0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

リンカ・ローダ

各社のリンカ、ローダを1、libralian、locator、boot loaderなどの機能を調べうる絵で、
リンカ・ローダ実践開発テクニック
は、手がかりをつかめるかもしれない。

リンカ・ローダ実践開発テクニック―実行ファイルを作成するために必須の技術-COMPUTER-TECHNOLOGY-坂井-弘亮
https://www.amazon.co.jp//dp/4789838072/
https://bookmeter.com/books/630946

参考文献にあるLinkers & Loadersは斜め読みしただけで、自分ではこういう道具は作らないだろうと勝手に思っていた。本書では簡易リンカの作成と、道具の作り方まで有るのがすごい。「setjmp()とlongjmp()」というコラムが1頁に入りきらず4頁になっているのに、節にしていないところが興味深い。

<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words in order.

content

content
https://shop.cqpub.co.jp/hanbai/books/38/38071.html

ardump.c リンカ・ローダ実践開発テクニック 坂井弘亮(1) coding(89)
https://qiita.com/kaizen_nagoya/items/2a7bf3050ee6ac662272

binary.c リンカ・ローダ実践開発テクニック 坂井弘亮(2) coding(90)
https://qiita.com/kaizen_nagoya/items/23b985cefc5338677812

combine.c リンカ・ローダ実践開発テクニック 坂井弘亮(3) coding(91)
https://qiita.com/kaizen_nagoya/items/59161e3274270cfd2009

const.c, リンカ・ローダ実践開発テクニック 坂井弘亮(4) coding(92) error(123) docker(174)
https://qiita.com/kaizen_nagoya/items/6f74dbf637a91685d0d1

constructor.c リンカ・ローダ実践開発テクニック 坂井弘亮(5) coding(93)
https://qiita.com/kaizen_nagoya/items/37e14a0943907b6f836f

continue.c リンカ・ローダ実践開発テクニック 坂井弘亮(6) coding(95)
https://qiita.com/kaizen_nagoya/items/e124223fd49db6d9e7a2

down.c リンカ・ローダ実践開発テクニック 坂井弘亮(7) coding(96)
https://qiita.com/kaizen_nagoya/items/866449f129cc8ce4dee7

ctors.c リンカ・ローダ実践開発テクニック 坂井弘亮(8) coding(97)
https://qiita.com/kaizen_nagoya/items/135524de5f8fea10e90f

duplicate.c リンカ・ローダ実践開発テクニック 坂井弘亮(9) coding(123)
https://qiita.com/kaizen_nagoya/items/2339c517f223e556bf67

edata.c リンカ・ローダ実践開発テクニック 坂井弘亮(10) coding(124)
https://qiita.com/kaizen_nagoya/items/bbfe0d6a3c5375026c64

N3220 Information technology — Programming languages — C N3220 working draft
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n3220.pdf
N3219 Information technology — Programming languages — C ISO/IEC 9899:2023 DIS Draft
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3219.pdf

elfread.c
#include <stdio.h>
#include <elf.h>

int main()
{
  Elf_Ehdr *ehdr;

  ehdr = (Elf_Ehdr *)0x08048000;

  printf("0x%02x%c%c%c\n",
	 ehdr->e_ident[EI_MAG0],
	 ehdr->e_ident[EI_MAG1],
	 ehdr->e_ident[EI_MAG2],
	 ehdr->e_ident[EI_MAG3]);
  exit (0);
}

elf.hを使ったことがない。ファイル検索すると2つあった。58Kbと18Kb。58Kbのは下記。

elf.h
//===- llvm/BinaryFormat/ELF.h - ELF constants and structures ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header contains common, non-processor-specific data structures and
// constants for the ELF file format.
//
// The details of the ELF32 bits in this file are largely based on the Tool
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_BINARYFORMAT_ELF_H
#define LLVM_BINARYFORMAT_ELF_H

#include <cstdint>
#include <cstring>

namespace llvm {
namespace ELF {

using Elf32_Addr = uint32_t; // Program address
using Elf32_Off = uint32_t;  // File offset
using Elf32_Half = uint16_t;
using Elf32_Word = uint32_t;
using Elf32_Sword = int32_t;

using Elf64_Addr = uint64_t;
using Elf64_Off = uint64_t;
using Elf64_Half = uint16_t;
using Elf64_Word = uint32_t;
using Elf64_Sword = int32_t;
using Elf64_Xword = uint64_t;
using Elf64_Sxword = int64_t;

// Object file magic string.
static const char ElfMagic[] = {0x7f, 'E', 'L', 'F', '\0'};

// e_ident size and indices.
enum {
  EI_MAG0 = 0,       // File identification index.
  EI_MAG1 = 1,       // File identification index.
  EI_MAG2 = 2,       // File identification index.
  EI_MAG3 = 3,       // File identification index.
  EI_CLASS = 4,      // File class.
  EI_DATA = 5,       // Data encoding.
  EI_VERSION = 6,    // File version.
  EI_OSABI = 7,      // OS/ABI identification.
  EI_ABIVERSION = 8, // ABI version.
  EI_PAD = 9,        // Start of padding bytes.
  EI_NIDENT = 16     // Number of bytes in e_ident.
};

struct Elf32_Ehdr {
  unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
  Elf32_Half e_type;                // Type of file (see ET_* below)
  Elf32_Half e_machine;   // Required architecture for this file (see EM_*)
  Elf32_Word e_version;   // Must be equal to 1
  Elf32_Addr e_entry;     // Address to jump to in order to start program
  Elf32_Off e_phoff;      // Program header table's file offset, in bytes
  Elf32_Off e_shoff;      // Section header table's file offset, in bytes
  Elf32_Word e_flags;     // Processor-specific flags
  Elf32_Half e_ehsize;    // Size of ELF header, in bytes
  Elf32_Half e_phentsize; // Size of an entry in the program header table
  Elf32_Half e_phnum;     // Number of entries in the program header table
  Elf32_Half e_shentsize; // Size of an entry in the section header table
  Elf32_Half e_shnum;     // Number of entries in the section header table
  Elf32_Half e_shstrndx;  // Sect hdr table index of sect name string table

  bool checkMagic() const {
    return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
  }

  unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
  unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};

// 64-bit ELF header. Fields are the same as for ELF32, but with different
// types (see above).
struct Elf64_Ehdr {
  unsigned char e_ident[EI_NIDENT];
  Elf64_Half e_type;
  Elf64_Half e_machine;
  Elf64_Word e_version;
  Elf64_Addr e_entry;
  Elf64_Off e_phoff;
  Elf64_Off e_shoff;
  Elf64_Word e_flags;
  Elf64_Half e_ehsize;
  Elf64_Half e_phentsize;
  Elf64_Half e_phnum;
  Elf64_Half e_shentsize;
  Elf64_Half e_shnum;
  Elf64_Half e_shstrndx;

  bool checkMagic() const {
    return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
  }

  unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
  unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};

// File types
enum {
  ET_NONE = 0,        // No file type
  ET_REL = 1,         // Relocatable file
  ET_EXEC = 2,        // Executable file
  ET_DYN = 3,         // Shared object file
  ET_CORE = 4,        // Core file
  ET_LOPROC = 0xff00, // Beginning of processor-specific codes
  ET_HIPROC = 0xffff  // Processor-specific
};

// Versioning
enum { EV_NONE = 0, EV_CURRENT = 1 };

// Machine architectures
// See current registered ELF machine architectures at:
//    http://www.uxsglobal.com/developers/gabi/latest/ch4.eheader.html
enum {
  EM_NONE = 0,           // No machine
  EM_M32 = 1,            // AT&T WE 32100
  EM_SPARC = 2,          // SPARC
  EM_386 = 3,            // Intel 386
  EM_68K = 4,            // Motorola 68000
  EM_88K = 5,            // Motorola 88000
  EM_IAMCU = 6,          // Intel MCU
  EM_860 = 7,            // Intel 80860
  EM_MIPS = 8,           // MIPS R3000
  EM_S370 = 9,           // IBM System/370
  EM_MIPS_RS3_LE = 10,   // MIPS RS3000 Little-endian
  EM_PARISC = 15,        // Hewlett-Packard PA-RISC
  EM_VPP500 = 17,        // Fujitsu VPP500
  EM_SPARC32PLUS = 18,   // Enhanced instruction set SPARC
  EM_960 = 19,           // Intel 80960
  EM_PPC = 20,           // PowerPC
  EM_PPC64 = 21,         // PowerPC64
  EM_S390 = 22,          // IBM System/390
  EM_SPU = 23,           // IBM SPU/SPC
  EM_V800 = 36,          // NEC V800
  EM_FR20 = 37,          // Fujitsu FR20
  EM_RH32 = 38,          // TRW RH-32
  EM_RCE = 39,           // Motorola RCE
  EM_ARM = 40,           // ARM
  EM_ALPHA = 41,         // DEC Alpha
  EM_SH = 42,            // Hitachi SH
  EM_SPARCV9 = 43,       // SPARC V9
  EM_TRICORE = 44,       // Siemens TriCore
  EM_ARC = 45,           // Argonaut RISC Core
  EM_H8_300 = 46,        // Hitachi H8/300
  EM_H8_300H = 47,       // Hitachi H8/300H
  EM_H8S = 48,           // Hitachi H8S
  EM_H8_500 = 49,        // Hitachi H8/500
  EM_IA_64 = 50,         // Intel IA-64 processor architecture
  EM_MIPS_X = 51,        // Stanford MIPS-X
  EM_COLDFIRE = 52,      // Motorola ColdFire
  EM_68HC12 = 53,        // Motorola M68HC12
  EM_MMA = 54,           // Fujitsu MMA Multimedia Accelerator
  EM_PCP = 55,           // Siemens PCP
  EM_NCPU = 56,          // Sony nCPU embedded RISC processor
  EM_NDR1 = 57,          // Denso NDR1 microprocessor
  EM_STARCORE = 58,      // Motorola Star*Core processor
  EM_ME16 = 59,          // Toyota ME16 processor
  EM_ST100 = 60,         // STMicroelectronics ST100 processor
  EM_TINYJ = 61,         // Advanced Logic Corp. TinyJ embedded processor family
  EM_X86_64 = 62,        // AMD x86-64 architecture
  EM_PDSP = 63,          // Sony DSP Processor
  EM_PDP10 = 64,         // Digital Equipment Corp. PDP-10
  EM_PDP11 = 65,         // Digital Equipment Corp. PDP-11
  EM_FX66 = 66,          // Siemens FX66 microcontroller
  EM_ST9PLUS = 67,       // STMicroelectronics ST9+ 8/16 bit microcontroller
  EM_ST7 = 68,           // STMicroelectronics ST7 8-bit microcontroller
  EM_68HC16 = 69,        // Motorola MC68HC16 Microcontroller
  EM_68HC11 = 70,        // Motorola MC68HC11 Microcontroller
  EM_68HC08 = 71,        // Motorola MC68HC08 Microcontroller
  EM_68HC05 = 72,        // Motorola MC68HC05 Microcontroller
  EM_SVX = 73,           // Silicon Graphics SVx
  EM_ST19 = 74,          // STMicroelectronics ST19 8-bit microcontroller
  EM_VAX = 75,           // Digital VAX
  EM_CRIS = 76,          // Axis Communications 32-bit embedded processor
  EM_JAVELIN = 77,       // Infineon Technologies 32-bit embedded processor
  EM_FIREPATH = 78,      // Element 14 64-bit DSP Processor
  EM_ZSP = 79,           // LSI Logic 16-bit DSP Processor
  EM_MMIX = 80,          // Donald Knuth's educational 64-bit processor
  EM_HUANY = 81,         // Harvard University machine-independent object files
  EM_PRISM = 82,         // SiTera Prism
  EM_AVR = 83,           // Atmel AVR 8-bit microcontroller
  EM_FR30 = 84,          // Fujitsu FR30
  EM_D10V = 85,          // Mitsubishi D10V
  EM_D30V = 86,          // Mitsubishi D30V
  EM_V850 = 87,          // NEC v850
  EM_M32R = 88,          // Mitsubishi M32R
  EM_MN10300 = 89,       // Matsushita MN10300
  EM_MN10200 = 90,       // Matsushita MN10200
  EM_PJ = 91,            // picoJava
  EM_OPENRISC = 92,      // OpenRISC 32-bit embedded processor
  EM_ARC_COMPACT = 93,   // ARC International ARCompact processor (old
                         // spelling/synonym: EM_ARC_A5)
  EM_XTENSA = 94,        // Tensilica Xtensa Architecture
  EM_VIDEOCORE = 95,     // Alphamosaic VideoCore processor
  EM_TMM_GPP = 96,       // Thompson Multimedia General Purpose Processor
  EM_NS32K = 97,         // National Semiconductor 32000 series
  EM_TPC = 98,           // Tenor Network TPC processor
  EM_SNP1K = 99,         // Trebia SNP 1000 processor
  EM_ST200 = 100,        // STMicroelectronics (www.st.com) ST200
  EM_IP2K = 101,         // Ubicom IP2xxx microcontroller family
  EM_MAX = 102,          // MAX Processor
  EM_CR = 103,           // National Semiconductor CompactRISC microprocessor
  EM_F2MC16 = 104,       // Fujitsu F2MC16
  EM_MSP430 = 105,       // Texas Instruments embedded microcontroller msp430
  EM_BLACKFIN = 106,     // Analog Devices Blackfin (DSP) processor
  EM_SE_C33 = 107,       // S1C33 Family of Seiko Epson processors
  EM_SEP = 108,          // Sharp embedded microprocessor
  EM_ARCA = 109,         // Arca RISC Microprocessor
  EM_UNICORE = 110,      // Microprocessor series from PKU-Unity Ltd. and MPRC
                         // of Peking University
  EM_EXCESS = 111,       // eXcess: 16/32/64-bit configurable embedded CPU
  EM_DXP = 112,          // Icera Semiconductor Inc. Deep Execution Processor
  EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
  EM_CRX = 114,          // National Semiconductor CompactRISC CRX
  EM_XGATE = 115,        // Motorola XGATE embedded processor
  EM_C166 = 116,         // Infineon C16x/XC16x processor
  EM_M16C = 117,         // Renesas M16C series microprocessors
  EM_DSPIC30F = 118,     // Microchip Technology dsPIC30F Digital Signal
                         // Controller
  EM_CE = 119,           // Freescale Communication Engine RISC core
  EM_M32C = 120,         // Renesas M32C series microprocessors
  EM_TSK3000 = 131,      // Altium TSK3000 core
  EM_RS08 = 132,         // Freescale RS08 embedded processor
  EM_SHARC = 133,        // Analog Devices SHARC family of 32-bit DSP
                         // processors
  EM_ECOG2 = 134,        // Cyan Technology eCOG2 microprocessor
  EM_SCORE7 = 135,       // Sunplus S+core7 RISC processor
  EM_DSP24 = 136,        // New Japan Radio (NJR) 24-bit DSP Processor
  EM_VIDEOCORE3 = 137,   // Broadcom VideoCore III processor
  EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
  EM_SE_C17 = 139,        // Seiko Epson C17 family
  EM_TI_C6000 = 140,      // The Texas Instruments TMS320C6000 DSP family
  EM_TI_C2000 = 141,      // The Texas Instruments TMS320C2000 DSP family
  EM_TI_C5500 = 142,      // The Texas Instruments TMS320C55x DSP family
  EM_MMDSP_PLUS = 160,    // STMicroelectronics 64bit VLIW Data Signal Processor
  EM_CYPRESS_M8C = 161,   // Cypress M8C microprocessor
  EM_R32C = 162,          // Renesas R32C series microprocessors
  EM_TRIMEDIA = 163,      // NXP Semiconductors TriMedia architecture family
  EM_HEXAGON = 164,       // Qualcomm Hexagon processor
  EM_8051 = 165,          // Intel 8051 and variants
  EM_STXP7X = 166,        // STMicroelectronics STxP7x family of configurable
                          // and extensible RISC processors
  EM_NDS32 = 167,         // Andes Technology compact code size embedded RISC
                          // processor family
  EM_ECOG1 = 168,         // Cyan Technology eCOG1X family
  EM_ECOG1X = 168,        // Cyan Technology eCOG1X family
  EM_MAXQ30 = 169,        // Dallas Semiconductor MAXQ30 Core Micro-controllers
  EM_XIMO16 = 170,        // New Japan Radio (NJR) 16-bit DSP Processor
  EM_MANIK = 171,         // M2000 Reconfigurable RISC Microprocessor
  EM_CRAYNV2 = 172,       // Cray Inc. NV2 vector architecture
  EM_RX = 173,            // Renesas RX family
  EM_METAG = 174,         // Imagination Technologies META processor
                          // architecture
  EM_MCST_ELBRUS = 175,   // MCST Elbrus general purpose hardware architecture
  EM_ECOG16 = 176,        // Cyan Technology eCOG16 family
  EM_CR16 = 177,          // National Semiconductor CompactRISC CR16 16-bit
                          // microprocessor
  EM_ETPU = 178,          // Freescale Extended Time Processing Unit
  EM_SLE9X = 179,         // Infineon Technologies SLE9X core
  EM_L10M = 180,          // Intel L10M
  EM_K10M = 181,          // Intel K10M
  EM_AARCH64 = 183,       // ARM AArch64
  EM_AVR32 = 185,         // Atmel Corporation 32-bit microprocessor family
  EM_STM8 = 186,          // STMicroeletronics STM8 8-bit microcontroller
  EM_TILE64 = 187,        // Tilera TILE64 multicore architecture family
  EM_TILEPRO = 188,       // Tilera TILEPro multicore architecture family
  EM_CUDA = 190,          // NVIDIA CUDA architecture
  EM_TILEGX = 191,        // Tilera TILE-Gx multicore architecture family
  EM_CLOUDSHIELD = 192,   // CloudShield architecture family
  EM_COREA_1ST = 193,     // KIPO-KAIST Core-A 1st generation processor family
  EM_COREA_2ND = 194,     // KIPO-KAIST Core-A 2nd generation processor family
  EM_ARC_COMPACT2 = 195,  // Synopsys ARCompact V2
  EM_OPEN8 = 196,         // Open8 8-bit RISC soft processor core
  EM_RL78 = 197,          // Renesas RL78 family
  EM_VIDEOCORE5 = 198,    // Broadcom VideoCore V processor
  EM_78KOR = 199,         // Renesas 78KOR family
  EM_56800EX = 200,       // Freescale 56800EX Digital Signal Controller (DSC)
  EM_BA1 = 201,           // Beyond BA1 CPU architecture
  EM_BA2 = 202,           // Beyond BA2 CPU architecture
  EM_XCORE = 203,         // XMOS xCORE processor family
  EM_MCHP_PIC = 204,      // Microchip 8-bit PIC(r) family
  EM_INTEL205 = 205,      // Reserved by Intel
  EM_INTEL206 = 206,      // Reserved by Intel
  EM_INTEL207 = 207,      // Reserved by Intel
  EM_INTEL208 = 208,      // Reserved by Intel
  EM_INTEL209 = 209,      // Reserved by Intel
  EM_KM32 = 210,          // KM211 KM32 32-bit processor
  EM_KMX32 = 211,         // KM211 KMX32 32-bit processor
  EM_KMX16 = 212,         // KM211 KMX16 16-bit processor
  EM_KMX8 = 213,          // KM211 KMX8 8-bit processor
  EM_KVARC = 214,         // KM211 KVARC processor
  EM_CDP = 215,           // Paneve CDP architecture family
  EM_COGE = 216,          // Cognitive Smart Memory Processor
  EM_COOL = 217,          // iCelero CoolEngine
  EM_NORC = 218,          // Nanoradio Optimized RISC
  EM_CSR_KALIMBA = 219,   // CSR Kalimba architecture family
  EM_AMDGPU = 224,        // AMD GPU architecture
  EM_RISCV = 243,         // RISC-V
  EM_LANAI = 244,         // Lanai 32-bit processor
  EM_BPF = 247,           // Linux kernel bpf virtual machine

  // A request has been made to the maintainer of the official registry for
  // such numbers for an official value for WebAssembly. As soon as one is
  // allocated, this enum will be updated to use it.
  EM_WEBASSEMBLY = 0x4157, // WebAssembly architecture
};

// Object file classes.
enum {
  ELFCLASSNONE = 0,
  ELFCLASS32 = 1, // 32-bit object file
  ELFCLASS64 = 2  // 64-bit object file
};

// Object file byte orderings.
enum {
  ELFDATANONE = 0, // Invalid data encoding.
  ELFDATA2LSB = 1, // Little-endian object file
  ELFDATA2MSB = 2  // Big-endian object file
};

// OS ABI identification.
enum {
  ELFOSABI_NONE = 0,          // UNIX System V ABI
  ELFOSABI_HPUX = 1,          // HP-UX operating system
  ELFOSABI_NETBSD = 2,        // NetBSD
  ELFOSABI_GNU = 3,           // GNU/Linux
  ELFOSABI_LINUX = 3,         // Historical alias for ELFOSABI_GNU.
  ELFOSABI_HURD = 4,          // GNU/Hurd
  ELFOSABI_SOLARIS = 6,       // Solaris
  ELFOSABI_AIX = 7,           // AIX
  ELFOSABI_IRIX = 8,          // IRIX
  ELFOSABI_FREEBSD = 9,       // FreeBSD
  ELFOSABI_TRU64 = 10,        // TRU64 UNIX
  ELFOSABI_MODESTO = 11,      // Novell Modesto
  ELFOSABI_OPENBSD = 12,      // OpenBSD
  ELFOSABI_OPENVMS = 13,      // OpenVMS
  ELFOSABI_NSK = 14,          // Hewlett-Packard Non-Stop Kernel
  ELFOSABI_AROS = 15,         // AROS
  ELFOSABI_FENIXOS = 16,      // FenixOS
  ELFOSABI_CLOUDABI = 17,     // Nuxi CloudABI
  ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
  ELFOSABI_AMDGPU_HSA = 64,   // AMD HSA runtime
  ELFOSABI_C6000_LINUX = 65,  // Linux TMS320C6000
  ELFOSABI_ARM = 97,          // ARM
  ELFOSABI_STANDALONE = 255   // Standalone (embedded) application
};

#define ELF_RELOC(name, value) name = value,

// X86_64 relocations.
enum {
#include "ELFRelocs/x86_64.def"
};

// i386 relocations.
enum {
#include "ELFRelocs/i386.def"
};

// ELF Relocation types for PPC32
enum {
#include "ELFRelocs/PowerPC.def"
};

// Specific e_flags for PPC64
enum {
  // e_flags bits specifying ABI:
  // 1 for original ABI using function descriptors,
  // 2 for revised ABI without function descriptors,
  // 0 for unspecified or not using any features affected by the differences.
  EF_PPC64_ABI = 3
};

// Special values for the st_other field in the symbol table entry for PPC64.
enum {
  STO_PPC64_LOCAL_BIT = 5,
  STO_PPC64_LOCAL_MASK = (7 << STO_PPC64_LOCAL_BIT)
};
static inline int64_t decodePPC64LocalEntryOffset(unsigned Other) {
  unsigned Val = (Other & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT;
  return ((1 << Val) >> 2) << 2;
}
static inline unsigned encodePPC64LocalEntryOffset(int64_t Offset) {
  unsigned Val =
      (Offset >= 4 * 4 ? (Offset >= 8 * 4 ? (Offset >= 16 * 4 ? 6 : 5) : 4)
                       : (Offset >= 2 * 4 ? 3 : (Offset >= 1 * 4 ? 2 : 0)));
  return Val << STO_PPC64_LOCAL_BIT;
}

// ELF Relocation types for PPC64
enum {
#include "ELFRelocs/PowerPC64.def"
};

// ELF Relocation types for AArch64
enum {
#include "ELFRelocs/AArch64.def"
};

// ARM Specific e_flags
enum : unsigned {
  EF_ARM_SOFT_FLOAT = 0x00000200U,
  EF_ARM_VFP_FLOAT = 0x00000400U,
  EF_ARM_EABI_UNKNOWN = 0x00000000U,
  EF_ARM_EABI_VER1 = 0x01000000U,
  EF_ARM_EABI_VER2 = 0x02000000U,
  EF_ARM_EABI_VER3 = 0x03000000U,
  EF_ARM_EABI_VER4 = 0x04000000U,
  EF_ARM_EABI_VER5 = 0x05000000U,
  EF_ARM_EABIMASK = 0xFF000000U
};

// ELF Relocation types for ARM
enum {
#include "ELFRelocs/ARM.def"
};

// AVR specific e_flags
enum : unsigned {
  EF_AVR_ARCH_AVR1 = 1,
  EF_AVR_ARCH_AVR2 = 2,
  EF_AVR_ARCH_AVR25 = 25,
  EF_AVR_ARCH_AVR3 = 3,
  EF_AVR_ARCH_AVR31 = 31,
  EF_AVR_ARCH_AVR35 = 35,
  EF_AVR_ARCH_AVR4 = 4,
  EF_AVR_ARCH_AVR5 = 5,
  EF_AVR_ARCH_AVR51 = 51,
  EF_AVR_ARCH_AVR6 = 6,
  EF_AVR_ARCH_AVRTINY = 100,
  EF_AVR_ARCH_XMEGA1 = 101,
  EF_AVR_ARCH_XMEGA2 = 102,
  EF_AVR_ARCH_XMEGA3 = 103,
  EF_AVR_ARCH_XMEGA4 = 104,
  EF_AVR_ARCH_XMEGA5 = 105,
  EF_AVR_ARCH_XMEGA6 = 106,
  EF_AVR_ARCH_XMEGA7 = 107
};

// ELF Relocation types for AVR
enum {
#include "ELFRelocs/AVR.def"
};

// Mips Specific e_flags
enum : unsigned {
  EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
  EF_MIPS_PIC = 0x00000002,       // Position independent code
  EF_MIPS_CPIC = 0x00000004,      // Call object with Position independent code
  EF_MIPS_ABI2 = 0x00000020,      // File uses N32 ABI
  EF_MIPS_32BITMODE = 0x00000100, // Code compiled for a 64-bit machine
                                  // in 32-bit mode
  EF_MIPS_FP64 = 0x00000200,      // Code compiled for a 32-bit machine
                                  // but uses 64-bit FP registers
  EF_MIPS_NAN2008 = 0x00000400,   // Uses IEE 754-2008 NaN encoding

  // ABI flags
  EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI
  EF_MIPS_ABI_O64 = 0x00002000, // O32 ABI extended for 64-bit architecture.
  EF_MIPS_ABI_EABI32 = 0x00003000, // EABI in 32 bit mode.
  EF_MIPS_ABI_EABI64 = 0x00004000, // EABI in 64 bit mode.
  EF_MIPS_ABI = 0x0000f000,        // Mask for selecting EF_MIPS_ABI_ variant.

  // MIPS machine variant
  EF_MIPS_MACH_NONE = 0x00000000,    // A standard MIPS implementation.
  EF_MIPS_MACH_3900 = 0x00810000,    // Toshiba R3900
  EF_MIPS_MACH_4010 = 0x00820000,    // LSI R4010
  EF_MIPS_MACH_4100 = 0x00830000,    // NEC VR4100
  EF_MIPS_MACH_4650 = 0x00850000,    // MIPS R4650
  EF_MIPS_MACH_4120 = 0x00870000,    // NEC VR4120
  EF_MIPS_MACH_4111 = 0x00880000,    // NEC VR4111/VR4181
  EF_MIPS_MACH_SB1 = 0x008a0000,     // Broadcom SB-1
  EF_MIPS_MACH_OCTEON = 0x008b0000,  // Cavium Networks Octeon
  EF_MIPS_MACH_XLR = 0x008c0000,     // RMI Xlr
  EF_MIPS_MACH_OCTEON2 = 0x008d0000, // Cavium Networks Octeon2
  EF_MIPS_MACH_OCTEON3 = 0x008e0000, // Cavium Networks Octeon3
  EF_MIPS_MACH_5400 = 0x00910000,    // NEC VR5400
  EF_MIPS_MACH_5900 = 0x00920000,    // MIPS R5900
  EF_MIPS_MACH_5500 = 0x00980000,    // NEC VR5500
  EF_MIPS_MACH_9000 = 0x00990000,    // Unknown
  EF_MIPS_MACH_LS2E = 0x00a00000,    // ST Microelectronics Loongson 2E
  EF_MIPS_MACH_LS2F = 0x00a10000,    // ST Microelectronics Loongson 2F
  EF_MIPS_MACH_LS3A = 0x00a20000,    // Loongson 3A
  EF_MIPS_MACH = 0x00ff0000,         // EF_MIPS_MACH_xxx selection mask

  // ARCH_ASE
  EF_MIPS_MICROMIPS = 0x02000000,     // microMIPS
  EF_MIPS_ARCH_ASE_M16 = 0x04000000,  // Has Mips-16 ISA extensions
  EF_MIPS_ARCH_ASE_MDMX = 0x08000000, // Has MDMX multimedia extensions
  EF_MIPS_ARCH_ASE = 0x0f000000,      // Mask for EF_MIPS_ARCH_ASE_xxx flags

  // ARCH
  EF_MIPS_ARCH_1 = 0x00000000,    // MIPS1 instruction set
  EF_MIPS_ARCH_2 = 0x10000000,    // MIPS2 instruction set
  EF_MIPS_ARCH_3 = 0x20000000,    // MIPS3 instruction set
  EF_MIPS_ARCH_4 = 0x30000000,    // MIPS4 instruction set
  EF_MIPS_ARCH_5 = 0x40000000,    // MIPS5 instruction set
  EF_MIPS_ARCH_32 = 0x50000000,   // MIPS32 instruction set per linux not elf.h
  EF_MIPS_ARCH_64 = 0x60000000,   // MIPS64 instruction set per linux not elf.h
  EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2, mips32r3, mips32r5
  EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2, mips64r3, mips64r5
  EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6
  EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6
  EF_MIPS_ARCH = 0xf0000000       // Mask for applying EF_MIPS_ARCH_ variant
};

// ELF Relocation types for Mips
enum {
#include "ELFRelocs/Mips.def"
};

// Special values for the st_other field in the symbol table entry for MIPS.
enum {
  STO_MIPS_OPTIONAL = 0x04,  // Symbol whose definition is optional
  STO_MIPS_PLT = 0x08,       // PLT entry related dynamic table record
  STO_MIPS_PIC = 0x20,       // PIC func in an object mixes PIC/non-PIC
  STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips
  STO_MIPS_MIPS16 = 0xf0     // MIPS Specific ISA for Mips16
};

// .MIPS.options section descriptor kinds
enum {
  ODK_NULL = 0,       // Undefined
  ODK_REGINFO = 1,    // Register usage information
  ODK_EXCEPTIONS = 2, // Exception processing options
  ODK_PAD = 3,        // Section padding options
  ODK_HWPATCH = 4,    // Hardware patches applied
  ODK_FILL = 5,       // Linker fill value
  ODK_TAGS = 6,       // Space for tool identification
  ODK_HWAND = 7,      // Hardware AND patches applied
  ODK_HWOR = 8,       // Hardware OR patches applied
  ODK_GP_GROUP = 9,   // GP group to use for text/data sections
  ODK_IDENT = 10,     // ID information
  ODK_PAGESIZE = 11   // Page size information
};

// Hexagon-specific e_flags
enum {
  // Object processor version flags, bits[11:0]
  EF_HEXAGON_MACH_V2 = 0x00000001,  // Hexagon V2
  EF_HEXAGON_MACH_V3 = 0x00000002,  // Hexagon V3
  EF_HEXAGON_MACH_V4 = 0x00000003,  // Hexagon V4
  EF_HEXAGON_MACH_V5 = 0x00000004,  // Hexagon V5
  EF_HEXAGON_MACH_V55 = 0x00000005, // Hexagon V55
  EF_HEXAGON_MACH_V60 = 0x00000060, // Hexagon V60
  EF_HEXAGON_MACH_V62 = 0x00000062, // Hexagon V62

  // Highest ISA version flags
  EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[11:0]
                                    // of e_flags
  EF_HEXAGON_ISA_V2 = 0x00000010,   // Hexagon V2 ISA
  EF_HEXAGON_ISA_V3 = 0x00000020,   // Hexagon V3 ISA
  EF_HEXAGON_ISA_V4 = 0x00000030,   // Hexagon V4 ISA
  EF_HEXAGON_ISA_V5 = 0x00000040,   // Hexagon V5 ISA
  EF_HEXAGON_ISA_V55 = 0x00000050,  // Hexagon V55 ISA
  EF_HEXAGON_ISA_V60 = 0x00000060,  // Hexagon V60 ISA
  EF_HEXAGON_ISA_V62 = 0x00000062,  // Hexagon V62 ISA
};

// Hexagon-specific section indexes for common small data
enum {
  SHN_HEXAGON_SCOMMON = 0xff00,   // Other access sizes
  SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access
  SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access
  SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access
  SHN_HEXAGON_SCOMMON_8 = 0xff04  // Double-word-size access
};

// ELF Relocation types for Hexagon
enum {
#include "ELFRelocs/Hexagon.def"
};

// ELF Relocation type for Lanai.
enum {
#include "ELFRelocs/Lanai.def"
};

// ELF Relocation types for RISC-V
enum {
#include "ELFRelocs/RISCV.def"
};

// ELF Relocation types for S390/zSeries
enum {
#include "ELFRelocs/SystemZ.def"
};

// ELF Relocation type for Sparc.
enum {
#include "ELFRelocs/Sparc.def"
};

// ELF Relocation types for WebAssembly
enum {
#include "ELFRelocs/WebAssembly.def"
};

// ELF Relocation types for AMDGPU
enum {
#include "ELFRelocs/AMDGPU.def"
};

// ELF Relocation types for BPF
enum {
#include "ELFRelocs/BPF.def"
};

#undef ELF_RELOC

// Section header.
struct Elf32_Shdr {
  Elf32_Word sh_name;      // Section name (index into string table)
  Elf32_Word sh_type;      // Section type (SHT_*)
  Elf32_Word sh_flags;     // Section flags (SHF_*)
  Elf32_Addr sh_addr;      // Address where section is to be loaded
  Elf32_Off sh_offset;     // File offset of section data, in bytes
  Elf32_Word sh_size;      // Size of section, in bytes
  Elf32_Word sh_link;      // Section type-specific header table index link
  Elf32_Word sh_info;      // Section type-specific extra information
  Elf32_Word sh_addralign; // Section address alignment
  Elf32_Word sh_entsize;   // Size of records contained within the section
};

// Section header for ELF64 - same fields as ELF32, different types.
struct Elf64_Shdr {
  Elf64_Word sh_name;
  Elf64_Word sh_type;
  Elf64_Xword sh_flags;
  Elf64_Addr sh_addr;
  Elf64_Off sh_offset;
  Elf64_Xword sh_size;
  Elf64_Word sh_link;
  Elf64_Word sh_info;
  Elf64_Xword sh_addralign;
  Elf64_Xword sh_entsize;
};

// Special section indices.
enum {
  SHN_UNDEF = 0,          // Undefined, missing, irrelevant, or meaningless
  SHN_LORESERVE = 0xff00, // Lowest reserved index
  SHN_LOPROC = 0xff00,    // Lowest processor-specific index
  SHN_HIPROC = 0xff1f,    // Highest processor-specific index
  SHN_LOOS = 0xff20,      // Lowest operating system-specific index
  SHN_HIOS = 0xff3f,      // Highest operating system-specific index
  SHN_ABS = 0xfff1,       // Symbol has absolute value; does not need relocation
  SHN_COMMON = 0xfff2,    // FORTRAN COMMON or C external global variables
  SHN_XINDEX = 0xffff,    // Mark that the index is >= SHN_LORESERVE
  SHN_HIRESERVE = 0xffff  // Highest reserved index
};

// Section types.
enum : unsigned {
  SHT_NULL = 0,                    // No associated section (inactive entry).
  SHT_PROGBITS = 1,                // Program-defined contents.
  SHT_SYMTAB = 2,                  // Symbol table.
  SHT_STRTAB = 3,                  // String table.
  SHT_RELA = 4,                    // Relocation entries; explicit addends.
  SHT_HASH = 5,                    // Symbol hash table.
  SHT_DYNAMIC = 6,                 // Information for dynamic linking.
  SHT_NOTE = 7,                    // Information about the file.
  SHT_NOBITS = 8,                  // Data occupies no space in the file.
  SHT_REL = 9,                     // Relocation entries; no explicit addends.
  SHT_SHLIB = 10,                  // Reserved.
  SHT_DYNSYM = 11,                 // Symbol table.
  SHT_INIT_ARRAY = 14,             // Pointers to initialization functions.
  SHT_FINI_ARRAY = 15,             // Pointers to termination functions.
  SHT_PREINIT_ARRAY = 16,          // Pointers to pre-init functions.
  SHT_GROUP = 17,                  // Section group.
  SHT_SYMTAB_SHNDX = 18,           // Indices for SHN_XINDEX entries.
  SHT_LOOS = 0x60000000,           // Lowest operating system-specific type.
  SHT_LLVM_ODRTAB = 0x6fff4c00,    // LLVM ODR table.
  SHT_GNU_ATTRIBUTES = 0x6ffffff5, // Object attributes.
  SHT_GNU_HASH = 0x6ffffff6,       // GNU-style hash table.
  SHT_GNU_verdef = 0x6ffffffd,     // GNU version definitions.
  SHT_GNU_verneed = 0x6ffffffe,    // GNU version references.
  SHT_GNU_versym = 0x6fffffff,     // GNU symbol versions table.
  SHT_HIOS = 0x6fffffff,           // Highest operating system-specific type.
  SHT_LOPROC = 0x70000000,         // Lowest processor arch-specific type.
  // Fixme: All this is duplicated in MCSectionELF. Why??
  // Exception Index table
  SHT_ARM_EXIDX = 0x70000001U,
  // BPABI DLL dynamic linking pre-emption map
  SHT_ARM_PREEMPTMAP = 0x70000002U,
  //  Object file compatibility attributes
  SHT_ARM_ATTRIBUTES = 0x70000003U,
  SHT_ARM_DEBUGOVERLAY = 0x70000004U,
  SHT_ARM_OVERLAYSECTION = 0x70000005U,
  SHT_HEX_ORDERED = 0x70000000,   // Link editor is to sort the entries in
                                  // this section based on their sizes
  SHT_X86_64_UNWIND = 0x70000001, // Unwind information

  SHT_MIPS_REGINFO = 0x70000006,  // Register usage information
  SHT_MIPS_OPTIONS = 0x7000000d,  // General options
  SHT_MIPS_DWARF = 0x7000001e,    // DWARF debugging section.
  SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information.

  SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
  SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
  SHT_HIUSER = 0xffffffff  // Highest type reserved for applications.
};

// Section flags.
enum : unsigned {
  // Section data should be writable during execution.
  SHF_WRITE = 0x1,

  // Section occupies memory during program execution.
  SHF_ALLOC = 0x2,

  // Section contains executable machine instructions.
  SHF_EXECINSTR = 0x4,

  // The data in this section may be merged.
  SHF_MERGE = 0x10,

  // The data in this section is null-terminated strings.
  SHF_STRINGS = 0x20,

  // A field in this section holds a section header table index.
  SHF_INFO_LINK = 0x40U,

  // Adds special ordering requirements for link editors.
  SHF_LINK_ORDER = 0x80U,

  // This section requires special OS-specific processing to avoid incorrect
  // behavior.
  SHF_OS_NONCONFORMING = 0x100U,

  // This section is a member of a section group.
  SHF_GROUP = 0x200U,

  // This section holds Thread-Local Storage.
  SHF_TLS = 0x400U,

  // Identifies a section containing compressed data.
  SHF_COMPRESSED = 0x800U,

  // This section is excluded from the final executable or shared library.
  SHF_EXCLUDE = 0x80000000U,

  // Start of target-specific flags.

  SHF_MASKOS = 0x0ff00000,

  // Bits indicating processor-specific flags.
  SHF_MASKPROC = 0xf0000000,

  /// All sections with the "d" flag are grouped together by the linker to form
  /// the data section and the dp register is set to the start of the section by
  /// the boot code.
  XCORE_SHF_DP_SECTION = 0x10000000,

  /// All sections with the "c" flag are grouped together by the linker to form
  /// the constant pool and the cp register is set to the start of the constant
  /// pool by the boot code.
  XCORE_SHF_CP_SECTION = 0x20000000,

  // If an object file section does not have this flag set, then it may not hold
  // more than 2GB and can be freely referred to in objects using smaller code
  // models. Otherwise, only objects using larger code models can refer to them.
  // For example, a medium code model object can refer to data in a section that
  // sets this flag besides being able to refer to data in a section that does
  // not set it; likewise, a small code model object can refer only to code in a
  // section that does not set this flag.
  SHF_X86_64_LARGE = 0x10000000,

  // All sections with the GPREL flag are grouped into a global data area
  // for faster accesses
  SHF_HEX_GPREL = 0x10000000,

  // Section contains text/data which may be replicated in other sections.
  // Linker must retain only one copy.
  SHF_MIPS_NODUPES = 0x01000000,

  // Linker must generate implicit hidden weak names.
  SHF_MIPS_NAMES = 0x02000000,

  // Section data local to process.
  SHF_MIPS_LOCAL = 0x04000000,

  // Do not strip this section.
  SHF_MIPS_NOSTRIP = 0x08000000,

  // Section must be part of global data area.
  SHF_MIPS_GPREL = 0x10000000,

  // This section should be merged.
  SHF_MIPS_MERGE = 0x20000000,

  // Address size to be inferred from section entry size.
  SHF_MIPS_ADDR = 0x40000000,

  // Section data is string data by default.
  SHF_MIPS_STRING = 0x80000000,

  // Make code section unreadable when in execute-only mode
  SHF_ARM_PURECODE = 0x20000000
};

// Section Group Flags
enum : unsigned {
  GRP_COMDAT = 0x1,
  GRP_MASKOS = 0x0ff00000,
  GRP_MASKPROC = 0xf0000000
};

// Symbol table entries for ELF32.
struct Elf32_Sym {
  Elf32_Word st_name;     // Symbol name (index into string table)
  Elf32_Addr st_value;    // Value or address associated with the symbol
  Elf32_Word st_size;     // Size of the symbol
  unsigned char st_info;  // Symbol's type and binding attributes
  unsigned char st_other; // Must be zero; reserved
  Elf32_Half st_shndx;    // Which section (header table index) it's defined in

  // These accessors and mutators correspond to the ELF32_ST_BIND,
  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
  unsigned char getBinding() const { return st_info >> 4; }
  unsigned char getType() const { return st_info & 0x0f; }
  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
  void setBindingAndType(unsigned char b, unsigned char t) {
    st_info = (b << 4) + (t & 0x0f);
  }
};

// Symbol table entries for ELF64.
struct Elf64_Sym {
  Elf64_Word st_name;     // Symbol name (index into string table)
  unsigned char st_info;  // Symbol's type and binding attributes
  unsigned char st_other; // Must be zero; reserved
  Elf64_Half st_shndx;    // Which section (header tbl index) it's defined in
  Elf64_Addr st_value;    // Value or address associated with the symbol
  Elf64_Xword st_size;    // Size of the symbol

  // These accessors and mutators are identical to those defined for ELF32
  // symbol table entries.
  unsigned char getBinding() const { return st_info >> 4; }
  unsigned char getType() const { return st_info & 0x0f; }
  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
  void setBindingAndType(unsigned char b, unsigned char t) {
    st_info = (b << 4) + (t & 0x0f);
  }
};

// The size (in bytes) of symbol table entries.
enum {
  SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
  SYMENTRY_SIZE64 = 24  // 64-bit symbol entry size.
};

// Symbol bindings.
enum {
  STB_LOCAL = 0,  // Local symbol, not visible outside obj file containing def
  STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
  STB_WEAK = 2,   // Weak symbol, like global but lower-precedence
  STB_GNU_UNIQUE = 10,
  STB_LOOS = 10,   // Lowest operating system-specific binding type
  STB_HIOS = 12,   // Highest operating system-specific binding type
  STB_LOPROC = 13, // Lowest processor-specific binding type
  STB_HIPROC = 15  // Highest processor-specific binding type
};

// Symbol types.
enum {
  STT_NOTYPE = 0,     // Symbol's type is not specified
  STT_OBJECT = 1,     // Symbol is a data object (variable, array, etc.)
  STT_FUNC = 2,       // Symbol is executable code (function, etc.)
  STT_SECTION = 3,    // Symbol refers to a section
  STT_FILE = 4,       // Local, absolute symbol that refers to a file
  STT_COMMON = 5,     // An uninitialized common block
  STT_TLS = 6,        // Thread local data object
  STT_GNU_IFUNC = 10, // GNU indirect function
  STT_LOOS = 10,      // Lowest operating system-specific symbol type
  STT_HIOS = 12,      // Highest operating system-specific symbol type
  STT_LOPROC = 13,    // Lowest processor-specific symbol type
  STT_HIPROC = 15,    // Highest processor-specific symbol type

  // AMDGPU symbol types
  STT_AMDGPU_HSA_KERNEL = 10
};

enum {
  STV_DEFAULT = 0,  // Visibility is specified by binding type
  STV_INTERNAL = 1, // Defined by processor supplements
  STV_HIDDEN = 2,   // Not visible to other components
  STV_PROTECTED = 3 // Visible in other components but not preemptable
};

// Symbol number.
enum { STN_UNDEF = 0 };

// Special relocation symbols used in the MIPS64 ELF relocation entries
enum {
  RSS_UNDEF = 0, // None
  RSS_GP = 1,    // Value of gp
  RSS_GP0 = 2,   // Value of gp used to create object being relocated
  RSS_LOC = 3    // Address of location being relocated
};

// Relocation entry, without explicit addend.
struct Elf32_Rel {
  Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
  Elf32_Word r_info;   // Symbol table index and type of relocation to apply

  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  // and ELF32_R_INFO macros defined in the ELF specification:
  Elf32_Word getSymbol() const { return (r_info >> 8); }
  unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); }
  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
  void setSymbolAndType(Elf32_Word s, unsigned char t) {
    r_info = (s << 8) + t;
  }
};

// Relocation entry with explicit addend.
struct Elf32_Rela {
  Elf32_Addr r_offset;  // Location (file byte offset, or program virtual addr)
  Elf32_Word r_info;    // Symbol table index and type of relocation to apply
  Elf32_Sword r_addend; // Compute value for relocatable field by adding this

  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  // and ELF32_R_INFO macros defined in the ELF specification:
  Elf32_Word getSymbol() const { return (r_info >> 8); }
  unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); }
  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
  void setSymbolAndType(Elf32_Word s, unsigned char t) {
    r_info = (s << 8) + t;
  }
};

// Relocation entry, without explicit addend.
struct Elf64_Rel {
  Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
  Elf64_Xword r_info;  // Symbol table index and type of relocation to apply.

  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  // and ELF64_R_INFO macros defined in the ELF specification:
  Elf64_Word getSymbol() const { return (r_info >> 32); }
  Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); }
  void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
  void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
  void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
    r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL);
  }
};

// Relocation entry with explicit addend.
struct Elf64_Rela {
  Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
  Elf64_Xword r_info;  // Symbol table index and type of relocation to apply.
  Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.

  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  // and ELF64_R_INFO macros defined in the ELF specification:
  Elf64_Word getSymbol() const { return (r_info >> 32); }
  Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); }
  void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
  void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
  void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
    r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL);
  }
};

// Program header for ELF32.
struct Elf32_Phdr {
  Elf32_Word p_type;   // Type of segment
  Elf32_Off p_offset;  // File offset where segment is located, in bytes
  Elf32_Addr p_vaddr;  // Virtual address of beginning of segment
  Elf32_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
  Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
  Elf32_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
  Elf32_Word p_flags;  // Segment flags
  Elf32_Word p_align;  // Segment alignment constraint
};

// Program header for ELF64.
struct Elf64_Phdr {
  Elf64_Word p_type;    // Type of segment
  Elf64_Word p_flags;   // Segment flags
  Elf64_Off p_offset;   // File offset where segment is located, in bytes
  Elf64_Addr p_vaddr;   // Virtual address of beginning of segment
  Elf64_Addr p_paddr;   // Physical addr of beginning of segment (OS-specific)
  Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
  Elf64_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
  Elf64_Xword p_align;  // Segment alignment constraint
};

// Segment types.
enum {
  PT_NULL = 0,            // Unused segment.
  PT_LOAD = 1,            // Loadable segment.
  PT_DYNAMIC = 2,         // Dynamic linking information.
  PT_INTERP = 3,          // Interpreter pathname.
  PT_NOTE = 4,            // Auxiliary information.
  PT_SHLIB = 5,           // Reserved.
  PT_PHDR = 6,            // The program header table itself.
  PT_TLS = 7,             // The thread-local storage template.
  PT_LOOS = 0x60000000,   // Lowest operating system-specific pt entry type.
  PT_HIOS = 0x6fffffff,   // Highest operating system-specific pt entry type.
  PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
  PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.

  // x86-64 program header types.
  // These all contain stack unwind tables.
  PT_GNU_EH_FRAME = 0x6474e550,
  PT_SUNW_EH_FRAME = 0x6474e550,
  PT_SUNW_UNWIND = 0x6464e550,

  PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
  PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.

  PT_OPENBSD_RANDOMIZE = 0x65a3dbe6, // Fill with random data.
  PT_OPENBSD_WXNEEDED = 0x65a3dbe7,  // Program does W^X violations.
  PT_OPENBSD_BOOTDATA = 0x65a41be6,  // Section for boot arguments.

  // ARM program header types.
  PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
  // These all contain stack unwind tables.
  PT_ARM_EXIDX = 0x70000001,
  PT_ARM_UNWIND = 0x70000001,

  // MIPS program header types.
  PT_MIPS_REGINFO = 0x70000000,  // Register usage information.
  PT_MIPS_RTPROC = 0x70000001,   // Runtime procedure table.
  PT_MIPS_OPTIONS = 0x70000002,  // Options segment.
  PT_MIPS_ABIFLAGS = 0x70000003, // Abiflags segment.

  // WebAssembly program header types.
  PT_WEBASSEMBLY_FUNCTIONS = PT_LOPROC + 0, // Function definitions.
};

// Segment flag bits.
enum : unsigned {
  PF_X = 1,                // Execute
  PF_W = 2,                // Write
  PF_R = 4,                // Read
  PF_MASKOS = 0x0ff00000,  // Bits for operating system-specific semantics.
  PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
};

// Dynamic table entry for ELF32.
struct Elf32_Dyn {
  Elf32_Sword d_tag; // Type of dynamic table entry.
  union {
    Elf32_Word d_val; // Integer value of entry.
    Elf32_Addr d_ptr; // Pointer value of entry.
  } d_un;
};

// Dynamic table entry for ELF64.
struct Elf64_Dyn {
  Elf64_Sxword d_tag; // Type of dynamic table entry.
  union {
    Elf64_Xword d_val; // Integer value of entry.
    Elf64_Addr d_ptr;  // Pointer value of entry.
  } d_un;
};

// Dynamic table entry tags.
enum {
  DT_NULL = 0,          // Marks end of dynamic array.
  DT_NEEDED = 1,        // String table offset of needed library.
  DT_PLTRELSZ = 2,      // Size of relocation entries in PLT.
  DT_PLTGOT = 3,        // Address associated with linkage table.
  DT_HASH = 4,          // Address of symbolic hash table.
  DT_STRTAB = 5,        // Address of dynamic string table.
  DT_SYMTAB = 6,        // Address of dynamic symbol table.
  DT_RELA = 7,          // Address of relocation table (Rela entries).
  DT_RELASZ = 8,        // Size of Rela relocation table.
  DT_RELAENT = 9,       // Size of a Rela relocation entry.
  DT_STRSZ = 10,        // Total size of the string table.
  DT_SYMENT = 11,       // Size of a symbol table entry.
  DT_INIT = 12,         // Address of initialization function.
  DT_FINI = 13,         // Address of termination function.
  DT_SONAME = 14,       // String table offset of a shared objects name.
  DT_RPATH = 15,        // String table offset of library search path.
  DT_SYMBOLIC = 16,     // Changes symbol resolution algorithm.
  DT_REL = 17,          // Address of relocation table (Rel entries).
  DT_RELSZ = 18,        // Size of Rel relocation table.
  DT_RELENT = 19,       // Size of a Rel relocation entry.
  DT_PLTREL = 20,       // Type of relocation entry used for linking.
  DT_DEBUG = 21,        // Reserved for debugger.
  DT_TEXTREL = 22,      // Relocations exist for non-writable segments.
  DT_JMPREL = 23,       // Address of relocations associated with PLT.
  DT_BIND_NOW = 24,     // Process all relocations before execution.
  DT_INIT_ARRAY = 25,   // Pointer to array of initialization functions.
  DT_FINI_ARRAY = 26,   // Pointer to array of termination functions.
  DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
  DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
  DT_RUNPATH = 29,      // String table offset of lib search path.
  DT_FLAGS = 30,        // Flags.
  DT_ENCODING = 32,     // Values from here to DT_LOOS follow the rules
                        // for the interpretation of the d_un union.

  DT_PREINIT_ARRAY = 32,   // Pointer to array of preinit functions.
  DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array.

  DT_LOOS = 0x60000000,   // Start of environment specific tags.
  DT_HIOS = 0x6FFFFFFF,   // End of environment specific tags.
  DT_LOPROC = 0x70000000, // Start of processor specific tags.
  DT_HIPROC = 0x7FFFFFFF, // End of processor specific tags.

  DT_GNU_HASH = 0x6FFFFEF5, // Reference to the GNU hash table.
  DT_TLSDESC_PLT =
      0x6FFFFEF6, // Location of PLT entry for TLS descriptor resolver calls.
  DT_TLSDESC_GOT = 0x6FFFFEF7, // Location of GOT entry used by TLS descriptor
                               // resolver PLT entry.
  DT_RELACOUNT = 0x6FFFFFF9,   // ELF32_Rela count.
  DT_RELCOUNT = 0x6FFFFFFA,    // ELF32_Rel count.

  DT_FLAGS_1 = 0X6FFFFFFB,    // Flags_1.
  DT_VERSYM = 0x6FFFFFF0,     // The address of .gnu.version section.
  DT_VERDEF = 0X6FFFFFFC,     // The address of the version definition table.
  DT_VERDEFNUM = 0X6FFFFFFD,  // The number of entries in DT_VERDEF.
  DT_VERNEED = 0X6FFFFFFE,    // The address of the version Dependency table.
  DT_VERNEEDNUM = 0X6FFFFFFF, // The number of entries in DT_VERNEED.

  // Hexagon specific dynamic table entries
  DT_HEXAGON_SYMSZ = 0x70000000,
  DT_HEXAGON_VER = 0x70000001,
  DT_HEXAGON_PLT = 0x70000002,

  // Mips specific dynamic table entry tags.
  DT_MIPS_RLD_VERSION = 0x70000001,    // 32 bit version number for runtime
                                       // linker interface.
  DT_MIPS_TIME_STAMP = 0x70000002,     // Time stamp.
  DT_MIPS_ICHECKSUM = 0x70000003,      // Checksum of external strings
                                       // and common sizes.
  DT_MIPS_IVERSION = 0x70000004,       // Index of version string
                                       // in string table.
  DT_MIPS_FLAGS = 0x70000005,          // 32 bits of flags.
  DT_MIPS_BASE_ADDRESS = 0x70000006,   // Base address of the segment.
  DT_MIPS_MSYM = 0x70000007,           // Address of .msym section.
  DT_MIPS_CONFLICT = 0x70000008,       // Address of .conflict section.
  DT_MIPS_LIBLIST = 0x70000009,        // Address of .liblist section.
  DT_MIPS_LOCAL_GOTNO = 0x7000000a,    // Number of local global offset
                                       // table entries.
  DT_MIPS_CONFLICTNO = 0x7000000b,     // Number of entries
                                       // in the .conflict section.
  DT_MIPS_LIBLISTNO = 0x70000010,      // Number of entries
                                       // in the .liblist section.
  DT_MIPS_SYMTABNO = 0x70000011,       // Number of entries
                                       // in the .dynsym section.
  DT_MIPS_UNREFEXTNO = 0x70000012,     // Index of first external dynamic symbol
                                       // not referenced locally.
  DT_MIPS_GOTSYM = 0x70000013,         // Index of first dynamic symbol
                                       // in global offset table.
  DT_MIPS_HIPAGENO = 0x70000014,       // Number of page table entries
                                       // in global offset table.
  DT_MIPS_RLD_MAP = 0x70000016,        // Address of run time loader map,
                                       // used for debugging.
  DT_MIPS_DELTA_CLASS = 0x70000017,    // Delta C++ class definition.
  DT_MIPS_DELTA_CLASS_NO = 0x70000018, // Number of entries
                                       // in DT_MIPS_DELTA_CLASS.
  DT_MIPS_DELTA_INSTANCE = 0x70000019, // Delta C++ class instances.
  DT_MIPS_DELTA_INSTANCE_NO = 0x7000001A,     // Number of entries
                                              // in DT_MIPS_DELTA_INSTANCE.
  DT_MIPS_DELTA_RELOC = 0x7000001B,           // Delta relocations.
  DT_MIPS_DELTA_RELOC_NO = 0x7000001C,        // Number of entries
                                              // in DT_MIPS_DELTA_RELOC.
  DT_MIPS_DELTA_SYM = 0x7000001D,             // Delta symbols that Delta
                                              // relocations refer to.
  DT_MIPS_DELTA_SYM_NO = 0x7000001E,          // Number of entries
                                              // in DT_MIPS_DELTA_SYM.
  DT_MIPS_DELTA_CLASSSYM = 0x70000020,        // Delta symbols that hold
                                              // class declarations.
  DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021,     // Number of entries
                                              // in DT_MIPS_DELTA_CLASSSYM.
  DT_MIPS_CXX_FLAGS = 0x70000022,             // Flags indicating information
                                              // about C++ flavor.
  DT_MIPS_PIXIE_INIT = 0x70000023,            // Pixie information.
  DT_MIPS_SYMBOL_LIB = 0x70000024,            // Address of .MIPS.symlib
  DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025,      // The GOT index of the first PTE
                                              // for a segment
  DT_MIPS_LOCAL_GOTIDX = 0x70000026,          // The GOT index of the first PTE
                                              // for a local symbol
  DT_MIPS_HIDDEN_GOTIDX = 0x70000027,         // The GOT index of the first PTE
                                              // for a hidden symbol
  DT_MIPS_PROTECTED_GOTIDX = 0x70000028,      // The GOT index of the first PTE
                                              // for a protected symbol
  DT_MIPS_OPTIONS = 0x70000029,               // Address of `.MIPS.options'.
  DT_MIPS_INTERFACE = 0x7000002A,             // Address of `.interface'.
  DT_MIPS_DYNSTR_ALIGN = 0x7000002B,          // Unknown.
  DT_MIPS_INTERFACE_SIZE = 0x7000002C,        // Size of the .interface section.
  DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002D, // Size of rld_text_resolve
                                              // function stored in the GOT.
  DT_MIPS_PERF_SUFFIX = 0x7000002E,  // Default suffix of DSO to be added
                                     // by rld on dlopen() calls.
  DT_MIPS_COMPACT_SIZE = 0x7000002F, // Size of compact relocation
                                     // section (O32).
  DT_MIPS_GP_VALUE = 0x70000030,     // GP value for auxiliary GOTs.
  DT_MIPS_AUX_DYNAMIC = 0x70000031,  // Address of auxiliary .dynamic.
  DT_MIPS_PLTGOT = 0x70000032,       // Address of the base of the PLTGOT.
  DT_MIPS_RWPLT = 0x70000034,        // Points to the base
                                     // of a writable PLT.
  DT_MIPS_RLD_MAP_REL = 0x70000035,  // Relative offset of run time loader
                                     // map, used for debugging.

  // Sun machine-independent extensions.
  DT_AUXILIARY = 0x7FFFFFFD, // Shared object to load before self
  DT_FILTER = 0x7FFFFFFF     // Shared object to get values from
};

// DT_FLAGS values.
enum {
  DF_ORIGIN = 0x01,    // The object may reference $ORIGIN.
  DF_SYMBOLIC = 0x02,  // Search the shared lib before searching the exe.
  DF_TEXTREL = 0x04,   // Relocations may modify a non-writable segment.
  DF_BIND_NOW = 0x08,  // Process all relocations on load.
  DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
};

// State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
enum {
  DF_1_NOW = 0x00000001,       // Set RTLD_NOW for this object.
  DF_1_GLOBAL = 0x00000002,    // Set RTLD_GLOBAL for this object.
  DF_1_GROUP = 0x00000004,     // Set RTLD_GROUP for this object.
  DF_1_NODELETE = 0x00000008,  // Set RTLD_NODELETE for this object.
  DF_1_LOADFLTR = 0x00000010,  // Trigger filtee loading at runtime.
  DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object.
  DF_1_NOOPEN = 0x00000040,    // Set RTLD_NOOPEN for this object.
  DF_1_ORIGIN = 0x00000080,    // $ORIGIN must be handled.
  DF_1_DIRECT = 0x00000100,    // Direct binding enabled.
  DF_1_TRANS = 0x00000200,
  DF_1_INTERPOSE = 0x00000400,  // Object is used to interpose.
  DF_1_NODEFLIB = 0x00000800,   // Ignore default lib search path.
  DF_1_NODUMP = 0x00001000,     // Object can't be dldump'ed.
  DF_1_CONFALT = 0x00002000,    // Configuration alternative created.
  DF_1_ENDFILTEE = 0x00004000,  // Filtee terminates filters search.
  DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
  DF_1_DISPRELPND = 0x00010000, // Disp reloc applied at run-time.
  DF_1_NODIRECT = 0x00020000,   // Object has no-direct binding.
  DF_1_IGNMULDEF = 0x00040000,
  DF_1_NOKSYMS = 0x00080000,
  DF_1_NOHDR = 0x00100000,
  DF_1_EDITED = 0x00200000, // Object is modified after built.
  DF_1_NORELOC = 0x00400000,
  DF_1_SYMINTPOSE = 0x00800000, // Object has individual interposers.
  DF_1_GLOBAUDIT = 0x01000000,  // Global auditing required.
  DF_1_SINGLETON = 0x02000000   // Singleton symbols are used.
};

// DT_MIPS_FLAGS values.
enum {
  RHF_NONE = 0x00000000,                   // No flags.
  RHF_QUICKSTART = 0x00000001,             // Uses shortcut pointers.
  RHF_NOTPOT = 0x00000002,                 // Hash size is not a power of two.
  RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH.
  RHF_NO_MOVE = 0x00000008,                // DSO address may not be relocated.
  RHF_SGI_ONLY = 0x00000010,               // SGI specific features.
  RHF_GUARANTEE_INIT = 0x00000020,         // Guarantee that .init will finish
                                           // executing before any non-init
                                           // code in DSO is called.
  RHF_DELTA_C_PLUS_PLUS = 0x00000040,      // Contains Delta C++ code.
  RHF_GUARANTEE_START_INIT = 0x00000080,   // Guarantee that .init will start
                                           // executing before any non-init
                                           // code in DSO is called.
  RHF_PIXIE = 0x00000100,                  // Generated by pixie.
  RHF_DEFAULT_DELAY_LOAD = 0x00000200,     // Delay-load DSO by default.
  RHF_REQUICKSTART = 0x00000400,           // Object may be requickstarted
  RHF_REQUICKSTARTED = 0x00000800,         // Object has been requickstarted
  RHF_CORD = 0x00001000,                   // Generated by cord.
  RHF_NO_UNRES_UNDEF = 0x00002000,         // Object contains no unresolved
                                           // undef symbols.
  RHF_RLD_ORDER_SAFE = 0x00004000          // Symbol table is in a safe order.
};

// ElfXX_VerDef structure version (GNU versioning)
enum { VER_DEF_NONE = 0, VER_DEF_CURRENT = 1 };

// VerDef Flags (ElfXX_VerDef::vd_flags)
enum { VER_FLG_BASE = 0x1, VER_FLG_WEAK = 0x2, VER_FLG_INFO = 0x4 };

// Special constants for the version table. (SHT_GNU_versym/.gnu.version)
enum {
  VER_NDX_LOCAL = 0,       // Unversioned local symbol
  VER_NDX_GLOBAL = 1,      // Unversioned global symbol
  VERSYM_VERSION = 0x7fff, // Version Index mask
  VERSYM_HIDDEN = 0x8000   // Hidden bit (non-default version)
};

// ElfXX_VerNeed structure version (GNU versioning)
enum { VER_NEED_NONE = 0, VER_NEED_CURRENT = 1 };

// SHT_NOTE section types
enum {
  NT_FREEBSD_THRMISC = 7,
  NT_FREEBSD_PROCSTAT_PROC = 8,
  NT_FREEBSD_PROCSTAT_FILES = 9,
  NT_FREEBSD_PROCSTAT_VMMAP = 10,
  NT_FREEBSD_PROCSTAT_GROUPS = 11,
  NT_FREEBSD_PROCSTAT_UMASK = 12,
  NT_FREEBSD_PROCSTAT_RLIMIT = 13,
  NT_FREEBSD_PROCSTAT_OSREL = 14,
  NT_FREEBSD_PROCSTAT_PSSTRINGS = 15,
  NT_FREEBSD_PROCSTAT_AUXV = 16,
};

enum {
  NT_GNU_ABI_TAG = 1,
  NT_GNU_HWCAP = 2,
  NT_GNU_BUILD_ID = 3,
  NT_GNU_GOLD_VERSION = 4,
};

enum {
  GNU_ABI_TAG_LINUX = 0,
  GNU_ABI_TAG_HURD = 1,
  GNU_ABI_TAG_SOLARIS = 2,
  GNU_ABI_TAG_FREEBSD = 3,
  GNU_ABI_TAG_NETBSD = 4,
  GNU_ABI_TAG_SYLLABLE = 5,
  GNU_ABI_TAG_NACL = 6,
};

// Compressed section header for ELF32.
struct Elf32_Chdr {
  Elf32_Word ch_type;
  Elf32_Word ch_size;
  Elf32_Word ch_addralign;
};

// Compressed section header for ELF64.
struct Elf64_Chdr {
  Elf64_Word ch_type;
  Elf64_Word ch_reserved;
  Elf64_Xword ch_size;
  Elf64_Xword ch_addralign;
};

// Legal values for ch_type field of compressed section header.
enum {
  ELFCOMPRESS_ZLIB = 1,            // ZLIB/DEFLATE algorithm.
  ELFCOMPRESS_LOOS = 0x60000000,   // Start of OS-specific.
  ELFCOMPRESS_HIOS = 0x6fffffff,   // End of OS-specific.
  ELFCOMPRESS_LOPROC = 0x70000000, // Start of processor-specific.
  ELFCOMPRESS_HIPROC = 0x7fffffff  // End of processor-specific.
};

} // end namespace ELF
} // end namespace llvm

#endif // LLVM_BINARYFORMAT_ELF_H

18Kbの方が小さい。比較検討中。

関連資料

' @kazuo_reve 私が効果を確認した「小川メソッド」
https://qiita.com/kazuo_reve/items/a3ea1d9171deeccc04da

' @kazuo_reve 新人の方によく展開している有益な情報
https://qiita.com/kazuo_reve/items/d1a3f0ee48e24bba38f1

' @kazuo_reve Vモデルについて勘違いしていたと思ったこと
https://qiita.com/kazuo_reve/items/46fddb094563bd9b2e1e

自己記事一覧

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

逆も真:社会人が最初に確かめるとよいこと。OSEK(69)、Ethernet(59)
https://qiita.com/kaizen_nagoya/items/39afe4a728a31b903ddc

「何を」よりも「誰を」。10年後のために今見習いたい人たち
https://qiita.com/kaizen_nagoya/items/8045978b16eb49d572b2

Qiitaの記事に3段階または5段階で到達するための方法
https://qiita.com/kaizen_nagoya/items/6e9298296852325adc5e

物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff

量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4

数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d

統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba

図(0) state, sequence and timing. UML and お絵描き
https://qiita.com/kaizen_nagoya/items/60440a882146aeee9e8f

品質一覧
https://qiita.com/kaizen_nagoya/items/2b99b8e9db6d94b2e971

言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6

医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82

自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5

通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7

日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68

英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d

転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe

仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df

音楽 一覧(0)
https://qiita.com/kaizen_nagoya/items/b6e5f42bbfe3bbe40f5d

@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b

Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6

鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/26bda595f341a27901a0

安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3

Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

coding (101) 一覧を作成し始めた。omake:最近のQiitaで表示しない5つの事象
https://qiita.com/kaizen_nagoya/items/20667f09f19598aedb68

プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

「はじめての」シリーズ  ベクタージャパン 
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb

AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

LaTeX(0) 一覧 
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

Rust(0) 一覧 
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927

100以上いいねをいただいた記事16選
https://qiita.com/kaizen_nagoya/items/f8d958d9084ffbd15d2a

小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on my individual experience. It has nothing to do with the organization or business to which I currently belong.

文書履歴(document history)

ver. 0.01 初稿  20240714

最後までおよみいただきありがとう4ざいました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?