LoginSignup
0
0

自動車ソフトウェア三規格参考文献 安全(67)

Last updated at Posted at 2023-10-15

機能安全は、機械安全、電気安全を補強する一部分である。

自動車に関するISOの安全規格は存在しない。自動車は機械装置である。電気自動車以外でも電気系統が部品に占める割合は大きくなっている。機械安全、電気安全に関する他の機械装置、電気装置の規格から援用するとよいこともある。機械安全、電気安全対応せずに機能安全に対応することにどれくらいの意味があるかは、網羅的に安全設計をしてみて評価するとよい。

自動車が参照するとよい分野に、輸送機械である航空宇宙、鉄道がある。

JAXAは、NASAの安全に関する取り組みを取り入れ、機能安全規格が制定されたころには、どこまで対応しているかを網羅的に調査されたことがある。その結果も反映して、JAXAの取り組みを公開してきた。(詳細な資料はJAXAのURLからは消えている。)
https://www.ipa.go.jp/archive/publish/secbooks20080212.html
https://www.cqpub.co.jp/dwm/contents/0109/dwm010900540.pdf

ISO 26262は、安全に関する大事な部分を網羅していない。そこで、SOTIF(Safety of the intended functionality), Cyber Securityに対応することにより、抜け漏れを防ぐとともに、無駄な部分を省くことを検討する。
ISO/SAE 21434:2021 Road vehicles — Cybersecurity engineering
https://www.iso.org/standard/70918.html
ISO 21448:2022 Road vehicles — Safety of the intended functionality
https://www.iso.org/standard/77490.html

自動車安全は、主に安全な自動車、安全な道路システム、安全運転(+支える仕組み)からなる。安全な道路システム、安全運転を支える仕組みの状態から、自動車の機能として備えているとよいものが異なる。

自動車に関する総合的な観点で、それぞれの部品、ソフトウェアがの機能が決まってくる。

組込み系技術者のための安全設計入門
https://hojo.keirin-autorace.or.jp/seikabutu/seika/21nx_/bhu_/l_/20-33koho-01.pdf

Guide 51には触れているが、Guide 50について言及がない。

ISO/IEC Guide 50:2014 Safety aspects Guidelines for child safety in standards and other specifications
https://www.iso.org/standard/63937.html
ISO 12100 (JIS B 9700), ISO 13849 (JIS B 9705), IEC 60204 (JIS B 9960), IEC 61508 (JIS C 0508) を説明している。
FTP,FMEA,HAZOPについて言及している。

日本では、法律として自動車安全を規定するのではなく、自動車の保安基準に含めて体系化している。自動車は危険源から隔離することができず、安全は通常運転から必ずしも切り離せないからである。

道路運送車両の保安基準(2023年6月5日現在)
https://www.mlit.go.jp/jidosha/jidosha_fr7_000007.html

より安全なクルマづくり
https://www.jama.or.jp/library/children/encyclopedia/encyclopedia5.html

車間距離(きょり)自動維持(いじ)運転システム
ブレーキアシスト
接近通報装置(せっきんつうほうそうち)
アンチロック・ブレーキシステム(ABS)
車両周辺視界情報提供装置(しかいじょうほうていきょうそうち)
トラクション・コントロールシステム(TCS)
シートベルト
衝撃吸収(しょうげききゅうしゅう)ボディ
高強度キャビン
エアバッグ
アクティブヘッドレスト
歩行者傷害軽減(しょうがいけいげん)ボディ
アダプティブ・フロントライティング・システム(AFS)
ナイトビュー
車線維持支援制御装置(いじしえんせいぎょそうち)
衝突被害軽減(しょうとつひがいけいげん)ブレーキ

自動車総合安全情報
https://www.mlit.go.jp/jidosha/anzen/

自動車安全運転センター
https://www.jsdc.or.jp

有人宇宙開発におけるシス テム安全活動 System Safet yActiviti efsor Human Space Development 後藤 克仁 Katsuhito GOTO
https://www.jstage.jst.go.jp/article/reajshinrai/36/8/36_KJ00009622884/_pdf

SN part NB NO. file Title
388 14 B 55 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Enhancement of 3GPP support for V2X scenarios; Stage 1(Release 16) 3GPP TS 22.186 V16.2.0 (2019-06). https://www.etsi.org/deliver/etsi_ts/122100_122199/122186/16.02.00_60/ts_122186v160200p.pdf
51 3 B 3 Abbreviated injury scale; Association of the advancement of Automotive medicine; Barrington, IL, USA Information is also available at www.aaam.org https://www.aaam.org/ https://www.aaam.org/abbreviated-injury-scale-ais-position-statement/
285 12 B 1 Abbreviated injury scale; Association of the advancement of Automotive medicine; Barrington, IL, USA Information is also available at www.aaam.org [viewed 2018-12-11] see 51
354 14 B 21 Abdulkhaleq A. et al., A Systematic Approach Based on STPA for Developing a Dependable Architecture for Fully Automated Driving Vehicles, 4th European STAMP Workshop 2016, Procedia Engineering, 179, 41-51, 2017 https://www.sciencedirect.com/science/article/pii/S1877705817312109 https://www.sciencedirect.com/science/article/pii/S1877705817312109
356 14 B 23 Abdulkhaleq A., Wagner S., Leveson N., A Comprehensive Safety Engineering approach for Software-Intensive Systems Based on STPA. Procedia Engineering, 128:2–11, 2015, https://www.researchgate.net/publication/265508075_Experiences_with_Applying_STPA_to_Software-Intensive_Systems_in_the_Automotive_Domain https://www.sciencedirect.com/science/article/pii/S1877705815038588
355 14 B 22 Abdulkhaleq A.,, Wagner , S , Lammering , D , Boehmert , H , Blueher , P , Using STPA in Compliance with ISO 26262 for Developing a Safe Architecture for Fully Automated Vehicles. arXiv preprint arXiv:1703.03657, 2017. https://www.researchgate.net/publication/314797280_Using_STPA_in_Compliance_with_ISO_26262_for_Developing_a_Safe_Architecture_for_Fully_Automated_Vehicles/link/59770e8ba6fdcc8348b05c44/download
163 8 B 14 AEC Q100, Failure Mechanism Based Stress Test Qualification For Integrated Circuits http://www.aecouncil.com/ http://www.aecouncil.com/Documents/AEC_Q100_Rev_J_Base_Document.pdf
164 8 B 15 AEC Q101, Failure Mechanism Based Stress Test Qualification For Discrete Semiconductors http://www.aecouncil.com/Documents/AEC_Q101_Rev_E_Base_Document.pdf
165 8 B 16 AEC Q200, Stress Test Qualification For Passive Components http://www.aecouncil.com/Documents/AEC_Q200_Rev_E_Base_Document.pdf
266 11 B 62 AEC, AEC-Q100: Failure Mechanism Based Stress Test Qualification For Integrated Circuits see 163
254 11 B 50 Al-Ars, Z.; Hamdioui, S.; Van De Goor, A.J., Space of DRAM Fault Models and Corresponding Testing. Design, Automation and Test in Europe, 2006. DATE '06. IEEE. March 2006, 1, 1-6 [viewed 2017-10-10]. Available at: 10.1109/DATE.2006.244080 https://ieeexplore.ieee.org/document/1657087
361 14 B 28 Allen R., Magdaleno R., Serafin C., Eckert S., , Sieja F., Driver Car Following Behavior Under Test Track and Open Road Driving Condition," SAE Technical Paper 970170, 1997, https://doi.org/10.4271/970170
234 11 B 30 Arlat J., et al. Fault Injection and Dependability Evaluation of Fault-Tolerant Systems. IEEE Transactions on Computers [online]. IEEE. August 1993, 42(8), 913 [viewed 2017-10-10]. Available at: 10.1109/12.238482 https://ieeexplore.ieee.org/document/238482
370 14 B 37 ASAM OpenCRG http://www.asam.net/standards/detail/opencrg/ http://www.asam.net/standards/detail/opencrg/
369 14 B 36 ASAM OpenDRIVE http://www.asam.net/standards/detail/opendrive/ http://www.asam.net/standards/detail/opendrive/
371 14 B 38 ASAM OpenSCENARIO http://www.asam.net/standards/detail/openscenario/ http://www.asam.net/standards/detail/openscenario/
205 11 B 1 Askari S., Nourani M. Design methodology for mitigating transient errors in analogue and mixed-signal circuits. Circuits, Devices & Systems [online]. IET. November 2012, 6(6), 447-456 [viewed 2017-10-10]. Available at: 10.1049/iet-cds.2012.0053 https://digital-library.theiet.org/content/journals/10.1049/iet-cds.2012.0053
318 13 B 26 Automotive ISAC, Automotive Cybersecurity Best Practices [online]. Available at: https://www.automotiveisac.com/best-practices/
41 2 B 12 Automotive SPICE [viewed 2017-10-11]. Available at: http://www.automotivespice.com http://www.automotivespice.com
166 8 B 17 Automotive SPICE®4 - Available at: http://www.automotivespice.com [viewed 2018-09-27]
53 3 B 5 Baker S.P., O’Neill, B., Haddon, W., Long, W.B., The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. The Journal of Trauma, Vol. 14, No. 3, 1974 https://pubmed.ncbi.nlm.nih.gov/4814394/
286 12 B 2 Baker S.P., O'Neill B., Haddon W., Long W.B., The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care, The Journal of Trauma, Vol. 14, No. 3, 1974 see 53
54 3 B 6 Balogh Z., Offner P.J., Moore E.E., Biffl W.L., NISS predicts post injury multiple organ failure better than ISS, The Journal of Trauma, Vol. 48, No. 4, 2000 https://read.qxmd.com/read/10780593/niss-predicts-postinjury-multiple-organ-failure-better-than-the-iss
287 12 B 3 Balogh Z., Offner P.J., Moore E.E., Biffl W.L., NISS predicts post injury multiple organ failure better than ISS, The Journal of Trauma, Vol. 48, No. 4, 2000 see 54
207 11 B 3 Baruah S.K., Goossens J. Rate-monotonic scheduling on uniform multiprocessors. Proceedings of the 23rd International Conference on Distributed Computing Systems [online]. IEEE. May 2003, 360-366 [viewed 2017-10-10]. Available at: 10.1109/ICDCS.2003.1203485 https://ieeexplore.ieee.org/document/1214344
206 11 B 2 Baumann R.C. Radiation-Induced Soft Errors in Advanced Semiconductor Technologies. IEEE Transactions on device and materials reliability [online]. IEEE. December 2005, 5(3), 305-316 [viewed 2017-10-10]. Available at: 10.1109/TDMR.2005.853449 https://ieeexplore.ieee.org/document/1545891
235 11 B 31 Benso A. and Prinetto P. Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation. Springer. 2003 [viewed 2017-10-10]. Available at: https://doi.org/10.1007/0-306-48711-X_3 https://link.springer.com/chapter/10.1007/0-306-48711-X_3
225 11 B 21 Benso A., Bosio A., Di Carlo S., Mariani R. A Functional Verification based Fault Injection Environment. 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems [online]. IEEE. September 2007 [viewed 2017-10-10]. Available at: 10.1109/DFT.2007.31 https://ieeexplore.ieee.org/document/4358379
240 11 B 36 Benware B., et al. Impact of Multiple-Detect Test Patterns on Product Quality, Proc. of the International Test Conference 2003, ITC'03 [online]. IEEE. October 2003, 1031-1040 [viewed 2017-10-10]. Available at: 10.1109/TEST.2003.1271091 https://ieeexplore.ieee.org/document/1271091
124 6 B 6 Bieman J.M., Dreilinger D., Lin L., “Using fault injection to increase software test coverage,” in Software Reliability Engineering, 1996. Proceedings., Seventh International Symposium on, vol., no., pp.166-174, 30 Oct-2 Nov 1996 doi: 10.1109/ISSRE.1996.558776 https://ieeexplore.ieee.org/abstract/document/558776
99 5 B 20 BIROLINI, A., Reliability Engineering, Theory and Practice, 2014 https://link.springer.com/book/10.1007/978-3-540-49390-7
208 11 B 4 Börcsök J., Schaefer S., Ugljesa E. Estimation and Evaluation of Common Cause Failures. Second International Conference on Systems [online]. IEEE. April 2007, 41 [viewed 2017-10-10]. Available at: 10.1109/ICONS.2007.25 https://ieeexplore.ieee.org/document/4196343
209 11 B 5 Bressoud T.C., Schneider F.B. Hypervisor-based fault tolerance. Proceedings of the fifteenth ACM symposium on Operating systems principles [online]. ACM. December 1995, 1–11 [viewed 2017-10-10]. Available at: 10.1145/224057.224058 http://nil.csail.mit.edu/6.824/2016/papers/bressoud-hypervisor.pdf
351 14 B 18 BSI PAS 1883:2020, AVSC Best Practice for Describing an Operational Design Domain
342 14 B 9 CARE database (Community database on Accidents on the Roads in Europe), https://road-safety.transport.ec.europa.eu/statistics-and-analysis/methodology-and-research/care-database_en https://road-safety.transport.ec.europa.eu/statistics-and-analysis/methodology-and-research/care-database_en
337 14 B 4 CENELEC EN 50126-2:2017, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 2: Systems Approach to Safety https://www.en-standard.eu/ilnas-en-50126-2-railway-applications-the-specification-and-demonstration-of-reliability-availability-maintainability-and-safety-rams-part-2-systems-approach-to-safety/
210 11 B 6 Chattopadhyay S., Kee C.L., Roychoudhury A., Kelter T., Marwedel P., Falk H. A Unified WCET Analysis Framework for Multi-core Platforms. IEEE 18th Real-Time and Embedded Technology and Applications Symposium [online]. IEEE. April 2012, 99-108 [viewed 2017-10-10]. Available at: 10.1109/RTAS.2012.26 https://ieeexplore.ieee.org/document/6200042
374 14 B 41 CityGML http://www.opengeospatial.org/standards/citygml http://www.opengeospatial.org/standards/citygml
211 11 B 7 Clegg J.R. Arguing the safety of FPGAs within safety critical systems. Incorporating the SaRS Annual Conference, 4th IET International Conference on Systems Safety [online]. IET. October 2009, 1-6 [viewed 2017-10-10]. Available at: 10.1049/cp.2009.1569 https://digital-library.theiet.org/content/conferences/10.1049/cp.2009.1569
42 2 B 13 CMMI for Development [viewed 2017-10-11]. Available at: http://www.cmmiinstitute.com/resources http://www.cmmiinstitute.com/resources
161 8 B 12 CMMI for Development, CMMI-DEV, Carnegie Mellon University Software Engineering Institute, see 42
52 3 B 4 Code of Practice for the design and evaluation of ADAS, EU Project RESPONSE 3: Oct. 2006; https://www.acea.be/publications/article/code-of-practice-for-the-design-and-evaluation-of-adas https://www.acea.auto/publication/code-of-practice-for-the-design-and-evaluation-of-adas/
344 14 B 11 Code of Practice for the design and evaluation of ADAS, EU Project RESPONSE 3; https://www.acea.be/uploads/publications/20090831_Code_of_Practice_ADAS.pdf see 52
334 14 B 1 COMMISSION RECOMMENDATION of 22 December 2006 on safe and efficient in-vehicle information and communication systems: update of the European Statement of Principles on human machine interface (2007/78/EC): https://data.europa.eu/eli/reco/2007/78/oj https://op.europa.eu/en/publication-detail/-/publication/00e7ffec-49e3-492b-8e8e-8839cae806bc
212 11 B 8 Conmy P.M., Pygott C., Bate I. VHDL guidance for safe and certifiable FPGA design. 5th IET International Conference on System Safety [online]. IET. October 2010, 1-6 [viewed 2017-10-10]. Available at: 10.1049/cp.2010.0832 https://www.cs.york.ac.uk/rts/static/papers/R:Conmy:2010a.pdf
202 10 B 17 Convention on Road Traffic, Done at Vienna on 8 November 1968 including amendment 1, Economic Commission for Europe, Inland Transportation Committee, [viewed 2018-09-25] Available at: https://www.unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf https://unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf
256 11 B 52 Daniel J. Sorin, Mark D. Hill, David A. Wood. A Primer on Memory Consistency and Cache Coherence (1st ed.). Morgan & Claypool Publishers https://link.springer.com/book/10.1007/978-3-031-01764-3
367 14 B 34 de Gelder E., Paardekooper J.P., “Assessment of Automated Driving Systems using real-life scenarios,” IEEE Intell. Veh. Symp. Proc., no. IV, pp. 589–594, 2017. https://ieeexplore.ieee.org/abstract/document/7995782
253 11 B 49 V Di Carlo S., Fabiano M. PIAZZA, ROBERTO; PRINETTO, P. Exploring modeling and testing of NAND flash memories. Design & Test Symposium (EWDTS), 2010 East-West [online]. IEEE. September 2010, 47-50 [viewed 2017-10-10]. Available at: 10.1109/EWDTS.2010.5742059 https://www.researchgate.net/publication/224227465_Exploring_modeling_and_testing_of_NAND_flash_memories/link/0912f50b3fdf64f93c000000/download
345 14 B 12 DIN SAE SPEC 91381:2019, Terms and Definitions Related to Testing of Automated Vehicle Technologies https://www.sae.org/standards/content/dinsaespec91381/
17 1 B 15 N ECE/TRANS/WP .29/78/Rev.3+Amend.1 (Consolidated Resolution on the Construction of Vehicles (R.E.3)) https://unece.org/fileadmin/DAM/trans/main/wp29/wp29resolutions/ECE-TRANS-WP.29-78r6e.pdf
259 11 B 55 O E-GAS. Standardized E-GAS Monitoring Concept for Gasoline and Diesel Engine Control Units. [viewed 2017-10-10]. Available at: https://www.iav.com/sites/default/files/attachments/seite//ak-egas-v6-0-en-150922.pdf https://studylib.net/doc/18580033/standardized-e-gas-monitoring-concept-for-gasoline-and
92 5 B 13 EN 50129:2003, Railway applications — Communication, signalling and processing systems — Safety related electronic systems for signalling https://www.en-standard.eu/ilnas-en-50129-railway-applications-communication-signalling-and-processing-systems-safety-related-electronic-systems-for-signalling-1/#:~:text=EN%2050129%20Railway%20applications%20-%20Communication%2C%20signalling%20and,%28including%20subsystems%20and%20equipment%29%20for%20railway%20signalling%20applications.
239 11 B 35 V Enamul Amyeen M., et al. Evaluation of the Quality of N-Detect Scan ATPG Patterns on a Processor. Proceedings of the International Test Conference 2004, ITC'04 [online]. IEEE. October 2004, 669-678 [viewed 2017-10-10]. Available at: 10.1109/TEST.2004.1387328 https://www.researchgate.net/publication/4120380_Evaluation_of_the_quality_of_N-detect_scan_ATPG_patterns_on_a_processor/link/541cc4970cf203f155bd6278/download
312 13 B 20 registration E-SAFETY VEHICLE INTRUSION PROTECTED APPLICATIONS (EVITA), Deliverable D2.3: Security requirements for automotive on-board networks based on dark-side scenarios [online]. Edited by A. Ruddle et al. December 2009 [viewed 2021-01-17]. Available at: https://doi.org/10.5281/zenodo.1188418 https://evita-project.org/
313 13 B 21 ETSI TS 102 165-1, CYBER; Methods and protocols; Part 1: Method and pro forma for Threat, Vulnerability, Risk Analysis (TVRA), Version 5.2.3 [online]. October 2017 [viewed 2021-01-19]. Available at: https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/05.02.03_60/ts_10216501v050203p.pdf
363 14 B 30 V Fabris S., Priddy J., Harris F., “Method for hazard severity assessment for the case of undemanded deceleration.”, Presented at VDA Automotive SYS Conference, Berlin, June 19/20, 2012, https://www.researchgate.net/publication/344452155_Method_for_hazard_severity_assessment_for_Method_for_hazard_severity_assessment_for_the_case_of_undemanded_deceleration_-_Simone_Fabris.
359 14 B 26 Fabris S., Priddy J., Harris F., “Method for Hazard Severity Assessment for the Case of Unintended Deceleration”, presented at 2012 VDA Auto SYS conference in Berlin.
109 5 B 30 2022 FIDES guide 2009 edition A (September 2010), Reliability Methodology for Electronic Systems https://www.fides-reliability.org/en/node/612
213 11 B 9 FIDES Guide 2009 Edition A September 2010, Reliability Methodology for Electronic Systems see109
214 11 B 10 request Fleming, P.R., Olson, B.D., Holman, W.T., Bhuva, B.L., Massengill, L.W. Design Technique for Mitigation of Soft Errors in Differential Switched-Capacitor Circuits. IEEE Transactions on Circuits and Systems II: Express Briefs [online]. IEEE. May 2008, 55(9), 838-842 [viewed 2017-10-10]. Available at: 10.1109/TCSII.2008.923437 https://www.researchgate.net/publication/3453081_Design_Technique_for_Mitigation_of_Soft_Errors_in_Differential_Switched-Capacitor_Circuits
106 5 B 27 Forin P., Vital Coded Microprocessor: Principles and Application for various Transit Systems, Proc. IFAC-GCCT, Paris, France, 1989 https://www.sciencedirect.com/science/article/pii/S1474667017526531
316 13 B 24 FORUM OF INCIDENT RESPONSE AND SECURITY TEAMS (FIRST). Common Vulnerability Scoring System (CVSS), Common Vulnerability Scoring System v3.1: Specification Document, [online]. Available at: https://www.first.org/cvss/v3.1/specification-document https://www.first.org/ https://www.first.org/cvss/v3-1/
319 13 B 27 FORUM OF INCIDENT RESPONSE AND SECURITY TEAMS (FIRST). Traffic Light Protocol (TLP), FIRST Standards Definitions and Usage Guidance - Version 1.0, [online]. Available at: https://www.first.org/tlp/ https://www.first.org/tlp/
378 14 B 45 FRAADE-BLANDAR L, BLUMENTHAL M. S., ANDERSON J. M. KALRA N. – RAND: Measuring Automated Vehicle Safety – https://www.rand.org/content/dam/rand/pubs/research_reports/RR2600/RR2662/RAND_RR2662.pdf
215 11 B 11 Franklin M. Incorporating Fault Tolerance in Superscalar Processors. Proceedings of International Conference on High Performance Computing [online]. IEEE. December 1996 [viewed 2017-10-10]. Available at: 10.1109/HIPC.1996.565839
101 5 B 22 Fruehling T., Delphi Secured Microcontroller Architecture S.A.E., 2000 World Congress, SAE# 2000‑01‑1052 https://www.researchgate.net/publication/239496547_Delphi_Secured_Microcontroller_Architecture/link/5858192d08aeffd7c4fbb1e2/download
368 14 B 35 Functional Mockup Interface http://functional-mockup-interface.org/
258 11 B 54 G. Kervarrec, et al. A universal reliability prediction model for SMD integrated circuits based on field failures. European Symposium on Reliability of Electron Devices, Failure Physics and Analysis [online]. Microelectronics Reliability Elsevier. July 1999, 39(6), 765-771 [viewed 2017-10-10]. Available at: https://doi.org/10.1016/S0026-2714(99)00099-2 https://www.sciencedirect.com/science/article/abs/pii/S0026271499000992?via%3Dihub
340 14 B 7 German In-Depth Accident Study (GIDAS), accident data collection project in Germany, https://www.gidas.org/start-en.html
162 8 B 13 X German V-Model - Available at: http://www.v-modell-xt.de/[viewed 2018-09-27] https://www.cio.bund.de/Webs/CIO/DE/digitaler-wandel/architekturen-und-standards/architekturen-und-standards-node.html
252 11 B 48 request Ginez O. ET AL. An overview of failure mechanisms in embedded flash memories. VLSI Test Symposium, 2006. Proceedings. 24th [online]. IEEE. April 2006 [viewed 2017-10-10]. Available at: 10.1109/VTS.2006.19 https://www.researchgate.net/publication/4234833_An_Overview_of_Failure_Mechanisms_in_Embedded_Flash_Memories
187 10 B 2 N GSN COMMUNITY STANDARD VERSION 1, November 2011 https://scsc.uk/r141C:1?t=1
248 11 B 44 V Gupta Vijay, R. Snow, M.C. Wu, A. Jain, J. Tsai. Recovery of Stiction-Failed MEMS Structures Using Laser-Induced Stress Waves. Journal of Microelectromechanical Systems [online]. IEEE. August 2004, 13(4), 696-700 [viewed 2017-10-10]. Available at: 10.1109/JMEMS.2004.832185 http://nanophotonics.eecs.berkeley.edu/Publications/Journal/files/1140/Gupta%20et%20al.%20-%202004%20-%20Recovery%20of%20stiction-failed%20MEMS%20structures%20using%20.pdf
350 14 B 17 Hartjen L., Philipp R., Schuldt F., Howar F., Friedrich B., Classification of Driving Maneuvers in Urban Traffic for Parametrization of Test Scenarios“ in: 9. Tagung Automatisiertes Fahren, Lehrstuhl für Fahrzeugtechnik mit TÜV SÜD Akademie: https://mediatum.ub.tum.de/1535131. https://www.researchgate.net/publication/339528099_Classification_of_Driving_Maneuvers_in_Urban_Traffic_for_Parametrization_of_Test_Scenarios/link/5e6236b7299bf1744f62d149/download
216 11 B 12 request Hayek A., Borcsok J. SRAM-based FPGA design techniques for safety-related systems conforming to IEC 61508 a survey and analysis. 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) [online]. IEEE. December 2012, 319-324 [viewed 2017-10-10]. Available at: 10.1109/ICTEA.2012.6462892 https://www.researchgate.net/publication/261048303_SRAM-based_FPGA_design_techniques_for_safety_related_systems_conforming_to_IEC_61508_a_survey_and_analysis
217 11 B 13 V Heiser G. The role of virtualization in embedded systems. Proceedings of the 1st workshop on Isolation and integration in embedded systems [online]. ACM. April 2008, 11-16 [viewed 2017-10-10]. Available at: 10.1145/1435458.1435461 https://www.researchgate.net/publication/234804454_The_role_of_virtualization_in_embedded_systems/link/00b7d53acc2c78543e000000/download
366 14 B 33 Hirsenkorn N., Kolsi H., Selmi M., Schaermann A., Hanke T., Rauch A., Rasshofer R., Biebl E., Learning Sensor Models for Virtual Test and Development. 11. Workshop Fahrerassistenzsysteme und automatisiertes Fahren, UniDAS, Walting, 2017 https://fdocuments.net/document/learning-sensor-models-for-virtual-test-and-11-workshop-fahrerassistenzsysteme.html?page=2
389 14 B 56 IATF 16949, Quality management system requirements for automotive production and relevant service parts organisations see 4
4 1 B 2 IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations https://www.iatfglobaloversight.org/wp/wp-content/uploads/2016/12/IATF-16949-GM-CSR_Dec.-2016-1.pdf
33 2 B 4 IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations see 4
140 7 B 6 IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations see 4
155 8 B 6 IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations see 4
299 13 B 7 IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations see 4
255 11 B 51 IATF 16949:2016, Quality management system requirements for automotive production and relevant service parts organizations see 4
325 13 B 33 IEC 31010, Risk management ? Risk assessment techniques https://www.iso.org/standard/72140.html
289 12 B 5 V IEC 61000-6-1, Electromagnetic compatibility (EMC) — Part 6-1: Generic standards — Immunity for residential, commercial and light-industrial environments https://webstore.iec.ch/publication/25628
190 10 B 5 V IEC 61025, ed. 2.0 — Procedures and Symbols for FTA https://webstore.iec.ch/publication/25647
16 1 B 14 V IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems https://webstore.iec.ch/publication/22273
35 2 B 6 IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
50 3 B 2 IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
88 5 B 9 IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
135 7 B 1 IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
159 8 B 10 IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
179 9 B 1 IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
186 10 B 1 IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
120 6 B 2 IEC 61508:2010, (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
218 11 B 14 IEC 61508‑2:2010, Functional safety of electrical/electronic/programmable electronic safety-related systems see 16
326 13 B 34 IEC 61508-7, Functional safety of electrical/electronic/programmable electronic safety-related systems ? Part 7: Overview of techniques and measures see 16
89 5 B 10 IEC 61709, Electronic components — Reliability — Reference conditions for failure rates and stress models for conversion https://webstore.iec.ch/publication/59985
219 11 B 15 IEC 61709:2017, Electrical components — Reliability — Reference conditions for failure rates and stress models for conversion see 89
307 13 B 15 IEC 62443-2-1, Industrial communication networks ? Network and system security ? Part 2-1: Establishing an industrial automation and control system security program https://isms.jp/csms/doc/JIP-CSCC100-10.pdf
244 11 B 40 廃版 IEC/TR 62380:2004, Reliability data handbook — Universal model for reliability prediction of electronics components, PCBs and equipment https://webstore.iec.ch/preview/info_iec62380%7Bed1.0%7Den.pdf
260 11 B 56 N IEEE P1804, IEEE Draft Standard for Fault Accounting and Coverage Reporting to Digital Modules [viewed 2017-10-10] https://standards.ieee.org/ieee/1804/4604/
246 11 B 42 IEEE STD 2700-2014, IEEE Standard for Sensor Performance Parameter Definitions https://ieeexplore.ieee.org/document/6880296
343 14 B 10 IGLAD (Europe) http://www.iglad.net/ http://www.iglad.net/
91 5 B 12 Intentionally left blank
167 8 B 18 ISO 10007, Quality management — Guidelines for configuration management https://www.iso.org/standard/70400.html
301 13 B 9 ISO 10007, Quality management ? Guidelines for configuration management see 91
70 4 B 7 N ISO 10605, Road vehicles — Test methods for electrical disturbances from electrostatic discharge https://www.iso.org/standard/79094.html
82 5 B 3 ISO 10605, Road vehicles — Test methods for electrical disturbances from electrostatic discharge see 70
67 4 B 4 ISO 11451 (all parts), Road vehicles — Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy https://www.iso.org/standard/62477.html
288 12 B 4 ISO 11451 (all parts), Road vehicles — Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy see 67
68 4 B 5 ISO 11452 (all parts), Road vehicles — Component test methods for electrical disturbances from narrowband radiated electromagnetic energy https://www.iso.org/standard/59609.html
83 5 B 4 ISO 11452-2, Road vehicles — Component test methods for electrical disturbances from narrowband radiated electromagnetic energy — Part 2: Absorber-lined shielded enclosure see 68
84 5 B 5 ISO 11452-4, Road vehicles — Component test methods for electrical disturbances from narrowband radiated electromagnetic energy — Part 4: Harness excitation methods see 68
158 8 B 9 N ISO 13849 (all parts), Safety of machinery — Safety-related parts of control systems https://www.iso.org/standard/73481.html
154 8 B 5 N ISO 16750 (all parts), Road vehicles — Environmental conditions and testing for electrical and electronic equipment https://www.iso.org/standard/77578.html
85 5 B 6 ISO 16750-2, Road vehicles — Environmental conditions and testing for electrical and electronic equipment — Part 2: Electrical loads see 85
86 5 B 7 ISO 16750-4, Road vehicles — Environmental conditions and testing for electrical and electronic equipment — Part 4: Climatic loads see 85
87 5 B 8 ISO 16750-5, Road vehicles — Environmental conditions and testing for electrical and electronic equipment — Part 5: Chemical loads see 85
332 14 ISO 21448 SOTIF(Safety of the intended functionality)https://www.iso.org/standard/77490.html https://www.iso.org/standard/77490.html
156 8 B 7 ISO 25119 (all parts), Tractors and machinery for agriculture and forestry — Safety-related parts of control systems actors and machinery for agriculture and forestryss 18 https://www.iso.org/standard/80216.html
2 1 N ISO 26262 (all parts), Road vehicles — Functional safety
358 14 B 25 ISO 26262 (all parts), Road vehicles — Functional safety
308 13 B 16 ISO 26262 (all parts), Road vehicles ? Functional safety
22 2 N ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
44 3 N ISO 26262-1, Road Vehicles — Functional Safety — Part 1: Vocabulary
73 5 N ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
111 6 N ISO 26262-1, Road Vehicles — Functional Safety — Part 1: Vocabulary
128 7 N ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
142 8 N ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
185 10 N ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
204 11 N ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
276 12 N ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
333 14 N ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
1 1 ISO 26262-1:2018 Road vehicles — Functional safety — Part 1: Vocabulary https://www.iso.org/standard/68383.html
56 4 N ISO 26262-1:2018, Road vehicles — Functional safety — Part 1: Vocabulary
171 9 N ISO 26262-1:2018, Road vehicles — Functional safety — Part 1: Vocabulary
293 13 B 1 ISO 26262-1:2018, Road vehicles ? Functional safety ? Part 1: Vocabulary
30 2 B 1 ISO 26262-10, Guidelines on ISO 26262
184 10 ISO 26262-10:2018 Road vehicles — Functional safety — Part 10: Guidelines on ISO 26262 https://www.iso.org/standard/68392.html
13 1 B 11 ISO 26262-10:2018, Road vehicles — Functional safety — Part 10: Guideline on ISO 26262
137 7 B 3 ISO 26262-10:2018, Road vehicles — Functional safety — Part 10: Guideline on ISO 26262
265 11 B 61 ISO 26262‑10:2018, Road vehicles — Functional safety — Part 10: Guideline on ISO 26262
203 11 ISO 26262-11:2018 Road vehicles — Functional safety — Part 11: Guidelines on application of ISO 26262 to semiconductors https://www.iso.org/standard/69604.html
66 4 B 3 ISO 26262-11:2018, Road Vehicles — Functional safety — Part 11: Guideline on application of ISO 26262 on semiconductors
14 1 B 12 ISO 26262-11:2018, Road vehicles — Functional safety — Part 11: Guideline on application of ISO 26262 to semiconductors
138 7 B 4 ISO 26262-11:2018, Road vehicles — Functional safety — Part 11: Guideline on application of ISO 26262 to semiconductors
150 8 B 1 ISO 26262-11:2018, Road vehicles — Functional safety — Part 11: Guideline on application of ISO 26262 to semiconductors
200 10 B 15 ISO 26262-11:2018, Road vehicles — Functional safety — Part 11: Guideline on application ofISO 26262 to semiconductors
182 9 B 4 ISO 26262-11:2018, Road vehicles - Functional safety - Part 11: Guidelines on application of ISO 26262 to semiconductors
31 2 B 2 ISO 26262-12, Adaptation of ISO 26262 for motorcycles
275 12 ISO 26262-12:2018 Road vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for motorcycles https://www.iso.org/standard/69605.html
183 9 B 5 ISO 26262-12:2018, Road vehicles - Functional safety - Part 12: Adaptation for motorcycles
15 1 B 13 ISO 26262-12:2018, Road vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for motorcycles
49 3 B 1 ISO 26262-12:2018, Road Vehicles — Functional Safety — Part 12: Adaptation of ISO 26262 for motorcycles
71 4 B 8 ISO 26262-12:2018, Road Vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for Motorcycles
126 6 B 8 ISO 26262-12:2018, Road Vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for Motorcycles
139 7 B 5 ISO 26262-12:2018, Road vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for motorcycles
151 8 B 2 ISO 26262-12:2018, Road vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for motorcycles
201 10 B 16 ISO 26262-12:2018, Road vehicles — Functional safety — Part 12: Adaptation ofISO 26262 for motorcycles
21 2 ISO 26262-2:2018 Road vehicles — Functional safety — Part 2: Management of functional safety https://www.iso.org/standard/68384.html
5 1 B 3 ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety
45 3 N ISO 26262-2:2018, Road Vehicles — Functional Safety — Part 2: Management of functional safety
57 4 N ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety
74 5 N ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety
112 6 N ISO 26262-2:2018, Road Vehicles — Functional Safety — Part 2: Management of functional safety
129 7 N ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety
143 8 N ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety
172 9 N ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of Functional Safety
192 10 B 7 ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of Functional Safety
277 13 N ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety
267 11 B 63 ISO 26262‑2:2018, Road Vehicles — Functional Safety — Part 2: Management of functional safety
43 3 ISO 26262-3:2018 Road vehicles — Functional safety — Part 3: Concept phase https://www.iso.org/standard/68385.html
6 1 B 4 ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
23 2 N ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
58 4 N ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
113 6 N ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
130 7 N ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
144 8 N ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
173 9 N ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
193 10 B 8 ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
278 14 N ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase
268 11 B 64 ISO 26262‑3:2018, Road vehicles — Functional safety — Part 3: Concept phase
292 13 N ISO 26262-3:2018, Road vehicles ? Functional safety ? Part 3: Concept phase
55 4 ISO 26262-4:2018 Road vehicles — Functional safety — Part 4: Product development at the system level https://www.iso.org/standard/68386.html
7 1 B 5 ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
24 2 N ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
46 3 N ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
75 5 N ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
114 6 N ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
131 7 N ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
145 8 N ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
174 9 N ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
194 10 B 9 ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
279 15 N ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
269 11 B 65 ISO 26262‑4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level
72 5 ISO 26262-5:2018 Road vehicles — Functional safety — Part 5: Product development at the hardware level https://www.iso.org/standard/68387.html
8 1 B 6 ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
25 2 N ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
59 4 N ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
115 6 N ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
132 7 N ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
146 8 N ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
175 9 N ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
195 10 B 10 ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
280 16 N ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
270 11 B 66 ISO 26262‑5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level
110 6 ISO 26262-6:2018 Road vehicles — Functional safety — Part 6: Product development at the software level https://www.iso.org/standard/68388.html
9 1 B 7 ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
26 2 N ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
60 4 N ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
76 5 N ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
136 7 B 2 ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
147 8 N ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
176 9 N ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
196 10 B 11 ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
281 17 N ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
271 11 B 67 ISO 26262‑6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level
127 7 ISO 26262-7:2018 Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning https://www.iso.org/standard/68389.html
77 5 N ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production and operation
10 1 B 8 ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
27 2 N ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
61 4 N ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
116 6 N ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
148 8 N ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
177 9 N ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
197 10 B 12 ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
282 18 N ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
272 11 B 68 ISO 26262‑7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning
141 8 ISO 26262-8:2018 Road vehicles — Functional safety — Part 8: Supporting processes https://www.iso.org/standard/68390.html
11 1 B 9 ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
28 2 N ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
47 3 N ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
62 4 N ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
78 5 N ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
117 6 N ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
133 7 N ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
178 9 N ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
198 10 B 13 ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
283 19 N ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
273 11 B 69 ISO 26262‑8:2018, Road vehicles — Functional safety — Part 8: Supporting processes
170 9 ISO 26262-9:2018 Road vehicles — Functional safety — Part 9: Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses https://www.iso.org/standard/68391.html
199 10 B 14 ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL) oriented and safety-oriented analyses
12 1 B 10 ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
29 2 N ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
48 3 N ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
63 4 N ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
79 5 N ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
118 6 N ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
134 7 N ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
284 20 N ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
149 8 N ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)‑oriented and safety-oriented analyses
274 11 B 70 ISO 26262‑9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses
306 13 B 14 ISO 29147, Information technology ? Security techniques ? Vulnerability disclosure
295 13 B 3 ISO 31000:2018, Risk management ? Guidelines https://www.iso.org/standard/65694.html
338 14 B 5 ISO 34502, Road vehicles - Engineering framework and process of scenario-based safety evaluation https://www.iso.org/standard/78951.html
3 1 B 1 N ISO 3779, Road vehicles — Vehicle identification number (VIN) — Content and structure https://www.iso.org/standard/82285.html
20 1 B 18 ISO 3833, Road vehicles — Types — Terms and definitions https://www.iso.org/standard/9389.html
69 4 B 6 ISO 7637 (all parts), Road vehicles — Electrical disturbances from conduction and coupling d vehicles)) 64 ISO 7637-1:2015 - Road vehicles — Electrical disturbances from conduction and coupling — Part 1: Definitions and general considerations
80 5 B 1 ISO 7637-2, Road vehicles — Electrical disturbances from conduction and coupling — Part 2: Electrical transient conduction along supply lines only hh 85 see 69
81 5 B 2 ISO 7637-3, Road vehicles — Electrical disturbances from conduction and coupling — Part 3: Electrical transient transmission by capacitive and inductive coupling via lines other than supply lines hh 85 see 69
294 13 B 2 ISO 9000:2015, Quality management systems ? Fundamentals and vocabulary https://www.iso.org/standard/45481.html
32 2 B 3 ISO 9001, Quality management systems — Requirements ent systemsaa 32 https://www.iso.org/standard/62085.html
152 8 B 3 ISO 9001, Quality management systems — Requirements ent systemsaa 32 see 32
300 13 B 8 ISO 9001, Quality management systems ? Requirements see 32
119 6 B 1 N ISO/IEC 12207:2008, Systems and software engineering — Software life cycle processes ms and software engineering 16 https://www.iso.org/standard/63712.html
37 2 B 8 ISO/IEC 15408 (all parts), Information technology — Security techniques — Evaluation criteria for IT security , Information technologypp 32 https://www.iso.org/standard/72891.html
321 13 B 29 ISO/IEC 15408 (all parts), Information technology ? Security techniques ? Evaluation criteria for IT security see 37
315 13 B 23 ISO/IEC 18045, Information technology ? Security techniques ? Methodology for IT security evaluation https://www.iso.org/standard/72889.html
320 13 B 28 23822? ISO/IEC 2382, Information technology ? Vocabulary https://www.iso.org/standard/63598.html
297 13 B 5 ISO/IEC 27000:2018, Information technology ? Security techniques ? Information security management systems ? Overview and vocabulary https://www.iso.org/standard/73906.html
36 2 B 7 ISO/IEC 27001, Information technology — Security techniques — Information security management systems — Requirements https://www.iso.org/standard/27001
322 13 B 39 ISO/IEC 27001, Information technology ? Security techniques ? Information security management systems ? Requirements see 36
323 13 B 31 ISO/IEC 27010, Information technology ? Security techniques ? Information security management for inter-sector and inter-organizational communications see 36
317 13 B 25 ISO/IEC 29100, Information technology ? Security techniques ? Privacy framework
34 2 B 5 ISO/IEC 33000 (all parts), Information technology — Process assessment see 302
169 8 B 20 ISO/IEC 33000 (series), Information Technology — Process Assessment see 302
302 13 B 10 ISO/IEC 33001, Information technology ? Process assessment ? Concepts and terminology https://www.iso.org/standard/54175.html
168 8 B 19 ISO/IEC/IEEE 12207, Systems and software engineering — Software life cycle processes see 119
304 13 B 12 ISO/IEC/IEEE 12207, Systems and software engineering ? Software life cycle processes see 119
64 4 B 1 ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes https://www.iso.org/standard/81702.html
153 8 B 4 ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes see 64
390 14 B 57 ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes see 64
303 13 B 11 ISO/IEC/IEEE 15288, Systems and software engineering ? System life cycle processes see 64
296 13 B 4 ISO/IEC/IEEE 15288:2015, Systems and software engineering ? System life cycle processes see 64
65 4 B 2 ISO/IEC/IEEE 16326, Systems and software engineering — Life cycle processes — Project management https://www.iso.org/standard/75276.html
324 13 B 32 ISO/IEC/IEEE 26511, Systems and software engineering ? Requirements for managers of information for users of systems, software, and services https://www.iso.org/standard/70879.html
123 6 B 5 ISO/IEC/IEEE 29119:2013, (all parts), Software and systems engineering — Software testing (all parts)
157 8 B 8 ISO/IEC/IEEE 29148, Systems and software engineering — Life cycle processes — Requirements engineering https://www.iso.org/standard/72089.html
291 13 ISO/SAE 21434:2021 Road vehicles ? Cybersecurity engineering https://www.iso.org/standard/70918.html https://www.iso.org/standard/70918.html
298 13 B 6 ISO/TR 4804, Road vehicles ? Safety and cybersecurity for automated driving systems ? Design, verification and validation https://www.iso.org/standard/80363.html
245 11 B 41 N ITRS 2009, The International Technology Roadmap For Semiconductors (ITRS), 2009 Edition nalrr 211 https://www.semiconductors.org/wp-content/uploads/2018/06/4_2015-ITRS-2.0-ESH.pdf https://www.semiconductors.org/wp-content/uploads/2018/09/1_Executive-Summary.pdf
250 11 B 46 J. Iannacci. Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Elsevier Displays [online]. Elsevier. April 2015, 37, 62-71 [viewed 2017-10-10]. Available at: https://doi.org/10.1016/j.displa.2014.08.003 https://www.sciencedirect.com/science/article/abs/pii/S0141938214000602?via%3Dihub
188 10 B 3 V JEDEC – JEP131A (May 2005), Potential Failure Mode and Effects Analysis (FMEA) https://elsmar.com/pdf_files/FMEA%20and%20Reliability%20Analysis/Potential%20Failure%20Mode%20and%20Effects%20Analysis%20-%20JEDEC%20PUBLICATION.pdf
220 11 B 16 V JEDEC JEP122H, Failure Mechanisms and Models for Semiconductor Devices https://img.antpedia.com/standard/files/pdfs_ora/20210202/JEDEC%20JEP%20122H-2016.pdf
264 11 B 60 V JEDEC JESD88E, Dictionary of Terms for Solid-State Technology — 6th Edition https://www.renesas.com/jp/ja/document/gde/jedec-definition
221 11 B 17 V JEDEC JESD89A, Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices http://projects.itn.pt/adonics2014/JED06.pdf
257 11 B 53 V JEDEC JESD94, Application Specific Qualification Using Knowledge Based Test Methodolog. http://j-journey.com/j-blog/wp-content/uploads/2012/05/JESD94A.pdf
125 6 B 7 V Jia Y., Merayo M., Harman M., 2015) Introduction to the special issue on Mutation Testing. Softw. Test. Verif. Reliab., 25: 461–463
327 13 B 35 JOHNSON, Christopher, et al. (2016) Guide to Cyber Threat Information Sharing [online]. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-150, October 2016 [viewed 2021-02-16]. Available at: https://doi.org/10.6028/NIST.SP.800-150
328 13 B 36 JOINT TASK FORCE TRANSFORMATION INITIATIVE, 2012), Guide for Conducting Risk Assessments [online]. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-30, Rev. 1. September 2012 [viewed 2021-02-16]. Available at: http://dx.doi.org/10.6028/NIST.SP.800-30r1
222 11 B 18 V Keckler, S.W., Olukotun, K., Hofstee, H.P. Multicore Processors and Systems. 2009. Springer https://sci-hub.ru/10.1007/978-1-4419-0263-4
237 11 B 33 V Kejun Wu, Pahlevanzadeh H., Peng Liu, Qiaoyan Yu. A new fault injection method for evaluation of combining SEU and SET effects on circuit reliability. Circuits and Systems (ISCAS), 2014 IEEE International Symposium on [online]. IEEE. June 2014, 602,605 [viewed 2017-10-10]. Available at: 10.1109/ISCAS.2014.6865207 https://www.researchgate.net/publication/271481438_A_new_fault_injection_method_for_evaluation_of_combining_SEU_and_SET_effects_on_circuit_reliability/link/5650222908aeafc2aab45084/download
347 14 B 14 Kelly T., Rob Weaver R., “The Goal Structuring Notation – A Safety Argument Notation”, htps://www-users.cs.york.ac.uk/tpk/dsn2004.pdf htps://www-users.cs.york.ac.uk/tpk/dsn2004.pdf
379 14 B 46 Kendall A., Gal Y., “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?”, NIPS 2017. https://arxiv.org/pdf/1703.04977.pdf
223 11 B 19 Kervarreca, G., et al. A universal field failure based reliability prediction model for SMD Integrated Circuits. Microelectronics Reliability [online]. Elsevier. June-July 1999, 765-771 [viewed 2017-10-10]. Available at: https://doi.org/10.1016/S0026-2714(99)00099-2 https://www.sciencedirect.com/science/article/abs/pii/S0026271499000992?via%3Dihub
108 5 B 29 Koopman P., Chakravarty T., 2004), Cyclic Redundancy Code (CRC) Polynomial Selection For Embedded Networks The International Conference on Dependable Systems and Networks, DSN-2004, http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf http://users.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
381 14 B 48 Koopman P., Wagner M., Autonomous Vehicle Safety: An Interdisciplinary Challenge," IEEE Intelligent Transportation Systems Magazine, Special Issue on SSIV, 2017, in press Vol. 9 #1, Spring 2017, pp. 90-96 https://www.researchgate.net/publication/313385220_Autonomous_Vehicle_Safety_An_Interdisciplinary_Challenge/link/59dd5a93458515f6efef7c61/download
346 14 B 13 Kuhn D.S., Kacker R.N., Lei Y., Combinatorial testing”, NIST report, June 25, 2012, https://www.nist.gov/publications/combinatorial-testing https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software/ACTS-Library/Papers
384 14 B 51 Lapuschkin S., Wäldchen S., Binder A., Montavon G., Samek W., Müller K. R., "Unmasking Clever Hans predictors and assessing what machines really learn", 2019, In: Nature Communications 1096 (2019), https://www.nature.com/articles/s41467-019-08987-4 https://arxiv.org/abs/1902.10178
224 11 B 20 Lazzari C. ET AL. Phase-Locked Loop Automatic Layout Generation and Transient Fault Injection Analysis: A Case Study. 12th IEEE International On-Line Testing workshop [online]. IEEE. July 2006, 117-127 [viewed 2017-10-10]. Available at: 10.1109/IOLTS.2006.48 https://www.researchgate.net/publication/221520921_Phase-Locked_Loop_Automatic_Layout_Generation_and_Transient_Fault_Injection_Analysis_A_Case_Study/link/0046351f56816d1277000000/download
103 5 B 24 Leaphart E., Czerny B., D’Ambrosio J. et al., Survey of Software Failsafe Techniques for Safety-Critical Automotive Applications, SAE 2005 World Congress, 2005-01-0779 https://www.semanticscholar.org/paper/Survey-of-Software-Failsafe-Techniques-for-Leaphart-Czerny/c8394dcf980b44bdb243ec178ac9b87df2ac6953
352 14 B 19 Leveson N., Engineering a Safer World – Systems Thinking Applied to Safety. MIT Press, Cambridge, Massachusetts, USA 2011 https://direct.mit.edu/books/oa-monograph/2908/Engineering-a-Safer-WorldSystems-Thinking-Applied
353 14 B 20 Leveson N., Thomas J., STPA-Handbook. 2018. Available for download at psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
364 14 B 31 Littlewood B., Wright D.“, Some Conservative Stopping Rules for the Operational Testing of Safety-Critical Software”, IEEE Trans. SW Engng., 23(11), 673-683, Nov. 1997
180 9 B 2 Lovric T., (ZF TRW), Metz P. (Brose), Schnellbach A. (Magna), Dependent Failure Analysis in Practice, VDA Sys Conference, July 6th–8th 2016, Berlin
102 5 B 23 Mahmood A., McCluskey E.J., “Concurrent Error Detection Using Watchdog Processors – A Survey”, IEEE Trans. Computers, 37(2), 160-174 (1988) https://ieeexplore.ieee.org/document/2145
226 11 B 22 Mariani R. Soft Errors on Digital Components. Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation [online]. Springer. 2003 [viewed 2017-10-10]. Available at: https://doi.org/10.1007/0-306-48711-X_3 https://link.springer.com/chapter/10.1007/0-306-48711-X_3
104 5 B 25 request Mariani R., Fuhrmann P., Vittorelli B., Cost-effective Approach to Error Detection for an Embedded Automotive Platform, 2006-01-0837, SAE 2006 World Congress & Exhibition, April 2006, Detroit, MI, USA https://www.researchgate.net/publication/296663136_Cost-effective_Approach_to_Error_Detection_for_an_Embedded_Automotive_Platform
93 5 B 14 MIL HDBK 217 F notice 2, Military handbook: Reliability prediction of electronic equipment https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/MIL-HDBK-217F-Notice2.pdf
94 5 B 15 MIL HDBK 338, Military handbook: Electronic reliability design handbook https://www.navsea.navy.mil/Portals/103/Documents/NSWC_Crane/SD-18/Test%20Methods/MILHDBK338B.pdf
227 11 B 23 MIL-HDBK-217, Military Handbook — Reliability Prediction of Electronic Equipment see 93
122 6 B 4 MISRA AC GMG, Generic modelling design and style guidelines, ISBN 978-906400-06-4, MIRA, May 2009 https://misra.org.uk/product/misra-ac-gmg/
309 13 B 17 MISRA C, 2012, Guidelines for the use of the C language in critical systems, 3rd Edition, 1st Revision. Nuneaton, England: HORIBA MIRA, February 2019. ISBN (print/electronic): 978-1-906400-21-7 / 978-1-906400-22-4. see 121
121 6 B 3 MISRA C:2012, Guidelines for the use of the C language in critical systems, ISBN 978-1-906400-10-1, MIRA, March 2013 https://misra.org.uk/misra-c/
228 11 B 24 request Mitra, S., Saxena, N.R., Mccluskey, E.J. Common-mode failures in redundant VLSI systems: a survey. IEEE Transactions on Reliability [online]. IEEE. September 2000, 49(3), 285-295 [viewed 2017-10-10]. Available at: 10.1109/24.914545 https://www.researchgate.net/publication/3152443_Common-mode_failures_in_redundant_VLSI_systems_A_survey
382 14 B 49 Molnar C., A Guide for Making Black Box Models Explainable, 2021, https://christophm.github.io/interpretable-ml-book/ https://christophm.github.io/interpretable-ml-book/
229 11 B 25 V Mukherjee S.S. ET AL. A systematic methodology to compute the architectural vulnerability factors for a high-performance microprocessor in microarchitecture. Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture [online]. IEEE. December 2003, 29-40 [viewed 2017-10-10]. Available at: 10.1109/MICRO.2003.1253181 https://www.researchgate.net/publication/4049011_A_systematic_methodology_to_compute_the_architectural_vulnerability_factors_for_a_high-performance_microprocessor/link/0f317530fc8eb425aa000000/download
341 14 B 8 NASS General Estimates System (GES), US Department of Transportation, https://www.nhtsa.gov/national-automotive-sampling-system/nass-general-estimates-system https://www.nhtsa.gov/national-automotive-sampling-system/nass-general-estimates-system
373 14 B 40 Navigation Data Standard https://www.nds-association.org/ https://www.nds-association.org/
230 11 B 26 Niimi Y. ET AL. Virtualization Technology and Using Virtual CPU in the Context of ISO 26262: The E-Gas Case Study. SAE Technical Paper [online]. SAE. April 2013 [viewed 2017-10-10]. Available at: https://doi.org/10.4271/2013-01-0196 https://saemobilus.sae.org/content/2013-01-0196/
377 14 B 44 Nistér D., Lee H.-L., Ng J., Wang Y., An Introduction to the Safety Force Field, https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/an-introduction-to-the-safety-force-field-v2.pdf https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/an-introduction-to-the-safety-force-field-v2.pdf
39 2 B 10 No S.S., 75-INSAG-4, International Atomic Energy Agency, Vienna, 1991 https://gnssn-qa.iaea.org/main/SLS/References/INSAG-4%20Safety%20Culture%20.pdf
95 5 B 16 NPRD-2016, Non-electronic Parts Reliability Data https://www.quanterion.com/wp-content/uploads/2015/09/NPRD-2016-1.pdf
372 14 B 39 Open Simulation Interface (OSI) https://github.com/OpenSimulationInterface https://github.com/OpenSimulationInterface
231 11 B 27 request Paolieri M., Mariani R. Towards functional-safe timing-dependable real-time architectures. IEEE 17th International On-Line Testing Symposium (IOLTS) [online]. IEEE. July 2011, 31-36 [viewed 2017-10-10]. Available at: 10.1109/IOLTS.2011.5993807 Towards functional-safe timing-dependable real-time architectures. IEEEii 211 https://www.researchgate.net/publication/224254511_Towards_functional-safe_timing-dependable_real-time_architectures
243 11 B 39 Paschalis A., and Gizopoulos D. Effective Software-Based Self-Test Strategies for On-Line Periodic Testing of Embedded Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [online]. IEEE. December 2004, 88-99[viewed 2017-10-10]. Available at: 10.1109/TCAD.2004.839486 https://www.researchgate.net/publication/220399797_Effective_software-based_self-test_strategies_for_on-line_periodic_testing_of_embedded_processors/link/004635291eb24f182a000000/download
105 5 B 26 Patel J., Fung L., “Concurrent Error Detection in ALU's by Recomputing with Shifted Operands”, IEEE Transactions on Computers, Vol. C-31, pp.417-422, July 1982 https://ieeexplore.ieee.org/document/1676055
241 11 B 37 Patel J.H. Stuck-At Fault: A Fault Model for the Next Millennium? Proceedings of the International Test Conference 1998, ITC'98 [online]. IEEE. August 1988, 1166 [viewed 2017-10-10]. Available at: 10.1109/TEST.1998.743358 https://web.stanford.edu/class/ee386/public/stuck_at_fault_6per_page.pdf https://www.semanticscholar.org/paper/Stuck-at-fault%3A-a-fault-model-for-the-next-Patel/d3c840081c92a6b4971a4e1139a521af6b43c9dc
380 14 B 47 Phan B., Khan S., Salay R., Czarnecki K., “Bayesian Uncertainty Quantification with Synthetic Data”. WAISE 2019.
262 11 B 58 Philip Mayfield. Understanding Binomial Confidence Intervals [viewed 2017-10-10]. Available at: http://www.sigmazone.com/binomial_confidence_interval.htm https://sigmazone.com/binomial-confidence-intervals/
360 14 B 27 Piao J., McDonald M., Low speed car following behaviour from floating vehicle data’. IEEE IV2003 Intelligent Vehicles Symposium.
261 11 B 57 R. Leveugle, A. Calvez, P. Maistri and P. Vanhauwaert, Statistical fault injection: Quantified error and confidence. 2009 Design, Automation & Test in Europe Conference & Exhibition [online]. IEEE. April 2009, 502-506 [viewed 2017-10-10]. Available at: 10.1109/DATE.2009.5090716 https://www.researchgate.net/publication/221341698_Statistical_Fault_Injection_Quantified_Error_and_Confidence/link/0046351909f0b6d6c5000000/download
107 5 B 28 Ramabadran T.V., Gaitonde S.S., 1988), “A tutorial on CRC computations”. IEEE Micro 8 (4): 62–75, 1988 http://www.ee.bilkent.edu.tr/~ee538/crc.pdf
96 5 B 17 RIAC FMD-2016, Failure Mode / Mechanism Distributions https://www.doc88.com/p-11487184400504.html
97 5 B 18 RIAC HDBK 217 Plus, Reliability Prediction Models https://www.bing.com/ck/a?!&&p=34e1c1ad5bbcea0fJmltdHM9MTY5Njg5NjAwMCZpZ3VpZD0wNzYxYjQyMS04NzY2LTZhZmMtMTUwNS1hNTg4ODY5NDZiNDgmaW5zaWQ9NTIxNQ&ptn=3&hsh=3&fclid=0761b421-8766-6afc-1505-a58886946b48&psq=RIAC+HDBK+217+Plus%2c+Reliability+Prediction+Models&u=a1aHR0cHM6Ly9ib29rcy5nb29nbGUuY29tL2Jvb2tzL2Fib3V0L0hhbmRib29rX29mXzIxN1BsdXNfUmVsaWFiaWxpdHlfUHJlZGljdGkuaHRtbD9pZD0zM3JXMjlBeXRld0M&ntb=1
311 13 B 19 ROSS, Ron, et al. (2018), Systems Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems [online]. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-160, Vol. 1. Updated March 2018 [viewed 2021-02-16]. Available at: https://doi.org/10.6028/NIST.SP.800-160v1
160 8 B 11 RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification
357 14 B 24 Sabaliauskaite G., Shen Liew L., Cui J., Integrating Autonomous Vehicle Safety and Security Analysis Using STPA Method and the Six-Step Model. International Journal on Advances in Security, 11(1&2):160–169, 2018.
19 1 B 17 SAE J1211, Physics of Failure methodology
263 11 B 59 SAE J1211:201211, Handbook for Robustness Validation of Automotive Electrical/Electronic Modules, SAE https://www.sae.org/standards/content/j1211_201211/
191 10 B 6 SAE J2980, Considerations for ISO 26262 ASIL Hazard Classification https://standards.globalspec.com/std/10377443/SAE%20J2980
38 2 B 9 SAE J3061, Cybersecurity Guidebook for Cyber-Physical vehicle Systems https://www.sae.org/standards/content/j3061_202112/
329 13 B 37 SAE J3061, Cybersecurity Guidebook for Cyber-Physical Vehicle Systems see 38
189 10 B 4 SAE-J1739_200901, Potential Failure Mode and Effects Analysis in Design (Design FMEA) and Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA) https://www.sae.org/standards/content/j1739_202101/
330 13 B 38 SCARFONE, Karen, et al. (2008), Technical Guide to Information Security Testing and Assessment [online]. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-115. September 2008 [viewed 2021-02-16]. Available at: https://doi.org/10.6028/NIST.SP.800-115 https://www.nist.gov/publications/technical-guide-information-security-testing-and-assessment
181 9 B 3 Schnellbach, Magna Powertrain, Dependent Failure Analysis, The MPT approach, Safetronic. 2014 — Functional Safety in Automotive conference, 11th–12th Nov, 2014, Stuttgart
310 13 B 18 SEI CERT, C Coding Standard ? Rules for developing safe, reliable and secure systems [online]. Pittsburgh, Pennsylvania: Software Engineering Institue, Carnegie Mellon University, 2016 [viewed 2021-02-12]. Available at: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=454220
376 14 B 43 Shalev-Schwarz S., Shammah S., Shashua A., On a Formal Model of Safe and Scalable Self driving Cars https://arxiv.org/abs/1708.06374v6
349 14 B 16 Shappell S.A., Wiegmann D.A., The Human Factors Analysis and Classification-System –FACS, February 2000 Final Report. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161
232 11 B 28 Singh M. ET AL. Transient Fault Sensitivity Analysis of Analog-to-Digital Converters (ADCs). Proceedings of the IEEE Workshop on VLSI (WVLSI '01) [online]. IEEE. April 2001 [viewed 2017-10-10]. Available at: 10.1109/IWV.2001.923153 https://www.researchgate.net/publication/3896776_Transient_fault_sensitivity_analysis_of_analog-to-digitalconverters_ADCs/link/0c96052debbc603a2a000000/download
365 14 B 32 SIPOC – Wikipedia https://en.wikipedia.org/wiki/SIPOC
90 5 B 11 SN 29500 (2004), Siemens AG, Failure Rates of Components — Expected Values, General
242 11 B 38 SN 29500:2004, Siemens AG, "Failure Rates of Components — Expected Values, General"
339 14 B 6 Statistics and data about reported accidents and casualties on public roads in Great Britain (STATS19), UK Department for Transport, https://www.gov.uk/government/collections/road-accidents-and-safety-statistics
348 14 B 15 Stellet J.E., Brade T., Poddey A., Jesenski S., Branz W., Formalisation and algorithmic approach to the automated driving validation problem", 2019 IEEE Intelligent Vehicles Symposium (IV), https://doi.org/10.1109/IVS.2019.8813894
100 5 B 21 Sundaram P., D’Ambrosio J.G., Controller Integrity in Automotive Failsafe System Architectures, SAE 2006 World Congress, 2006-01-0840 https://www.sae.org/publications/technical-papers/content/2006-01-0840/
331 13 B 39 TAKANEN, Ari et al. Fuzzing for Software Security and Quality Assurance, Second Edition. Boston, Massachusetts/London: Artech House, January 2018. ISBN: 978-1-60807-850-9.
335 14 B 2 Taxonomy and Definitions for Terms Related to Driving Automation Systems for On Road Motor Vehicles, SAE Recommended Practice J3016_201806, https://www.sae.org/standards/content/j3016_201806
362 14 B 29 Traffic Safety Facts N.H.T.S.S.A., 2015, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812384
18 1 B 16 TRANS/WP. 29/1045+Amend.1&2 https://unece.org/fileadmin/DAM/trans/doc/2012/wp29other/ECE-TRANS-wp29-1045am2e.pdf
386 14 B 53 Tsugawa S., Jeschke S., Shladover S. E., “A Review of Truck Platooning Projects for Energy Savings”, IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, 2016
385 14 B 52 U.S. Department of Transportation. (Jul.2017). Vehicle-to-vehicle communication technology.[Online]. Available:https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/v2v_fact_sheet_101414_v2a.pdf
314 13 B 22 UcedaVelez, Tony and Morana, Marco M. Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis. Hoboken, New Jersey: Wiley, May 2015. ISBN: 978-1-118-98835-0.
336 14 B 3 Ulbrich S., Menzel T., Reschka A., Schuldt F., Mauer M., Defining and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving", 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), https://doi.org/10.1109/ITSC.2015.164
40 2 B 11 United Kingdom Health and Safety Executive, Managing competence for safety-related systems, 2007 https://www.sintef.no/globalassets/project/hfc/documents/mancomppt1.pdf/
98 5 B 19 UTE C80-811, Reliability methodology for electronic systems
375 14 B 42 Vaicenavicius J., Wiklund T., Grigaite A., Kalkauskas A., Vysniauskas I., Keen S. D., Self driving car safety quantification via component-level analysis’. SAE International Journal of Connected and Automated Vehicles, Volume 4, Issue 1, pp 35-45, 2021.
238 11 B 34 Van De Goor A.J. Testing Semiconductor Memories, Theory and Practice, 2nd. ComTex Publishing https://dl.acm.org/doi/10.5555/120330
305 13 B 13 VDA QMC WORKING GROUP 13 / AUTOMOTIVE SIG. Automotive SPICE Process Assessment / Reference Model, Version 3.1 [online]. Berlin: VDA QMC, November 2017. Available at: http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf
251 11 B 47 Vonkyoung Kim, Chen T. Assessing SRAM test coverage for sub-micron CMOS technologies. VLSI Test Symposium, 1997, 15th IEEE [online]. IEEE. May 1997, 24-30 [viewed 2017-10-10]. Available at: 10.1109/VTEST.1997.599437 https://www.semanticscholar.org/paper/Assessing-SRAM-test-coverage-for-sub-micron-CMOS-Kim-Chen/21201fb79690b5617265dc3f814215d27624ed59
249 11 B 45 Walraven Jeremy A. Failure Mechanisms in MEMS. IEEE ITC International Test Conference [online]. IEEE. October 2003, 828-833 [viewed 2017-10-10]. Available at: 10.1109/TEST.2003.1270915 https://www.researchgate.net/publication/4058312_Failure_mechanisms_in_mems/link/0046352d5c802d7f81000000/download
387 14 B 54 Wang J., Liu J., Kato N.“, Networking and communications in autonomous driving: A survey”, IEEE Communications Surveys & Tutorials, vol. 21. no.2, Q2, 2019
236 11 B 32 Wei Jiesheng, et al. Quantifying the accuracy of high-level fault injection techniques for hardware faults. Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference [online]. IEEE. June 2014 [viewed 2017-10-10]. Available at: 10.1109/DSN.2014.2 https://www.bing.com/ck/a?!&&p=979fc5592988d602JmltdHM9MTY5Njk4MjQwMCZpZ3VpZD0wNzYxYjQyMS04NzY2LTZhZmMtMTUwNS1hNTg4ODY5NDZiNDgmaW5zaWQ9NTIwOQ&ptn=3&hsh=3&fclid=0761b421-8766-6afc-1505-a58886946b48&psq=Wei+Jiesheng%2c+et+al.+Quantifying+the+accuracy+of+high-level+fault+injection+techniques+for+hardware+faults.+Dependable+Systems+and+Networks+(DSN)%2c+2014+44th+Annual+IEEE%2fIFIP+International+Conference+%5bonline%5d.+IEEE.+June+2014+%5bviewed+2017-10-10%5d.+Available+at%3a+10.1109%2fDSN.2014.2&u=a1aHR0cHM6Ly9ibG9ncy51YmMuY2Eva2FydGhpay9maWxlcy8yMDE0LzA0L0RTTi1KaWVzaGVuZy5wZGY&ntb=1
233 11 B 29 White M., Bernstein J.B. Microelectronics Reliability: Physics-of-Failure Based Modeling and Lifetime Evaluation. JPL Publication [online]. February 2008 [viewed 2017-10-10]. Available at: http://www.acceleratedreliabilitysolutions.com/images/_NASA_Physics_of_Failure_for_Microelectronics.pdf http://www.acceleratedreliabilitysolutions.com/images/_NASA_Physics_of_Failure_for_Microelectronics.pdf
247 11 B 43 V White Richard M. A Sensor Classification Scheme. IEEE Transactions On Ultrasonics, Ferroelectrics, And Frequency Control [online]. IEEE. March 1987, 34(2), 124-126 [viewed 2017-10-10]. Available at: 10.1109/T-UFFC.1987.26922 http://ijlalhaider.pbworks.com/w/file/fetch/64130986/A%20Sensor%20Classification%20Scheme.pdf
383 14 B 50 Zhang Q., Zhu S.-C., Visual Interpretability for Deep Learning: a Survey", 2018, https://arxiv.org/abs/1802.00614

<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words in order.

自己参照

物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff

数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d

言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6

医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82

通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7

自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5

Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6

鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/26bda595f341a27901a0

日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68

英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d

転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe

仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df

安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409

Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

Error一覧(C/C++, python, bash...) Error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

C++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding Rules(0) C Secure , MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

TOPPERSまとめ #名古屋のIoTは名古屋のOSで
https://qiita.com/kaizen_nagoya/items/9026c049cb0309b9d451

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on the individual's experience. It has nothing to do with the organization or business to which I currently belong.

文書履歴(document history)

ver. 0.01 初稿  20240504

最後までおよみいただきありがとう4ざいました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0