf.nn.relu(tf.matmul(h2_inter, o_W_inter) + o_b_inter)
cost_inter = loss(o_inter, y)
tf.summary.scalar("cost", cost_inter)
# WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.
# summary_writer = tf.summary.FileWriter("linear_interp_logs", graph_def=sess.graph_def)
summary_writer = tf.summary.FileWriter("linear_interp_logs", graph=sess.graph)
summary_op = tf.summary.merge_all()
results = []
for a in np.arange(-2, 2, 0.1):
feed_dict = {
x: mnist.test.images,
y: mnist.test.labels,
alpha: [[a]],
}
cost, summary_str = sess.run([cost_inter, summary_op], feed_dict=feed_dict)
summary_writer.add_summary(summary_str, (a + 2)/0.1)
results.append(cost)
plt.plot(np.arange(-2, 2, 0.1), results, "ro")
plt.grid()
plt.ylabel("error")
plt.xlabel("alpha")
#plt.show()
fig = plt.figure()
fig.savefig('Nikhil.png')
2 未解決
(base) root@70104baf94c5:/fundamentals-of-deep-learning-ja/fdl_examples/chapter3# python device.py
2018-10-08 07:34:27.876390: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-10-08 07:34:27.879592: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
Device mapping: no known devices.
tensorflow/core/common_runtime/placer.cc:886] MatMul: (MatMul)/job:localhost/replica:0/task:0/device:CPU:0
3. dockerを自力で構築する方へ
ここから下は、上記のpullしていただいたdockerをどういう方針で、どういう手順で作ったかを記録します。
上記のdockerを利用する上での参考資料です。本の続きを実行する上では必要ありません。
自力でdocker/anacondaを構築する場合の手順になります。
dockerfileを作る方法ではありません。ごめんなさい。
docker
ubuntu, debianなどのLinuxを、linux, windows, mac osから共通に利用できる仕組み。
利用するOSの設定を変更せずに利用できるのがよい。
同じ仕様で、大量の人が利用することができる。
ソフトウェアの開発元が公式に対応しているものと、利用者が便利に仕立てたものの両方が利用可能である。今回は、公式に配布しているものを、自分で仕立てて、他の人にも利用できるようにする。
python
DeepLearningの実習をPhthonで行って来た。
pythonを使う理由は、多くの機械学習の仕組みがpythonで利用できることと、Rなどの統計解析の仕組みもpythonから容易に利用できることがある。
###a naconda
pythonには、2と3という版の違いと、配布方法の違いなどがある。
Anacondaでpython3をこの1年半利用してきた。
Anacondaを利用した理由は、統計解析のライブラリと、JupyterNotebookが初めから入っているからである。
docker公式配布
ubuntu, debianなどのOSの公式配布,gcc, anacondaなどの言語の公式配布などがある。
これらを利用し、docker-hubに登録することにより、公式配布の質の確認と、変更権を含む幅広い情報の共有ができる。dockerが公式配布するものではなく、それぞれのソフト提供者の公式配布という意味。
docker pull
docker公式配布の利用は、URLからpullすることで実現する。
docker Anaconda
anacondaが公式配布しているものを利用。
$ docker pull continuumio/anaconda3
Using default tag: latest
latest: Pulling from continuumio/anaconda3
Digest: sha256:e07b9ca98ac1eeb1179dbf0e0bbcebd87701f8654878d6d8ce164d71746964d1
Status: Image is up to date for continuumio/anaconda3:latest
OgawaKiyoshi-no-MacBook-Pro:docker-toppers ogawakiyoshi$ docker run -it -p 8888:8888 continuumio/anaconda3 /bin/bash
apt
(base) root@778f01e56c2a:/# apt update
(base) root@778f01e56c2a:/# apt install -y procps
(base) root@778f01e56c2a:/# apt install -y vim
(base) root@778f01e56c2a:/# apt install -y apt-utils
(base) root@778f01e56c2a:/# apt install sudo
(base) root@778f01e56c2a:/# apt install -y git
Deep Learning git
(base) root@f19e2f06eabb:/# git clone https://github.com/oreilly-japan/fundamentals-of-deep-learning-ja
Cloning into 'deep-learning-from-scratch-2'...
remote: Enumerating objects: 17, done.
remote: Counting objects: 100% (17/17), done.
remote: Compressing objects: 100% (14/14), done.
remote: Total 320 (delta 4), reused 3 (delta 3), pack-reused 303
Receiving objects: 100% (320/320), 7.51 MiB | 1.93 MiB/s, done.
Resolving deltas: 100% (178/178), done.
conda
# conda update --prefix /opt/conda anaconda
# conda install tensorflow
pip
(base) root@f19e2f06eabb:/deep-learning-from-scratch-2/ch01# pip install --upgrade pip
Collecting pip
Downloading https://files.pythonhosted.org/packages/5f/25/e52d3f31441505a5f3af41213346e5b6c221c9e086a166f3703d2ddaf940/pip-18.0-py2.py3-none-any.whl (1.3MB)
100% |████████████████████████████████| 1.3MB 2.0MB/s
distributed 1.21.8 requires msgpack, which is not installed.
Installing collected packages: pip
Found existing installation: pip 10.0.1
Uninstalling pip-10.0.1:
Successfully uninstalled pip-10.0.1
Successfully installed pip-18.0
pyqt5
(base) root@f19e2f06eabb:/deep-learning-from-scratch-2/ch01# pip install pyqt5
Collecting pyqt5
Downloading https://files.pythonhosted.org/packages/3a/c7/4a9bec78c864051051b41b4cc76672ecc232e6dc7dbb91a5f8ff6f20ff64/PyQt5-5.11.2-5.11.1-cp35.cp36.cp37.cp38-abi3-manylinux1_x86_64.whl (117.9MB)
100% |████████████████████████████████| 117.9MB 311kB/s
Collecting PyQt5_sip<4.20,>=4.19.11 (from pyqt5)
Downloading https://files.pythonhosted.org/packages/d7/db/06ad1f62a1f80a5df639c322066f03db381c1a6322c02087e75092427838/PyQt5_sip-4.19.12-cp36-cp36m-manylinux1_x86_64.whl (66kB)
100% |████████████████████████████████| 71kB 30kB/s
distributed 1.21.8 requires msgpack, which is not installed.
Installing collected packages: PyQt5-sip, pyqt5
Successfully installed PyQt5-sip-4.19.12 pyqt5-5.11.2
apt
libgl1-mesa-dev
(base) root@f19e2f06eabb:/deep-learning-from-scratch-2/ch01# apt install -y libgl1-mesa-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
libdrm-amdgpu1 libdrm-dev libdrm-intel1 libdrm-nouveau2 libdrm-radeon1 libdrm2 libgl1-mesa-dri libgl1-mesa-glx libglapi-mesa
libllvm3.9 libpciaccess0 libpthread-stubs0-dev libsensors4 libtxc-dxtn-s2tc libx11-dev libx11-doc libx11-xcb-dev libx11-xcb1
libxau-dev libxcb-dri2-0 libxcb-dri2-0-dev libxcb-dri3-0 libxcb-dri3-dev libxcb-glx0 libxcb-glx0-dev libxcb-present-dev
libxcb-present0 libxcb-randr0 libxcb-randr0-dev libxcb-render0 libxcb-render0-dev libxcb-shape0 libxcb-shape0-dev libxcb-sync-dev
libxcb-sync1 libxcb-xfixes0 libxcb-xfixes0-dev libxcb1-dev libxdamage-dev libxdamage1 libxdmcp-dev libxext-dev libxfixes-dev
libxfixes3 libxshmfence-dev libxshmfence1 libxxf86vm-dev libxxf86vm1 mesa-common-dev x11proto-core-dev x11proto-damage-dev
x11proto-dri2-dev x11proto-fixes-dev x11proto-gl-dev x11proto-input-dev x11proto-kb-dev x11proto-xext-dev x11proto-xf86vidmode-dev
xorg-sgml-doctools xtrans-dev
Suggested packages:
pciutils lm-sensors libxcb-doc libxext-doc
The following NEW packages will be installed:
libdrm-amdgpu1 libdrm-dev libdrm-intel1 libdrm-nouveau2 libdrm-radeon1 libdrm2 libgl1-mesa-dev libgl1-mesa-dri libgl1-mesa-glx
libglapi-mesa libllvm3.9 libpciaccess0 libpthread-stubs0-dev libsensors4 libtxc-dxtn-s2tc libx11-dev libx11-doc libx11-xcb-dev
libx11-xcb1 libxau-dev libxcb-dri2-0 libxcb-dri2-0-dev libxcb-dri3-0 libxcb-dri3-dev libxcb-glx0 libxcb-glx0-dev libxcb-present-dev
libxcb-present0 libxcb-randr0 libxcb-randr0-dev libxcb-render0 libxcb-render0-dev libxcb-shape0 libxcb-shape0-dev libxcb-sync-dev
libxcb-sync1 libxcb-xfixes0 libxcb-xfixes0-dev libxcb1-dev libxdamage-dev libxdamage1 libxdmcp-dev libxext-dev libxfixes-dev
libxfixes3 libxshmfence-dev libxshmfence1 libxxf86vm-dev libxxf86vm1 mesa-common-dev x11proto-core-dev x11proto-damage-dev
x11proto-dri2-dev x11proto-fixes-dev x11proto-gl-dev x11proto-input-dev x11proto-kb-dev x11proto-xext-dev x11proto-xf86vidmode-dev
xorg-sgml-doctools xtrans-dev
0 upgraded, 61 newly installed, 0 to remove and 25 not upgraded.
Need to get 24.4 MB of archives.
After this operation, 193 MB of additional disk space will be used.
Get:1 http://deb.debian.org/debian stretch/main amd64 libdrm2 amd64 2.4.74-1 [36.2 kB]
3.docker hub 登録
ここからは、新たにソフトを導入したdockerを自分のhubに登録する方法です。
ご自身で何かソフトウェアを導入されたら、ぜひhubに登録することをお勧めします。
続きの作業を誰かに依頼したり、エラーがでてわからなくなったときに、対処方法を問い合わせるのにも役立ちます。
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b28c065c8b45 continuumio/anaconda3 "/usr/bin/tini -- /b…" 21 hours ago Up 21 hours elegant_gates
$ $ docker commit 5e6115003e9f kaizenjapan/anaconda-nikhil
Error response from daemon: Error processing tar file(exit status 1): write /opt/conda/lib/python3.6/site-packages/PyQt5/Qt/lib/libQt5WebEngineCore.so.5: no space left on device
うまくcommitできていません。pushはまだです。ごめんなさい。
ちょっと横入り
今回は、
$ docker run -it -p 8888:8888 -p 6006:6006 kaizenjapan/anaconda-keras /bin/bash
で始めました。conda install tensorflowがなかなか終わらなかったため、すでにtensorflowの入っているものを利用しようとしました。
参考資料(reference)
深層学習の学習【その2】[追記] Kuroyagi飼育日誌
http://kuroyagi.hatenablog.com/entry/2017/02/28/001233
dockerで機械学習(python:anaconda)「直感Deep Learning」Antonio Gulli、Sujit Pal 第1章,第2章
https://qiita.com/kaizen_nagoya/items/483ae708c71c88419c32
OpenCVをPythonで動かそうとしてlibGL.soが無いって言われたけど解決した。
https://qiita.com/toshitanian/items/5da24c0c0bd473d514c8
サーバサイドにおけるmatplotlibによる作図Tips
https://qiita.com/TomokIshii/items/3a26ee4453f535a69e9e
Dockerでホストとコンテナ間でのファイルコピー
https://qiita.com/gologo13/items/7e4e404af80377b48fd5
Docker for Mac でファイル共有を利用する
https://qiita.com/seijimomoto/items/1992d68de8baa7e29bb5
「名古屋のIoTは名古屋のOSで」Dockerをどっかーらどうやって使えばいいんでしょう。TOPPERS/FMP on RaspberryPi with Macintosh編 5つの関門
https://qiita.com/kaizen_nagoya/items/9c46c6da8ceb64d2d7af
64bitCPUへの道 and/or 64歳の決意
https://qiita.com/kaizen_nagoya/items/cfb5ffa24ded23ab3f60
ゼロから作るDeepLearning2自然言語処理編 読書会の進め方(例)
https://qiita.com/kaizen_nagoya/items/025eb3f701b36209302e
関連資料
' @kazuo_reve 私が効果を確認した「小川メソッド」
https://qiita.com/kazuo_reve/items/a3ea1d9171deeccc04da
' @kazuo_reve 新人の方によく展開している有益な情報
https://qiita.com/kazuo_reve/items/d1a3f0ee48e24bba38f1
' @kazuo_reve Vモデルについて勘違いしていたと思ったこと
https://qiita.com/kazuo_reve/items/46fddb094563bd9b2e1e
自己記事一覧
プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945
逆も真:社会人が最初に確かめるとよいこと。OSEK(69)、Ethernet(59)
https://qiita.com/kaizen_nagoya/items/39afe4a728a31b903ddc
「何を」よりも「誰を」。10年後のために今見習いたい人たち
https://qiita.com/kaizen_nagoya/items/8045978b16eb49d572b2
Qiitaの記事に3段階または5段階で到達するための方法
https://qiita.com/kaizen_nagoya/items/6e9298296852325adc5e
物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff
量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4
数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d
統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba
図(0) state, sequence and timing. UML and お絵描き
https://qiita.com/kaizen_nagoya/items/60440a882146aeee9e8f
品質一覧
https://qiita.com/kaizen_nagoya/items/2b99b8e9db6d94b2e971
言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6
医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82
自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5
通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7
日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68
英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d
転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe
仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df
音楽 一覧(0)
https://qiita.com/kaizen_nagoya/items/b6e5f42bbfe3bbe40f5d
「@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b
Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6
鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/26bda595f341a27901a0
安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409
一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39
Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794
Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0
線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001
OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3
Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8
++ Support(0)
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514
Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0
coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68
プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909
なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2
言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4
プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394
Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53
官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3
「はじめての」シリーズ ベクタージャパン
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb
AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869
プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945
LaTeX(0) 一覧
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792
自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b
Rust(0) 一覧
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927
100以上いいねをいただいた記事16選
https://qiita.com/kaizen_nagoya/items/f8d958d9084ffbd15d2a
小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on my individual experience. It has nothing to do with the organization or business to which I currently belong.
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
文書履歴(document history)
ver. 0.10 初稿 20181008 昼
ver. 0.11 docker push 追記 20181008 午前
ver. 0.12 誤記訂正 20181009
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.