機能安全は、機械安全、電気安全を補強する一部分である。
自動車に関するISOの安全規格は存在しない。自動車は機械装置である。電気自動車以外でも電気系統が部品に占める割合は大きくなっている。機械安全、電気安全に関する他の機械装置、電気装置の規格から援用するとよいこともある。機械安全、電気安全対応せずに機能安全に対応することにどれくらいの意味があるかは、網羅的に安全設計をしてみて評価するとよい。
自動車が参照するとよい分野に、輸送機械である航空宇宙、鉄道がある。
JAXAは、NASAの安全に関する取り組みを取り入れ、機能安全規格が制定されたころには、どこまで対応しているかを網羅的に調査されたことがある。その結果も反映して、JAXAの取り組みを公開してきた。(詳細な資料はJAXAのURLからは消えている。)
https://www.ipa.go.jp/archive/publish/secbooks20080212.html
https://www.cqpub.co.jp/dwm/contents/0109/dwm010900540.pdf
ISO 26262は、安全に関する大事な部分を網羅していない。そこで、SOTIF(Safety of the intended functionality), Cyber Securityに対応することにより、抜け漏れを防ぐとともに、無駄な部分を省くことを検討する。
ISO/SAE 21434:2021 Road vehicles — Cybersecurity engineering
https://www.iso.org/standard/70918.html
ISO 21448:2022 Road vehicles — Safety of the intended functionality
https://www.iso.org/standard/77490.html
自動車安全は、主に安全な自動車、安全な道路システム、安全運転(+支える仕組み)からなる。安全な道路システム、安全運転を支える仕組みの状態から、自動車の機能として備えているとよいものが異なる。
自動車に関する総合的な観点で、それぞれの部品、ソフトウェアがの機能が決まってくる。
組込み系技術者のための安全設計入門
https://hojo.keirin-autorace.or.jp/seikabutu/seika/21nx_/bhu_/l_/20-33koho-01.pdf
Guide 51には触れているが、Guide 50について言及がない。
ISO/IEC Guide 50:2014 Safety aspects Guidelines for child safety in standards and other specifications
https://www.iso.org/standard/63937.html
ISO 12100 (JIS B 9700), ISO 13849 (JIS B 9705), IEC 60204 (JIS B 9960), IEC 61508 (JIS C 0508) を説明している。
FTP,FMEA,HAZOPについて言及している。
日本では、法律として自動車安全を規定するのではなく、自動車の保安基準に含めて体系化している。自動車は危険源から隔離することができず、安全は通常運転から必ずしも切り離せないからである。
道路運送車両の保安基準(2023年6月5日現在)
https://www.mlit.go.jp/jidosha/jidosha_fr7_000007.html
より安全なクルマづくり
https://www.jama.or.jp/library/children/encyclopedia/encyclopedia5.html
車間距離(きょり)自動維持(いじ)運転システム
ブレーキアシスト
接近通報装置(せっきんつうほうそうち)
アンチロック・ブレーキシステム(ABS)
車両周辺視界情報提供装置(しかいじょうほうていきょうそうち)
トラクション・コントロールシステム(TCS)
シートベルト
衝撃吸収(しょうげききゅうしゅう)ボディ
高強度キャビン
エアバッグ
アクティブヘッドレスト
歩行者傷害軽減(しょうがいけいげん)ボディ
アダプティブ・フロントライティング・システム(AFS)
ナイトビュー
車線維持支援制御装置(いじしえんせいぎょそうち)
衝突被害軽減(しょうとつひがいけいげん)ブレーキ
自動車総合安全情報
https://www.mlit.go.jp/jidosha/anzen/
自動車安全運転センター
https://www.jsdc.or.jp
有人宇宙開発におけるシス テム安全活動 System Safet yActiviti efsor Human Space Development 後藤 克仁 Katsuhito GOTO
https://www.jstage.jst.go.jp/article/reajshinrai/36/8/36_KJ00009622884/_pdf
SN | part | NB | NO. | file | Title | ||
---|---|---|---|---|---|---|---|
388 | 14 | B | 55 | 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Enhancement of 3GPP support for V2X scenarios; Stage 1(Release 16) 3GPP TS 22.186 V16.2.0 (2019-06). | https://www.etsi.org/deliver/etsi_ts/122100_122199/122186/16.02.00_60/ts_122186v160200p.pdf | ||
51 | 3 | B | 3 | Abbreviated injury scale; Association of the advancement of Automotive medicine; Barrington, IL, USA Information is also available at www.aaam.org | https://www.aaam.org/ | https://www.aaam.org/abbreviated-injury-scale-ais-position-statement/ | |
285 | 12 | B | 1 | Abbreviated injury scale; Association of the advancement of Automotive medicine; Barrington, IL, USA Information is also available at www.aaam.org [viewed 2018-12-11] | see 51 | ||
354 | 14 | B | 21 | Abdulkhaleq A. et al., A Systematic Approach Based on STPA for Developing a Dependable Architecture for Fully Automated Driving Vehicles, 4th European STAMP Workshop 2016, Procedia Engineering, 179, 41-51, 2017 https://www.sciencedirect.com/science/article/pii/S1877705817312109 | https://www.sciencedirect.com/science/article/pii/S1877705817312109 | ||
356 | 14 | B | 23 | Abdulkhaleq A., Wagner S., Leveson N., A Comprehensive Safety Engineering approach for Software-Intensive Systems Based on STPA. Procedia Engineering, 128:2–11, 2015, https://www.researchgate.net/publication/265508075_Experiences_with_Applying_STPA_to_Software-Intensive_Systems_in_the_Automotive_Domain | https://www.sciencedirect.com/science/article/pii/S1877705815038588 | ||
355 | 14 | B | 22 | Abdulkhaleq A.,, Wagner , S , Lammering , D , Boehmert , H , Blueher , P , Using STPA in Compliance with ISO 26262 for Developing a Safe Architecture for Fully Automated Vehicles. arXiv preprint arXiv:1703.03657, 2017. | https://www.researchgate.net/publication/314797280_Using_STPA_in_Compliance_with_ISO_26262_for_Developing_a_Safe_Architecture_for_Fully_Automated_Vehicles/link/59770e8ba6fdcc8348b05c44/download | ||
163 | 8 | B | 14 | AEC Q100, Failure Mechanism Based Stress Test Qualification For Integrated Circuits | http://www.aecouncil.com/ | http://www.aecouncil.com/Documents/AEC_Q100_Rev_J_Base_Document.pdf | |
164 | 8 | B | 15 | AEC Q101, Failure Mechanism Based Stress Test Qualification For Discrete Semiconductors | http://www.aecouncil.com/Documents/AEC_Q101_Rev_E_Base_Document.pdf | ||
165 | 8 | B | 16 | AEC Q200, Stress Test Qualification For Passive Components | http://www.aecouncil.com/Documents/AEC_Q200_Rev_E_Base_Document.pdf | ||
266 | 11 | B | 62 | AEC, AEC-Q100: Failure Mechanism Based Stress Test Qualification For Integrated Circuits | see 163 | ||
254 | 11 | B | 50 | Al-Ars, Z.; Hamdioui, S.; Van De Goor, A.J., Space of DRAM Fault Models and Corresponding Testing. Design, Automation and Test in Europe, 2006. DATE '06. IEEE. March 2006, 1, 1-6 [viewed 2017-10-10]. Available at: 10.1109/DATE.2006.244080 | https://ieeexplore.ieee.org/document/1657087 | ||
361 | 14 | B | 28 | Allen R., Magdaleno R., Serafin C., Eckert S., , Sieja F., Driver Car Following Behavior Under Test Track and Open Road Driving Condition," SAE Technical Paper 970170, 1997, https://doi.org/10.4271/970170 | |||
234 | 11 | B | 30 | Arlat J., et al. Fault Injection and Dependability Evaluation of Fault-Tolerant Systems. IEEE Transactions on Computers [online]. IEEE. August 1993, 42(8), 913 [viewed 2017-10-10]. Available at: 10.1109/12.238482 | https://ieeexplore.ieee.org/document/238482 | ||
370 | 14 | B | 37 | ASAM OpenCRG http://www.asam.net/standards/detail/opencrg/ | http://www.asam.net/standards/detail/opencrg/ | ||
369 | 14 | B | 36 | ASAM OpenDRIVE http://www.asam.net/standards/detail/opendrive/ | http://www.asam.net/standards/detail/opendrive/ | ||
371 | 14 | B | 38 | ASAM OpenSCENARIO http://www.asam.net/standards/detail/openscenario/ | http://www.asam.net/standards/detail/openscenario/ | ||
205 | 11 | B | 1 | Askari S., Nourani M. Design methodology for mitigating transient errors in analogue and mixed-signal circuits. Circuits, Devices & Systems [online]. IET. November 2012, 6(6), 447-456 [viewed 2017-10-10]. Available at: 10.1049/iet-cds.2012.0053 | https://digital-library.theiet.org/content/journals/10.1049/iet-cds.2012.0053 | ||
318 | 13 | B | 26 | Automotive ISAC, Automotive Cybersecurity Best Practices [online]. Available at: https://www.automotiveisac.com/best-practices/ | |||
41 | 2 | B | 12 | Automotive SPICE [viewed 2017-10-11]. Available at: http://www.automotivespice.com | http://www.automotivespice.com | ||
166 | 8 | B | 17 | Automotive SPICE®4 - Available at: http://www.automotivespice.com [viewed 2018-09-27] | |||
53 | 3 | B | 5 | Baker S.P., O’Neill, B., Haddon, W., Long, W.B., The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. The Journal of Trauma, Vol. 14, No. 3, 1974 | https://pubmed.ncbi.nlm.nih.gov/4814394/ | ||
286 | 12 | B | 2 | Baker S.P., O'Neill B., Haddon W., Long W.B., The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care, The Journal of Trauma, Vol. 14, No. 3, 1974 | see 53 | ||
54 | 3 | B | 6 | Balogh Z., Offner P.J., Moore E.E., Biffl W.L., NISS predicts post injury multiple organ failure better than ISS, The Journal of Trauma, Vol. 48, No. 4, 2000 | https://read.qxmd.com/read/10780593/niss-predicts-postinjury-multiple-organ-failure-better-than-the-iss | ||
287 | 12 | B | 3 | Balogh Z., Offner P.J., Moore E.E., Biffl W.L., NISS predicts post injury multiple organ failure better than ISS, The Journal of Trauma, Vol. 48, No. 4, 2000 | see 54 | ||
207 | 11 | B | 3 | Baruah S.K., Goossens J. Rate-monotonic scheduling on uniform multiprocessors. Proceedings of the 23rd International Conference on Distributed Computing Systems [online]. IEEE. May 2003, 360-366 [viewed 2017-10-10]. Available at: 10.1109/ICDCS.2003.1203485 | https://ieeexplore.ieee.org/document/1214344 | ||
206 | 11 | B | 2 | Baumann R.C. Radiation-Induced Soft Errors in Advanced Semiconductor Technologies. IEEE Transactions on device and materials reliability [online]. IEEE. December 2005, 5(3), 305-316 [viewed 2017-10-10]. Available at: 10.1109/TDMR.2005.853449 | https://ieeexplore.ieee.org/document/1545891 | ||
235 | 11 | B | 31 | Benso A. and Prinetto P. Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation. Springer. 2003 [viewed 2017-10-10]. Available at: https://doi.org/10.1007/0-306-48711-X_3 | https://link.springer.com/chapter/10.1007/0-306-48711-X_3 | ||
225 | 11 | B | 21 | Benso A., Bosio A., Di Carlo S., Mariani R. A Functional Verification based Fault Injection Environment. 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems [online]. IEEE. September 2007 [viewed 2017-10-10]. Available at: 10.1109/DFT.2007.31 | https://ieeexplore.ieee.org/document/4358379 | ||
240 | 11 | B | 36 | Benware B., et al. Impact of Multiple-Detect Test Patterns on Product Quality, Proc. of the International Test Conference 2003, ITC'03 [online]. IEEE. October 2003, 1031-1040 [viewed 2017-10-10]. Available at: 10.1109/TEST.2003.1271091 | https://ieeexplore.ieee.org/document/1271091 | ||
124 | 6 | B | 6 | Bieman J.M., Dreilinger D., Lin L., “Using fault injection to increase software test coverage,” in Software Reliability Engineering, 1996. Proceedings., Seventh International Symposium on, vol., no., pp.166-174, 30 Oct-2 Nov 1996 doi: 10.1109/ISSRE.1996.558776 | https://ieeexplore.ieee.org/abstract/document/558776 | ||
99 | 5 | B | 20 | BIROLINI, A., Reliability Engineering, Theory and Practice, 2014 | https://link.springer.com/book/10.1007/978-3-540-49390-7 | ||
208 | 11 | B | 4 | Börcsök J., Schaefer S., Ugljesa E. Estimation and Evaluation of Common Cause Failures. Second International Conference on Systems [online]. IEEE. April 2007, 41 [viewed 2017-10-10]. Available at: 10.1109/ICONS.2007.25 | https://ieeexplore.ieee.org/document/4196343 | ||
209 | 11 | B | 5 | Bressoud T.C., Schneider F.B. Hypervisor-based fault tolerance. Proceedings of the fifteenth ACM symposium on Operating systems principles [online]. ACM. December 1995, 1–11 [viewed 2017-10-10]. Available at: 10.1145/224057.224058 | http://nil.csail.mit.edu/6.824/2016/papers/bressoud-hypervisor.pdf | ||
351 | 14 | B | 18 | BSI PAS 1883:2020, AVSC Best Practice for Describing an Operational Design Domain | |||
342 | 14 | B | 9 | CARE database (Community database on Accidents on the Roads in Europe), https://road-safety.transport.ec.europa.eu/statistics-and-analysis/methodology-and-research/care-database_en | https://road-safety.transport.ec.europa.eu/statistics-and-analysis/methodology-and-research/care-database_en | ||
337 | 14 | B | 4 | CENELEC EN 50126-2:2017, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 2: Systems Approach to Safety | https://www.en-standard.eu/ilnas-en-50126-2-railway-applications-the-specification-and-demonstration-of-reliability-availability-maintainability-and-safety-rams-part-2-systems-approach-to-safety/ | ||
210 | 11 | B | 6 | Chattopadhyay S., Kee C.L., Roychoudhury A., Kelter T., Marwedel P., Falk H. A Unified WCET Analysis Framework for Multi-core Platforms. IEEE 18th Real-Time and Embedded Technology and Applications Symposium [online]. IEEE. April 2012, 99-108 [viewed 2017-10-10]. Available at: 10.1109/RTAS.2012.26 | https://ieeexplore.ieee.org/document/6200042 | ||
374 | 14 | B | 41 | CityGML http://www.opengeospatial.org/standards/citygml | http://www.opengeospatial.org/standards/citygml | ||
211 | 11 | B | 7 | Clegg J.R. Arguing the safety of FPGAs within safety critical systems. Incorporating the SaRS Annual Conference, 4th IET International Conference on Systems Safety [online]. IET. October 2009, 1-6 [viewed 2017-10-10]. Available at: 10.1049/cp.2009.1569 | https://digital-library.theiet.org/content/conferences/10.1049/cp.2009.1569 | ||
42 | 2 | B | 13 | CMMI for Development [viewed 2017-10-11]. Available at: http://www.cmmiinstitute.com/resources | http://www.cmmiinstitute.com/resources | ||
161 | 8 | B | 12 | CMMI for Development, CMMI-DEV, Carnegie Mellon University Software Engineering Institute, | see 42 | ||
52 | 3 | B | 4 | Code of Practice for the design and evaluation of ADAS, EU Project RESPONSE 3: Oct. 2006; https://www.acea.be/publications/article/code-of-practice-for-the-design-and-evaluation-of-adas | https://www.acea.auto/publication/code-of-practice-for-the-design-and-evaluation-of-adas/ | ||
344 | 14 | B | 11 | Code of Practice for the design and evaluation of ADAS, EU Project RESPONSE 3; https://www.acea.be/uploads/publications/20090831_Code_of_Practice_ADAS.pdf | see 52 | ||
334 | 14 | B | 1 | COMMISSION RECOMMENDATION of 22 December 2006 on safe and efficient in-vehicle information and communication systems: update of the European Statement of Principles on human machine interface (2007/78/EC): https://data.europa.eu/eli/reco/2007/78/oj | https://op.europa.eu/en/publication-detail/-/publication/00e7ffec-49e3-492b-8e8e-8839cae806bc | ||
212 | 11 | B | 8 | Conmy P.M., Pygott C., Bate I. VHDL guidance for safe and certifiable FPGA design. 5th IET International Conference on System Safety [online]. IET. October 2010, 1-6 [viewed 2017-10-10]. Available at: 10.1049/cp.2010.0832 | https://www.cs.york.ac.uk/rts/static/papers/R:Conmy:2010a.pdf | ||
202 | 10 | B | 17 | Convention on Road Traffic, Done at Vienna on 8 November 1968 including amendment 1, Economic Commission for Europe, Inland Transportation Committee, [viewed 2018-09-25] Available at: https://www.unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf | https://unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf | ||
256 | 11 | B | 52 | Daniel J. Sorin, Mark D. Hill, David A. Wood. A Primer on Memory Consistency and Cache Coherence (1st ed.). Morgan & Claypool Publishers | https://link.springer.com/book/10.1007/978-3-031-01764-3 | ||
367 | 14 | B | 34 | de Gelder E., Paardekooper J.P., “Assessment of Automated Driving Systems using real-life scenarios,” IEEE Intell. Veh. Symp. Proc., no. IV, pp. 589–594, 2017. | https://ieeexplore.ieee.org/abstract/document/7995782 | ||
253 | 11 | B | 49 | V | Di Carlo S., Fabiano M. PIAZZA, ROBERTO; PRINETTO, P. Exploring modeling and testing of NAND flash memories. Design & Test Symposium (EWDTS), 2010 East-West [online]. IEEE. September 2010, 47-50 [viewed 2017-10-10]. Available at: 10.1109/EWDTS.2010.5742059 | https://www.researchgate.net/publication/224227465_Exploring_modeling_and_testing_of_NAND_flash_memories/link/0912f50b3fdf64f93c000000/download | |
345 | 14 | B | 12 | DIN SAE SPEC 91381:2019, Terms and Definitions Related to Testing of Automated Vehicle Technologies | https://www.sae.org/standards/content/dinsaespec91381/ | ||
17 | 1 | B | 15 | N | ECE/TRANS/WP .29/78/Rev.3+Amend.1 (Consolidated Resolution on the Construction of Vehicles (R.E.3)) | https://unece.org/fileadmin/DAM/trans/main/wp29/wp29resolutions/ECE-TRANS-WP.29-78r6e.pdf | |
259 | 11 | B | 55 | O | E-GAS. Standardized E-GAS Monitoring Concept for Gasoline and Diesel Engine Control Units. [viewed 2017-10-10]. Available at: https://www.iav.com/sites/default/files/attachments/seite//ak-egas-v6-0-en-150922.pdf | https://studylib.net/doc/18580033/standardized-e-gas-monitoring-concept-for-gasoline-and | |
92 | 5 | B | 13 | EN 50129:2003, Railway applications — Communication, signalling and processing systems — Safety related electronic systems for signalling | https://www.en-standard.eu/ilnas-en-50129-railway-applications-communication-signalling-and-processing-systems-safety-related-electronic-systems-for-signalling-1/#:~:text=EN%2050129%20Railway%20applications%20-%20Communication%2C%20signalling%20and,%28including%20subsystems%20and%20equipment%29%20for%20railway%20signalling%20applications. | ||
239 | 11 | B | 35 | V | Enamul Amyeen M., et al. Evaluation of the Quality of N-Detect Scan ATPG Patterns on a Processor. Proceedings of the International Test Conference 2004, ITC'04 [online]. IEEE. October 2004, 669-678 [viewed 2017-10-10]. Available at: 10.1109/TEST.2004.1387328 | https://www.researchgate.net/publication/4120380_Evaluation_of_the_quality_of_N-detect_scan_ATPG_patterns_on_a_processor/link/541cc4970cf203f155bd6278/download | |
312 | 13 | B | 20 | registration | E-SAFETY VEHICLE INTRUSION PROTECTED APPLICATIONS (EVITA), Deliverable D2.3: Security requirements for automotive on-board networks based on dark-side scenarios [online]. Edited by A. Ruddle et al. December 2009 [viewed 2021-01-17]. Available at: https://doi.org/10.5281/zenodo.1188418 | https://evita-project.org/ | |
313 | 13 | B | 21 | ETSI TS 102 165-1, CYBER; Methods and protocols; Part 1: Method and pro forma for Threat, Vulnerability, Risk Analysis (TVRA), Version 5.2.3 [online]. October 2017 [viewed 2021-01-19]. Available at: https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/05.02.03_60/ts_10216501v050203p.pdf | |||
363 | 14 | B | 30 | V | Fabris S., Priddy J., Harris F., “Method for hazard severity assessment for the case of undemanded deceleration.”, Presented at VDA Automotive SYS Conference, Berlin, June 19/20, 2012, https://www.researchgate.net/publication/344452155_Method_for_hazard_severity_assessment_for_Method_for_hazard_severity_assessment_for_the_case_of_undemanded_deceleration_-_Simone_Fabris. | ||
359 | 14 | B | 26 | Fabris S., Priddy J., Harris F., “Method for Hazard Severity Assessment for the Case of Unintended Deceleration”, presented at 2012 VDA Auto SYS conference in Berlin. | |||
109 | 5 | B | 30 | 2022 | FIDES guide 2009 edition A (September 2010), Reliability Methodology for Electronic Systems | https://www.fides-reliability.org/en/node/612 | |
213 | 11 | B | 9 | FIDES Guide 2009 Edition A September 2010, Reliability Methodology for Electronic Systems | see109 | ||
214 | 11 | B | 10 | request | Fleming, P.R., Olson, B.D., Holman, W.T., Bhuva, B.L., Massengill, L.W. Design Technique for Mitigation of Soft Errors in Differential Switched-Capacitor Circuits. IEEE Transactions on Circuits and Systems II: Express Briefs [online]. IEEE. May 2008, 55(9), 838-842 [viewed 2017-10-10]. Available at: 10.1109/TCSII.2008.923437 | https://www.researchgate.net/publication/3453081_Design_Technique_for_Mitigation_of_Soft_Errors_in_Differential_Switched-Capacitor_Circuits | |
106 | 5 | B | 27 | Forin P., Vital Coded Microprocessor: Principles and Application for various Transit Systems, Proc. IFAC-GCCT, Paris, France, 1989 | https://www.sciencedirect.com/science/article/pii/S1474667017526531 | ||
316 | 13 | B | 24 | FORUM OF INCIDENT RESPONSE AND SECURITY TEAMS (FIRST). Common Vulnerability Scoring System (CVSS), Common Vulnerability Scoring System v3.1: Specification Document, [online]. Available at: https://www.first.org/cvss/v3.1/specification-document | https://www.first.org/ | https://www.first.org/cvss/v3-1/ | |
319 | 13 | B | 27 | FORUM OF INCIDENT RESPONSE AND SECURITY TEAMS (FIRST). Traffic Light Protocol (TLP), FIRST Standards Definitions and Usage Guidance - Version 1.0, [online]. Available at: https://www.first.org/tlp/ | https://www.first.org/tlp/ | ||
378 | 14 | B | 45 | FRAADE-BLANDAR L, BLUMENTHAL M. S., ANDERSON J. M. KALRA N. – RAND: Measuring Automated Vehicle Safety – https://www.rand.org/content/dam/rand/pubs/research_reports/RR2600/RR2662/RAND_RR2662.pdf | |||
215 | 11 | B | 11 | Franklin M. Incorporating Fault Tolerance in Superscalar Processors. Proceedings of International Conference on High Performance Computing [online]. IEEE. December 1996 [viewed 2017-10-10]. Available at: 10.1109/HIPC.1996.565839 | |||
101 | 5 | B | 22 | Fruehling T., Delphi Secured Microcontroller Architecture S.A.E., 2000 World Congress, SAE# 2000‑01‑1052 | https://www.researchgate.net/publication/239496547_Delphi_Secured_Microcontroller_Architecture/link/5858192d08aeffd7c4fbb1e2/download | ||
368 | 14 | B | 35 | Functional Mockup Interface http://functional-mockup-interface.org/ | |||
258 | 11 | B | 54 | G. Kervarrec, et al. A universal reliability prediction model for SMD integrated circuits based on field failures. European Symposium on Reliability of Electron Devices, Failure Physics and Analysis [online]. Microelectronics Reliability Elsevier. July 1999, 39(6), 765-771 [viewed 2017-10-10]. Available at: https://doi.org/10.1016/S0026-2714(99)00099-2 | https://www.sciencedirect.com/science/article/abs/pii/S0026271499000992?via%3Dihub | ||
340 | 14 | B | 7 | German In-Depth Accident Study (GIDAS), accident data collection project in Germany, https://www.gidas.org/start-en.html | |||
162 | 8 | B | 13 | X | German V-Model - Available at: http://www.v-modell-xt.de/[viewed 2018-09-27] | https://www.cio.bund.de/Webs/CIO/DE/digitaler-wandel/architekturen-und-standards/architekturen-und-standards-node.html | |
252 | 11 | B | 48 | request | Ginez O. ET AL. An overview of failure mechanisms in embedded flash memories. VLSI Test Symposium, 2006. Proceedings. 24th [online]. IEEE. April 2006 [viewed 2017-10-10]. Available at: 10.1109/VTS.2006.19 | https://www.researchgate.net/publication/4234833_An_Overview_of_Failure_Mechanisms_in_Embedded_Flash_Memories | |
187 | 10 | B | 2 | N | GSN COMMUNITY STANDARD VERSION 1, November 2011 | https://scsc.uk/r141C:1?t=1 | |
248 | 11 | B | 44 | V | Gupta Vijay, R. Snow, M.C. Wu, A. Jain, J. Tsai. Recovery of Stiction-Failed MEMS Structures Using Laser-Induced Stress Waves. Journal of Microelectromechanical Systems [online]. IEEE. August 2004, 13(4), 696-700 [viewed 2017-10-10]. Available at: 10.1109/JMEMS.2004.832185 | http://nanophotonics.eecs.berkeley.edu/Publications/Journal/files/1140/Gupta%20et%20al.%20-%202004%20-%20Recovery%20of%20stiction-failed%20MEMS%20structures%20using%20.pdf | |
350 | 14 | B | 17 | Hartjen L., Philipp R., Schuldt F., Howar F., Friedrich B., Classification of Driving Maneuvers in Urban Traffic for Parametrization of Test Scenarios“ in: 9. Tagung Automatisiertes Fahren, Lehrstuhl für Fahrzeugtechnik mit TÜV SÜD Akademie: https://mediatum.ub.tum.de/1535131. | https://www.researchgate.net/publication/339528099_Classification_of_Driving_Maneuvers_in_Urban_Traffic_for_Parametrization_of_Test_Scenarios/link/5e6236b7299bf1744f62d149/download | ||
216 | 11 | B | 12 | request | Hayek A., Borcsok J. SRAM-based FPGA design techniques for safety-related systems conforming to IEC 61508 a survey and analysis. 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) [online]. IEEE. December 2012, 319-324 [viewed 2017-10-10]. Available at: 10.1109/ICTEA.2012.6462892 | https://www.researchgate.net/publication/261048303_SRAM-based_FPGA_design_techniques_for_safety_related_systems_conforming_to_IEC_61508_a_survey_and_analysis | |
217 | 11 | B | 13 | V | Heiser G. The role of virtualization in embedded systems. Proceedings of the 1st workshop on Isolation and integration in embedded systems [online]. ACM. April 2008, 11-16 [viewed 2017-10-10]. Available at: 10.1145/1435458.1435461 | https://www.researchgate.net/publication/234804454_The_role_of_virtualization_in_embedded_systems/link/00b7d53acc2c78543e000000/download | |
366 | 14 | B | 33 | Hirsenkorn N., Kolsi H., Selmi M., Schaermann A., Hanke T., Rauch A., Rasshofer R., Biebl E., Learning Sensor Models for Virtual Test and Development. 11. Workshop Fahrerassistenzsysteme und automatisiertes Fahren, UniDAS, Walting, 2017 | https://fdocuments.net/document/learning-sensor-models-for-virtual-test-and-11-workshop-fahrerassistenzsysteme.html?page=2 | ||
389 | 14 | B | 56 | IATF 16949, Quality management system requirements for automotive production and relevant service parts organisations | see 4 | ||
4 | 1 | B | 2 | IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations | https://www.iatfglobaloversight.org/wp/wp-content/uploads/2016/12/IATF-16949-GM-CSR_Dec.-2016-1.pdf | ||
33 | 2 | B | 4 | IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations | see 4 | ||
140 | 7 | B | 6 | IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations | see 4 | ||
155 | 8 | B | 6 | IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations | see 4 | ||
299 | 13 | B | 7 | IATF 16949, Quality management system requirements for automotive production and relevant service parts organizations | see 4 | ||
255 | 11 | B | 51 | IATF 16949:2016, Quality management system requirements for automotive production and relevant service parts organizations | see 4 | ||
325 | 13 | B | 33 | IEC 31010, Risk management ? Risk assessment techniques | https://www.iso.org/standard/72140.html | ||
289 | 12 | B | 5 | V | IEC 61000-6-1, Electromagnetic compatibility (EMC) — Part 6-1: Generic standards — Immunity for residential, commercial and light-industrial environments | https://webstore.iec.ch/publication/25628 | |
190 | 10 | B | 5 | V | IEC 61025, ed. 2.0 — Procedures and Symbols for FTA | https://webstore.iec.ch/publication/25647 | |
16 | 1 | B | 14 | V | IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | https://webstore.iec.ch/publication/22273 | |
35 | 2 | B | 6 | IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
50 | 3 | B | 2 | IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
88 | 5 | B | 9 | IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
135 | 7 | B | 1 | IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
159 | 8 | B | 10 | IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
179 | 9 | B | 1 | IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
186 | 10 | B | 1 | IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
120 | 6 | B | 2 | IEC 61508:2010, (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
218 | 11 | B | 14 | IEC 61508‑2:2010, Functional safety of electrical/electronic/programmable electronic safety-related systems | see 16 | ||
326 | 13 | B | 34 | IEC 61508-7, Functional safety of electrical/electronic/programmable electronic safety-related systems ? Part 7: Overview of techniques and measures | see 16 | ||
89 | 5 | B | 10 | IEC 61709, Electronic components — Reliability — Reference conditions for failure rates and stress models for conversion | https://webstore.iec.ch/publication/59985 | ||
219 | 11 | B | 15 | IEC 61709:2017, Electrical components — Reliability — Reference conditions for failure rates and stress models for conversion | see 89 | ||
307 | 13 | B | 15 | IEC 62443-2-1, Industrial communication networks ? Network and system security ? Part 2-1: Establishing an industrial automation and control system security program | https://isms.jp/csms/doc/JIP-CSCC100-10.pdf | ||
244 | 11 | B | 40 | 廃版 | IEC/TR 62380:2004, Reliability data handbook — Universal model for reliability prediction of electronics components, PCBs and equipment | https://webstore.iec.ch/preview/info_iec62380%7Bed1.0%7Den.pdf | |
260 | 11 | B | 56 | N | IEEE P1804, IEEE Draft Standard for Fault Accounting and Coverage Reporting to Digital Modules [viewed 2017-10-10] | https://standards.ieee.org/ieee/1804/4604/ | |
246 | 11 | B | 42 | IEEE STD 2700-2014, IEEE Standard for Sensor Performance Parameter Definitions | https://ieeexplore.ieee.org/document/6880296 | ||
343 | 14 | B | 10 | IGLAD (Europe) http://www.iglad.net/ | http://www.iglad.net/ | ||
91 | 5 | B | 12 | Intentionally left blank | |||
167 | 8 | B | 18 | ISO 10007, Quality management — Guidelines for configuration management | https://www.iso.org/standard/70400.html | ||
301 | 13 | B | 9 | ISO 10007, Quality management ? Guidelines for configuration management | see 91 | ||
70 | 4 | B | 7 | N | ISO 10605, Road vehicles — Test methods for electrical disturbances from electrostatic discharge | https://www.iso.org/standard/79094.html | |
82 | 5 | B | 3 | ISO 10605, Road vehicles — Test methods for electrical disturbances from electrostatic discharge | see 70 | ||
67 | 4 | B | 4 | ISO 11451 (all parts), Road vehicles — Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy | https://www.iso.org/standard/62477.html | ||
288 | 12 | B | 4 | ISO 11451 (all parts), Road vehicles — Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy | see 67 | ||
68 | 4 | B | 5 | ISO 11452 (all parts), Road vehicles — Component test methods for electrical disturbances from narrowband radiated electromagnetic energy | https://www.iso.org/standard/59609.html | ||
83 | 5 | B | 4 | ISO 11452-2, Road vehicles — Component test methods for electrical disturbances from narrowband radiated electromagnetic energy — Part 2: Absorber-lined shielded enclosure | see 68 | ||
84 | 5 | B | 5 | ISO 11452-4, Road vehicles — Component test methods for electrical disturbances from narrowband radiated electromagnetic energy — Part 4: Harness excitation methods | see 68 | ||
158 | 8 | B | 9 | N | ISO 13849 (all parts), Safety of machinery — Safety-related parts of control systems | https://www.iso.org/standard/73481.html | |
154 | 8 | B | 5 | N | ISO 16750 (all parts), Road vehicles — Environmental conditions and testing for electrical and electronic equipment | https://www.iso.org/standard/77578.html | |
85 | 5 | B | 6 | ISO 16750-2, Road vehicles — Environmental conditions and testing for electrical and electronic equipment — Part 2: Electrical loads | see 85 | ||
86 | 5 | B | 7 | ISO 16750-4, Road vehicles — Environmental conditions and testing for electrical and electronic equipment — Part 4: Climatic loads | see 85 | ||
87 | 5 | B | 8 | ISO 16750-5, Road vehicles — Environmental conditions and testing for electrical and electronic equipment — Part 5: Chemical loads | see 85 | ||
332 | 14 | ISO 21448 SOTIF(Safety of the intended functionality)https://www.iso.org/standard/77490.html | https://www.iso.org/standard/77490.html | ||||
156 | 8 | B | 7 | ISO 25119 (all parts), Tractors and machinery for agriculture and forestry — Safety-related parts of control systems | actors and machinery for agriculture and forestryss 18 | https://www.iso.org/standard/80216.html | |
2 | 1 | N | ISO 26262 (all parts), Road vehicles — Functional safety | ||||
358 | 14 | B | 25 | ISO 26262 (all parts), Road vehicles — Functional safety | |||
308 | 13 | B | 16 | ISO 26262 (all parts), Road vehicles ? Functional safety | |||
22 | 2 | N | ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
44 | 3 | N | ISO 26262-1, Road Vehicles — Functional Safety — Part 1: Vocabulary | ||||
73 | 5 | N | ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
111 | 6 | N | ISO 26262-1, Road Vehicles — Functional Safety — Part 1: Vocabulary | ||||
128 | 7 | N | ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
142 | 8 | N | ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
185 | 10 | N | ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
204 | 11 | N | ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
276 | 12 | N | ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
333 | 14 | N | ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
1 | 1 | ISO 26262-1:2018 Road vehicles — Functional safety — Part 1: Vocabulary https://www.iso.org/standard/68383.html | |||||
56 | 4 | N | ISO 26262-1:2018, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
171 | 9 | N | ISO 26262-1:2018, Road vehicles — Functional safety — Part 1: Vocabulary | ||||
293 | 13 | B | 1 | ISO 26262-1:2018, Road vehicles ? Functional safety ? Part 1: Vocabulary | |||
30 | 2 | B | 1 | ISO 26262-10, Guidelines on ISO 26262 | |||
184 | 10 | ISO 26262-10:2018 Road vehicles — Functional safety — Part 10: Guidelines on ISO 26262 https://www.iso.org/standard/68392.html | |||||
13 | 1 | B | 11 | ISO 26262-10:2018, Road vehicles — Functional safety — Part 10: Guideline on ISO 26262 | |||
137 | 7 | B | 3 | ISO 26262-10:2018, Road vehicles — Functional safety — Part 10: Guideline on ISO 26262 | |||
265 | 11 | B | 61 | ISO 26262‑10:2018, Road vehicles — Functional safety — Part 10: Guideline on ISO 26262 | |||
203 | 11 | ISO 26262-11:2018 Road vehicles — Functional safety — Part 11: Guidelines on application of ISO 26262 to semiconductors https://www.iso.org/standard/69604.html | |||||
66 | 4 | B | 3 | ISO 26262-11:2018, Road Vehicles — Functional safety — Part 11: Guideline on application of ISO 26262 on semiconductors | |||
14 | 1 | B | 12 | ISO 26262-11:2018, Road vehicles — Functional safety — Part 11: Guideline on application of ISO 26262 to semiconductors | |||
138 | 7 | B | 4 | ISO 26262-11:2018, Road vehicles — Functional safety — Part 11: Guideline on application of ISO 26262 to semiconductors | |||
150 | 8 | B | 1 | ISO 26262-11:2018, Road vehicles — Functional safety — Part 11: Guideline on application of ISO 26262 to semiconductors | |||
200 | 10 | B | 15 | ISO 26262-11:2018, Road vehicles — Functional safety — Part 11: Guideline on application ofISO 26262 to semiconductors | |||
182 | 9 | B | 4 | ISO 26262-11:2018, Road vehicles - Functional safety - Part 11: Guidelines on application of ISO 26262 to semiconductors | |||
31 | 2 | B | 2 | ISO 26262-12, Adaptation of ISO 26262 for motorcycles | |||
275 | 12 | ISO 26262-12:2018 Road vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for motorcycles https://www.iso.org/standard/69605.html | |||||
183 | 9 | B | 5 | ISO 26262-12:2018, Road vehicles - Functional safety - Part 12: Adaptation for motorcycles | |||
15 | 1 | B | 13 | ISO 26262-12:2018, Road vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for motorcycles | |||
49 | 3 | B | 1 | ISO 26262-12:2018, Road Vehicles — Functional Safety — Part 12: Adaptation of ISO 26262 for motorcycles | |||
71 | 4 | B | 8 | ISO 26262-12:2018, Road Vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for Motorcycles | |||
126 | 6 | B | 8 | ISO 26262-12:2018, Road Vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for Motorcycles | |||
139 | 7 | B | 5 | ISO 26262-12:2018, Road vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for motorcycles | |||
151 | 8 | B | 2 | ISO 26262-12:2018, Road vehicles — Functional safety — Part 12: Adaptation of ISO 26262 for motorcycles | |||
201 | 10 | B | 16 | ISO 26262-12:2018, Road vehicles — Functional safety — Part 12: Adaptation ofISO 26262 for motorcycles | |||
21 | 2 | ISO 26262-2:2018 Road vehicles — Functional safety — Part 2: Management of functional safety https://www.iso.org/standard/68384.html | |||||
5 | 1 | B | 3 | ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety | |||
45 | 3 | N | ISO 26262-2:2018, Road Vehicles — Functional Safety — Part 2: Management of functional safety | ||||
57 | 4 | N | ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety | ||||
74 | 5 | N | ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety | ||||
112 | 6 | N | ISO 26262-2:2018, Road Vehicles — Functional Safety — Part 2: Management of functional safety | ||||
129 | 7 | N | ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety | ||||
143 | 8 | N | ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety | ||||
172 | 9 | N | ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of Functional Safety | ||||
192 | 10 | B | 7 | ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of Functional Safety | |||
277 | 13 | N | ISO 26262-2:2018, Road vehicles — Functional safety — Part 2: Management of functional safety | ||||
267 | 11 | B | 63 | ISO 26262‑2:2018, Road Vehicles — Functional Safety — Part 2: Management of functional safety | |||
43 | 3 | ISO 26262-3:2018 Road vehicles — Functional safety — Part 3: Concept phase https://www.iso.org/standard/68385.html | |||||
6 | 1 | B | 4 | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | |||
23 | 2 | N | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | ||||
58 | 4 | N | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | ||||
113 | 6 | N | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | ||||
130 | 7 | N | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | ||||
144 | 8 | N | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | ||||
173 | 9 | N | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | ||||
193 | 10 | B | 8 | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | |||
278 | 14 | N | ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase | ||||
268 | 11 | B | 64 | ISO 26262‑3:2018, Road vehicles — Functional safety — Part 3: Concept phase | |||
292 | 13 | N | ISO 26262-3:2018, Road vehicles ? Functional safety ? Part 3: Concept phase | ||||
55 | 4 | ISO 26262-4:2018 Road vehicles — Functional safety — Part 4: Product development at the system level https://www.iso.org/standard/68386.html | |||||
7 | 1 | B | 5 | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | |||
24 | 2 | N | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | ||||
46 | 3 | N | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | ||||
75 | 5 | N | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | ||||
114 | 6 | N | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | ||||
131 | 7 | N | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | ||||
145 | 8 | N | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | ||||
174 | 9 | N | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | ||||
194 | 10 | B | 9 | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | |||
279 | 15 | N | ISO 26262-4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | ||||
269 | 11 | B | 65 | ISO 26262‑4:2018, Road vehicles — Functional safety — Part 4: Product development at the system level | |||
72 | 5 | ISO 26262-5:2018 Road vehicles — Functional safety — Part 5: Product development at the hardware level https://www.iso.org/standard/68387.html | |||||
8 | 1 | B | 6 | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | |||
25 | 2 | N | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | ||||
59 | 4 | N | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | ||||
115 | 6 | N | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | ||||
132 | 7 | N | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | ||||
146 | 8 | N | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | ||||
175 | 9 | N | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | ||||
195 | 10 | B | 10 | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | |||
280 | 16 | N | ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | ||||
270 | 11 | B | 66 | ISO 26262‑5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level | |||
110 | 6 | ISO 26262-6:2018 Road vehicles — Functional safety — Part 6: Product development at the software level https://www.iso.org/standard/68388.html | |||||
9 | 1 | B | 7 | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | |||
26 | 2 | N | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | ||||
60 | 4 | N | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | ||||
76 | 5 | N | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | ||||
136 | 7 | B | 2 | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | |||
147 | 8 | N | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | ||||
176 | 9 | N | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | ||||
196 | 10 | B | 11 | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | |||
281 | 17 | N | ISO 26262-6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | ||||
271 | 11 | B | 67 | ISO 26262‑6:2018, Road vehicles — Functional safety — Part 6: Product development at the software level | |||
127 | 7 | ISO 26262-7:2018 Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning https://www.iso.org/standard/68389.html | |||||
77 | 5 | N | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production and operation | ||||
10 | 1 | B | 8 | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | |||
27 | 2 | N | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | ||||
61 | 4 | N | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | ||||
116 | 6 | N | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | ||||
148 | 8 | N | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | ||||
177 | 9 | N | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | ||||
197 | 10 | B | 12 | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | |||
282 | 18 | N | ISO 26262-7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | ||||
272 | 11 | B | 68 | ISO 26262‑7:2018, Road vehicles — Functional safety — Part 7: Production, operation, service and decommissioning | |||
141 | 8 | ISO 26262-8:2018 Road vehicles — Functional safety — Part 8: Supporting processes https://www.iso.org/standard/68390.html | |||||
11 | 1 | B | 9 | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | |||
28 | 2 | N | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | ||||
47 | 3 | N | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | ||||
62 | 4 | N | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | ||||
78 | 5 | N | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | ||||
117 | 6 | N | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | ||||
133 | 7 | N | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | ||||
178 | 9 | N | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | ||||
198 | 10 | B | 13 | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | |||
283 | 19 | N | ISO 26262-8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | ||||
273 | 11 | B | 69 | ISO 26262‑8:2018, Road vehicles — Functional safety — Part 8: Supporting processes | |||
170 | 9 | ISO 26262-9:2018 Road vehicles — Functional safety — Part 9: Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses https://www.iso.org/standard/68391.html | |||||
199 | 10 | B | 14 | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL) oriented and safety-oriented analyses | |||
12 | 1 | B | 10 | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | |||
29 | 2 | N | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | ||||
48 | 3 | N | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | ||||
63 | 4 | N | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | ||||
79 | 5 | N | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | ||||
118 | 6 | N | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | ||||
134 | 7 | N | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | ||||
284 | 20 | N | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | ||||
149 | 8 | N | ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)‑oriented and safety-oriented analyses | ||||
274 | 11 | B | 70 | ISO 26262‑9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses | |||
306 | 13 | B | 14 | ISO 29147, Information technology ? Security techniques ? Vulnerability disclosure | |||
295 | 13 | B | 3 | ISO 31000:2018, Risk management ? Guidelines | https://www.iso.org/standard/65694.html | ||
338 | 14 | B | 5 | ISO 34502, Road vehicles - Engineering framework and process of scenario-based safety evaluation | https://www.iso.org/standard/78951.html | ||
3 | 1 | B | 1 | N | ISO 3779, Road vehicles — Vehicle identification number (VIN) — Content and structure | https://www.iso.org/standard/82285.html | |
20 | 1 | B | 18 | ISO 3833, Road vehicles — Types — Terms and definitions | https://www.iso.org/standard/9389.html | ||
69 | 4 | B | 6 | ISO 7637 (all parts), Road vehicles — Electrical disturbances from conduction and coupling d vehicles)) 64 | ISO 7637-1:2015 - Road vehicles — Electrical disturbances from conduction and coupling — Part 1: Definitions and general considerations | ||
80 | 5 | B | 1 | ISO 7637-2, Road vehicles — Electrical disturbances from conduction and coupling — Part 2: Electrical transient conduction along supply lines only hh 85 | see 69 | ||
81 | 5 | B | 2 | ISO 7637-3, Road vehicles — Electrical disturbances from conduction and coupling — Part 3: Electrical transient transmission by capacitive and inductive coupling via lines other than supply lines hh 85 | see 69 | ||
294 | 13 | B | 2 | ISO 9000:2015, Quality management systems ? Fundamentals and vocabulary | https://www.iso.org/standard/45481.html | ||
32 | 2 | B | 3 | ISO 9001, Quality management systems — Requirements ent systemsaa 32 | https://www.iso.org/standard/62085.html | ||
152 | 8 | B | 3 | ISO 9001, Quality management systems — Requirements ent systemsaa 32 | see 32 | ||
300 | 13 | B | 8 | ISO 9001, Quality management systems ? Requirements | see 32 | ||
119 | 6 | B | 1 | N | ISO/IEC 12207:2008, Systems and software engineering — Software life cycle processes ms and software engineering 16 | https://www.iso.org/standard/63712.html | |
37 | 2 | B | 8 | ISO/IEC 15408 (all parts), Information technology — Security techniques — Evaluation criteria for IT security , Information technologypp 32 | https://www.iso.org/standard/72891.html | ||
321 | 13 | B | 29 | ISO/IEC 15408 (all parts), Information technology ? Security techniques ? Evaluation criteria for IT security | see 37 | ||
315 | 13 | B | 23 | ISO/IEC 18045, Information technology ? Security techniques ? Methodology for IT security evaluation | https://www.iso.org/standard/72889.html | ||
320 | 13 | B | 28 | 23822? | ISO/IEC 2382, Information technology ? Vocabulary | https://www.iso.org/standard/63598.html | |
297 | 13 | B | 5 | ISO/IEC 27000:2018, Information technology ? Security techniques ? Information security management systems ? Overview and vocabulary | https://www.iso.org/standard/73906.html | ||
36 | 2 | B | 7 | ISO/IEC 27001, Information technology — Security techniques — Information security management systems — Requirements | https://www.iso.org/standard/27001 | ||
322 | 13 | B | 39 | ISO/IEC 27001, Information technology ? Security techniques ? Information security management systems ? Requirements | see 36 | ||
323 | 13 | B | 31 | ISO/IEC 27010, Information technology ? Security techniques ? Information security management for inter-sector and inter-organizational communications | see 36 | ||
317 | 13 | B | 25 | ISO/IEC 29100, Information technology ? Security techniques ? Privacy framework | |||
34 | 2 | B | 5 | ISO/IEC 33000 (all parts), Information technology — Process assessment | see 302 | ||
169 | 8 | B | 20 | ISO/IEC 33000 (series), Information Technology — Process Assessment | see 302 | ||
302 | 13 | B | 10 | ISO/IEC 33001, Information technology ? Process assessment ? Concepts and terminology | https://www.iso.org/standard/54175.html | ||
168 | 8 | B | 19 | ISO/IEC/IEEE 12207, Systems and software engineering — Software life cycle processes | see 119 | ||
304 | 13 | B | 12 | ISO/IEC/IEEE 12207, Systems and software engineering ? Software life cycle processes | see 119 | ||
64 | 4 | B | 1 | ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes | https://www.iso.org/standard/81702.html | ||
153 | 8 | B | 4 | ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes | see 64 | ||
390 | 14 | B | 57 | ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes | see 64 | ||
303 | 13 | B | 11 | ISO/IEC/IEEE 15288, Systems and software engineering ? System life cycle processes | see 64 | ||
296 | 13 | B | 4 | ISO/IEC/IEEE 15288:2015, Systems and software engineering ? System life cycle processes | see 64 | ||
65 | 4 | B | 2 | ISO/IEC/IEEE 16326, Systems and software engineering — Life cycle processes — Project management | https://www.iso.org/standard/75276.html | ||
324 | 13 | B | 32 | ISO/IEC/IEEE 26511, Systems and software engineering ? Requirements for managers of information for users of systems, software, and services | https://www.iso.org/standard/70879.html | ||
123 | 6 | B | 5 | ISO/IEC/IEEE 29119:2013, (all parts), Software and systems engineering — Software testing (all parts) | |||
157 | 8 | B | 8 | ISO/IEC/IEEE 29148, Systems and software engineering — Life cycle processes — Requirements engineering | https://www.iso.org/standard/72089.html | ||
291 | 13 | ISO/SAE 21434:2021 Road vehicles ? Cybersecurity engineering https://www.iso.org/standard/70918.html | https://www.iso.org/standard/70918.html | ||||
298 | 13 | B | 6 | ISO/TR 4804, Road vehicles ? Safety and cybersecurity for automated driving systems ? Design, verification and validation | https://www.iso.org/standard/80363.html | ||
245 | 11 | B | 41 | N | ITRS 2009, The International Technology Roadmap For Semiconductors (ITRS), 2009 Edition nalrr 211 | https://www.semiconductors.org/wp-content/uploads/2018/06/4_2015-ITRS-2.0-ESH.pdf | https://www.semiconductors.org/wp-content/uploads/2018/09/1_Executive-Summary.pdf |
250 | 11 | B | 46 | J. Iannacci. Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Elsevier Displays [online]. Elsevier. April 2015, 37, 62-71 [viewed 2017-10-10]. Available at: https://doi.org/10.1016/j.displa.2014.08.003 | https://www.sciencedirect.com/science/article/abs/pii/S0141938214000602?via%3Dihub | ||
188 | 10 | B | 3 | V | JEDEC – JEP131A (May 2005), Potential Failure Mode and Effects Analysis (FMEA) | https://elsmar.com/pdf_files/FMEA%20and%20Reliability%20Analysis/Potential%20Failure%20Mode%20and%20Effects%20Analysis%20-%20JEDEC%20PUBLICATION.pdf | |
220 | 11 | B | 16 | V | JEDEC JEP122H, Failure Mechanisms and Models for Semiconductor Devices | https://img.antpedia.com/standard/files/pdfs_ora/20210202/JEDEC%20JEP%20122H-2016.pdf | |
264 | 11 | B | 60 | V | JEDEC JESD88E, Dictionary of Terms for Solid-State Technology — 6th Edition | https://www.renesas.com/jp/ja/document/gde/jedec-definition | |
221 | 11 | B | 17 | V | JEDEC JESD89A, Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices | http://projects.itn.pt/adonics2014/JED06.pdf | |
257 | 11 | B | 53 | V | JEDEC JESD94, Application Specific Qualification Using Knowledge Based Test Methodolog. | http://j-journey.com/j-blog/wp-content/uploads/2012/05/JESD94A.pdf | |
125 | 6 | B | 7 | V | Jia Y., Merayo M., Harman M., 2015) Introduction to the special issue on Mutation Testing. Softw. Test. Verif. Reliab., 25: 461–463 | ||
327 | 13 | B | 35 | JOHNSON, Christopher, et al. (2016) Guide to Cyber Threat Information Sharing [online]. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-150, October 2016 [viewed 2021-02-16]. Available at: https://doi.org/10.6028/NIST.SP.800-150 | |||
328 | 13 | B | 36 | JOINT TASK FORCE TRANSFORMATION INITIATIVE, 2012), Guide for Conducting Risk Assessments [online]. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-30, Rev. 1. September 2012 [viewed 2021-02-16]. Available at: http://dx.doi.org/10.6028/NIST.SP.800-30r1 | |||
222 | 11 | B | 18 | V | Keckler, S.W., Olukotun, K., Hofstee, H.P. Multicore Processors and Systems. 2009. Springer | https://sci-hub.ru/10.1007/978-1-4419-0263-4 | |
237 | 11 | B | 33 | V | Kejun Wu, Pahlevanzadeh H., Peng Liu, Qiaoyan Yu. A new fault injection method for evaluation of combining SEU and SET effects on circuit reliability. Circuits and Systems (ISCAS), 2014 IEEE International Symposium on [online]. IEEE. June 2014, 602,605 [viewed 2017-10-10]. Available at: 10.1109/ISCAS.2014.6865207 | https://www.researchgate.net/publication/271481438_A_new_fault_injection_method_for_evaluation_of_combining_SEU_and_SET_effects_on_circuit_reliability/link/5650222908aeafc2aab45084/download | |
347 | 14 | B | 14 | Kelly T., Rob Weaver R., “The Goal Structuring Notation – A Safety Argument Notation”, htps://www-users.cs.york.ac.uk/tpk/dsn2004.pdf | htps://www-users.cs.york.ac.uk/tpk/dsn2004.pdf | ||
379 | 14 | B | 46 | Kendall A., Gal Y., “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?”, NIPS 2017. | https://arxiv.org/pdf/1703.04977.pdf | ||
223 | 11 | B | 19 | Kervarreca, G., et al. A universal field failure based reliability prediction model for SMD Integrated Circuits. Microelectronics Reliability [online]. Elsevier. June-July 1999, 765-771 [viewed 2017-10-10]. Available at: https://doi.org/10.1016/S0026-2714(99)00099-2 | https://www.sciencedirect.com/science/article/abs/pii/S0026271499000992?via%3Dihub | ||
108 | 5 | B | 29 | Koopman P., Chakravarty T., 2004), Cyclic Redundancy Code (CRC) Polynomial Selection For Embedded Networks The International Conference on Dependable Systems and Networks, DSN-2004, http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf | http://users.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf | ||
381 | 14 | B | 48 | Koopman P., Wagner M., Autonomous Vehicle Safety: An Interdisciplinary Challenge," IEEE Intelligent Transportation Systems Magazine, Special Issue on SSIV, 2017, in press Vol. 9 #1, Spring 2017, pp. 90-96 | https://www.researchgate.net/publication/313385220_Autonomous_Vehicle_Safety_An_Interdisciplinary_Challenge/link/59dd5a93458515f6efef7c61/download | ||
346 | 14 | B | 13 | Kuhn D.S., Kacker R.N., Lei Y., Combinatorial testing”, NIST report, June 25, 2012, https://www.nist.gov/publications/combinatorial-testing | https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software/ACTS-Library/Papers | ||
384 | 14 | B | 51 | Lapuschkin S., Wäldchen S., Binder A., Montavon G., Samek W., Müller K. R., "Unmasking Clever Hans predictors and assessing what machines really learn", 2019, In: Nature Communications 1096 (2019), https://www.nature.com/articles/s41467-019-08987-4 | https://arxiv.org/abs/1902.10178 | ||
224 | 11 | B | 20 | Lazzari C. ET AL. Phase-Locked Loop Automatic Layout Generation and Transient Fault Injection Analysis: A Case Study. 12th IEEE International On-Line Testing workshop [online]. IEEE. July 2006, 117-127 [viewed 2017-10-10]. Available at: 10.1109/IOLTS.2006.48 | https://www.researchgate.net/publication/221520921_Phase-Locked_Loop_Automatic_Layout_Generation_and_Transient_Fault_Injection_Analysis_A_Case_Study/link/0046351f56816d1277000000/download | ||
103 | 5 | B | 24 | Leaphart E., Czerny B., D’Ambrosio J. et al., Survey of Software Failsafe Techniques for Safety-Critical Automotive Applications, SAE 2005 World Congress, 2005-01-0779 | https://www.semanticscholar.org/paper/Survey-of-Software-Failsafe-Techniques-for-Leaphart-Czerny/c8394dcf980b44bdb243ec178ac9b87df2ac6953 | ||
352 | 14 | B | 19 | Leveson N., Engineering a Safer World – Systems Thinking Applied to Safety. MIT Press, Cambridge, Massachusetts, USA 2011 | https://direct.mit.edu/books/oa-monograph/2908/Engineering-a-Safer-WorldSystems-Thinking-Applied | ||
353 | 14 | B | 20 | Leveson N., Thomas J., STPA-Handbook. 2018. Available for download at psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf | https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf | ||
364 | 14 | B | 31 | Littlewood B., Wright D.“, Some Conservative Stopping Rules for the Operational Testing of Safety-Critical Software”, IEEE Trans. SW Engng., 23(11), 673-683, Nov. 1997 | ¥ | ||
180 | 9 | B | 2 | Lovric T., (ZF TRW), Metz P. (Brose), Schnellbach A. (Magna), Dependent Failure Analysis in Practice, VDA Sys Conference, July 6th–8th 2016, Berlin | |||
102 | 5 | B | 23 | Mahmood A., McCluskey E.J., “Concurrent Error Detection Using Watchdog Processors – A Survey”, IEEE Trans. Computers, 37(2), 160-174 (1988) | https://ieeexplore.ieee.org/document/2145 | ||
226 | 11 | B | 22 | Mariani R. Soft Errors on Digital Components. Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation [online]. Springer. 2003 [viewed 2017-10-10]. Available at: https://doi.org/10.1007/0-306-48711-X_3 | https://link.springer.com/chapter/10.1007/0-306-48711-X_3 | ||
104 | 5 | B | 25 | request | Mariani R., Fuhrmann P., Vittorelli B., Cost-effective Approach to Error Detection for an Embedded Automotive Platform, 2006-01-0837, SAE 2006 World Congress & Exhibition, April 2006, Detroit, MI, USA | https://www.researchgate.net/publication/296663136_Cost-effective_Approach_to_Error_Detection_for_an_Embedded_Automotive_Platform | |
93 | 5 | B | 14 | MIL HDBK 217 F notice 2, Military handbook: Reliability prediction of electronic equipment | https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/MIL-HDBK-217F-Notice2.pdf | ||
94 | 5 | B | 15 | MIL HDBK 338, Military handbook: Electronic reliability design handbook | https://www.navsea.navy.mil/Portals/103/Documents/NSWC_Crane/SD-18/Test%20Methods/MILHDBK338B.pdf | ||
227 | 11 | B | 23 | MIL-HDBK-217, Military Handbook — Reliability Prediction of Electronic Equipment | see 93 | ||
122 | 6 | B | 4 | MISRA AC GMG, Generic modelling design and style guidelines, ISBN 978-906400-06-4, MIRA, May 2009 | https://misra.org.uk/product/misra-ac-gmg/ | ||
309 | 13 | B | 17 | MISRA C, 2012, Guidelines for the use of the C language in critical systems, 3rd Edition, 1st Revision. Nuneaton, England: HORIBA MIRA, February 2019. ISBN (print/electronic): 978-1-906400-21-7 / 978-1-906400-22-4. | see 121 | ||
121 | 6 | B | 3 | MISRA C:2012, Guidelines for the use of the C language in critical systems, ISBN 978-1-906400-10-1, MIRA, March 2013 | https://misra.org.uk/misra-c/ | ||
228 | 11 | B | 24 | request | Mitra, S., Saxena, N.R., Mccluskey, E.J. Common-mode failures in redundant VLSI systems: a survey. IEEE Transactions on Reliability [online]. IEEE. September 2000, 49(3), 285-295 [viewed 2017-10-10]. Available at: 10.1109/24.914545 | https://www.researchgate.net/publication/3152443_Common-mode_failures_in_redundant_VLSI_systems_A_survey | |
382 | 14 | B | 49 | Molnar C., A Guide for Making Black Box Models Explainable, 2021, https://christophm.github.io/interpretable-ml-book/ | https://christophm.github.io/interpretable-ml-book/ | ||
229 | 11 | B | 25 | V | Mukherjee S.S. ET AL. A systematic methodology to compute the architectural vulnerability factors for a high-performance microprocessor in microarchitecture. Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture [online]. IEEE. December 2003, 29-40 [viewed 2017-10-10]. Available at: 10.1109/MICRO.2003.1253181 | https://www.researchgate.net/publication/4049011_A_systematic_methodology_to_compute_the_architectural_vulnerability_factors_for_a_high-performance_microprocessor/link/0f317530fc8eb425aa000000/download | |
341 | 14 | B | 8 | NASS General Estimates System (GES), US Department of Transportation, https://www.nhtsa.gov/national-automotive-sampling-system/nass-general-estimates-system | https://www.nhtsa.gov/national-automotive-sampling-system/nass-general-estimates-system | ||
373 | 14 | B | 40 | Navigation Data Standard https://www.nds-association.org/ | https://www.nds-association.org/ | ||
230 | 11 | B | 26 | Niimi Y. ET AL. Virtualization Technology and Using Virtual CPU in the Context of ISO 26262: The E-Gas Case Study. SAE Technical Paper [online]. SAE. April 2013 [viewed 2017-10-10]. Available at: https://doi.org/10.4271/2013-01-0196 | https://saemobilus.sae.org/content/2013-01-0196/ | ||
377 | 14 | B | 44 | Nistér D., Lee H.-L., Ng J., Wang Y., An Introduction to the Safety Force Field, https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/an-introduction-to-the-safety-force-field-v2.pdf | https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/an-introduction-to-the-safety-force-field-v2.pdf | ||
39 | 2 | B | 10 | No S.S., 75-INSAG-4, International Atomic Energy Agency, Vienna, 1991 | https://gnssn-qa.iaea.org/main/SLS/References/INSAG-4%20Safety%20Culture%20.pdf | ||
95 | 5 | B | 16 | NPRD-2016, Non-electronic Parts Reliability Data | https://www.quanterion.com/wp-content/uploads/2015/09/NPRD-2016-1.pdf | ||
372 | 14 | B | 39 | Open Simulation Interface (OSI) https://github.com/OpenSimulationInterface | https://github.com/OpenSimulationInterface | ||
231 | 11 | B | 27 | request | Paolieri M., Mariani R. Towards functional-safe timing-dependable real-time architectures. IEEE 17th International On-Line Testing Symposium (IOLTS) [online]. IEEE. July 2011, 31-36 [viewed 2017-10-10]. Available at: 10.1109/IOLTS.2011.5993807 Towards functional-safe timing-dependable real-time architectures. IEEEii 211 | https://www.researchgate.net/publication/224254511_Towards_functional-safe_timing-dependable_real-time_architectures | |
243 | 11 | B | 39 | Paschalis A., and Gizopoulos D. Effective Software-Based Self-Test Strategies for On-Line Periodic Testing of Embedded Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [online]. IEEE. December 2004, 88-99[viewed 2017-10-10]. Available at: 10.1109/TCAD.2004.839486 | https://www.researchgate.net/publication/220399797_Effective_software-based_self-test_strategies_for_on-line_periodic_testing_of_embedded_processors/link/004635291eb24f182a000000/download | ||
105 | 5 | B | 26 | Patel J., Fung L., “Concurrent Error Detection in ALU's by Recomputing with Shifted Operands”, IEEE Transactions on Computers, Vol. C-31, pp.417-422, July 1982 | https://ieeexplore.ieee.org/document/1676055 | ||
241 | 11 | B | 37 | Patel J.H. Stuck-At Fault: A Fault Model for the Next Millennium? Proceedings of the International Test Conference 1998, ITC'98 [online]. IEEE. August 1988, 1166 [viewed 2017-10-10]. Available at: 10.1109/TEST.1998.743358 | https://web.stanford.edu/class/ee386/public/stuck_at_fault_6per_page.pdf | https://www.semanticscholar.org/paper/Stuck-at-fault%3A-a-fault-model-for-the-next-Patel/d3c840081c92a6b4971a4e1139a521af6b43c9dc | |
380 | 14 | B | 47 | Phan B., Khan S., Salay R., Czarnecki K., “Bayesian Uncertainty Quantification with Synthetic Data”. WAISE 2019. | |||
262 | 11 | B | 58 | Philip Mayfield. Understanding Binomial Confidence Intervals [viewed 2017-10-10]. Available at: http://www.sigmazone.com/binomial_confidence_interval.htm | https://sigmazone.com/binomial-confidence-intervals/ | ||
360 | 14 | B | 27 | Piao J., McDonald M., Low speed car following behaviour from floating vehicle data’. IEEE IV2003 Intelligent Vehicles Symposium. | |||
261 | 11 | B | 57 | R. Leveugle, A. Calvez, P. Maistri and P. Vanhauwaert, Statistical fault injection: Quantified error and confidence. 2009 Design, Automation & Test in Europe Conference & Exhibition [online]. IEEE. April 2009, 502-506 [viewed 2017-10-10]. Available at: 10.1109/DATE.2009.5090716 | https://www.researchgate.net/publication/221341698_Statistical_Fault_Injection_Quantified_Error_and_Confidence/link/0046351909f0b6d6c5000000/download | ||
107 | 5 | B | 28 | Ramabadran T.V., Gaitonde S.S., 1988), “A tutorial on CRC computations”. IEEE Micro 8 (4): 62–75, 1988 | http://www.ee.bilkent.edu.tr/~ee538/crc.pdf | ||
96 | 5 | B | 17 | RIAC FMD-2016, Failure Mode / Mechanism Distributions | https://www.doc88.com/p-11487184400504.html | ||
97 | 5 | B | 18 | RIAC HDBK 217 Plus, Reliability Prediction Models | https://www.bing.com/ck/a?!&&p=34e1c1ad5bbcea0fJmltdHM9MTY5Njg5NjAwMCZpZ3VpZD0wNzYxYjQyMS04NzY2LTZhZmMtMTUwNS1hNTg4ODY5NDZiNDgmaW5zaWQ9NTIxNQ&ptn=3&hsh=3&fclid=0761b421-8766-6afc-1505-a58886946b48&psq=RIAC+HDBK+217+Plus%2c+Reliability+Prediction+Models&u=a1aHR0cHM6Ly9ib29rcy5nb29nbGUuY29tL2Jvb2tzL2Fib3V0L0hhbmRib29rX29mXzIxN1BsdXNfUmVsaWFiaWxpdHlfUHJlZGljdGkuaHRtbD9pZD0zM3JXMjlBeXRld0M&ntb=1 | ||
311 | 13 | B | 19 | ROSS, Ron, et al. (2018), Systems Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems [online]. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-160, Vol. 1. Updated March 2018 [viewed 2021-02-16]. Available at: https://doi.org/10.6028/NIST.SP.800-160v1 | |||
160 | 8 | B | 11 | RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification | |||
357 | 14 | B | 24 | Sabaliauskaite G., Shen Liew L., Cui J., Integrating Autonomous Vehicle Safety and Security Analysis Using STPA Method and the Six-Step Model. International Journal on Advances in Security, 11(1&2):160–169, 2018. | |||
19 | 1 | B | 17 | SAE J1211, Physics of Failure methodology | |||
263 | 11 | B | 59 | SAE J1211:201211, Handbook for Robustness Validation of Automotive Electrical/Electronic Modules, SAE | https://www.sae.org/standards/content/j1211_201211/ | ||
191 | 10 | B | 6 | SAE J2980, Considerations for ISO 26262 ASIL Hazard Classification | https://standards.globalspec.com/std/10377443/SAE%20J2980 | ||
38 | 2 | B | 9 | SAE J3061, Cybersecurity Guidebook for Cyber-Physical vehicle Systems | https://www.sae.org/standards/content/j3061_202112/ | ||
329 | 13 | B | 37 | SAE J3061, Cybersecurity Guidebook for Cyber-Physical Vehicle Systems | see 38 | ||
189 | 10 | B | 4 | SAE-J1739_200901, Potential Failure Mode and Effects Analysis in Design (Design FMEA) and Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA) | https://www.sae.org/standards/content/j1739_202101/ | ||
330 | 13 | B | 38 | SCARFONE, Karen, et al. (2008), Technical Guide to Information Security Testing and Assessment [online]. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-115. September 2008 [viewed 2021-02-16]. Available at: https://doi.org/10.6028/NIST.SP.800-115 | https://www.nist.gov/publications/technical-guide-information-security-testing-and-assessment | ||
181 | 9 | B | 3 | Schnellbach, Magna Powertrain, Dependent Failure Analysis, The MPT approach, Safetronic. 2014 — Functional Safety in Automotive conference, 11th–12th Nov, 2014, Stuttgart | |||
310 | 13 | B | 18 | SEI CERT, C Coding Standard ? Rules for developing safe, reliable and secure systems [online]. Pittsburgh, Pennsylvania: Software Engineering Institue, Carnegie Mellon University, 2016 [viewed 2021-02-12]. Available at: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=454220 | |||
376 | 14 | B | 43 | Shalev-Schwarz S., Shammah S., Shashua A., On a Formal Model of Safe and Scalable Self driving Cars https://arxiv.org/abs/1708.06374v6 | |||
349 | 14 | B | 16 | Shappell S.A., Wiegmann D.A., The Human Factors Analysis and Classification-System –FACS, February 2000 Final Report. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 | |||
232 | 11 | B | 28 | Singh M. ET AL. Transient Fault Sensitivity Analysis of Analog-to-Digital Converters (ADCs). Proceedings of the IEEE Workshop on VLSI (WVLSI '01) [online]. IEEE. April 2001 [viewed 2017-10-10]. Available at: 10.1109/IWV.2001.923153 | https://www.researchgate.net/publication/3896776_Transient_fault_sensitivity_analysis_of_analog-to-digitalconverters_ADCs/link/0c96052debbc603a2a000000/download | ||
365 | 14 | B | 32 | SIPOC – Wikipedia https://en.wikipedia.org/wiki/SIPOC | |||
90 | 5 | B | 11 | SN 29500 (2004), Siemens AG, Failure Rates of Components — Expected Values, General | |||
242 | 11 | B | 38 | SN 29500:2004, Siemens AG, "Failure Rates of Components — Expected Values, General" | |||
339 | 14 | B | 6 | Statistics and data about reported accidents and casualties on public roads in Great Britain (STATS19), UK Department for Transport, https://www.gov.uk/government/collections/road-accidents-and-safety-statistics | |||
348 | 14 | B | 15 | Stellet J.E., Brade T., Poddey A., Jesenski S., Branz W., Formalisation and algorithmic approach to the automated driving validation problem", 2019 IEEE Intelligent Vehicles Symposium (IV), https://doi.org/10.1109/IVS.2019.8813894 | |||
100 | 5 | B | 21 | Sundaram P., D’Ambrosio J.G., Controller Integrity in Automotive Failsafe System Architectures, SAE 2006 World Congress, 2006-01-0840 | https://www.sae.org/publications/technical-papers/content/2006-01-0840/ | ||
331 | 13 | B | 39 | TAKANEN, Ari et al. Fuzzing for Software Security and Quality Assurance, Second Edition. Boston, Massachusetts/London: Artech House, January 2018. ISBN: 978-1-60807-850-9. | |||
335 | 14 | B | 2 | Taxonomy and Definitions for Terms Related to Driving Automation Systems for On Road Motor Vehicles, SAE Recommended Practice J3016_201806, https://www.sae.org/standards/content/j3016_201806 | |||
362 | 14 | B | 29 | Traffic Safety Facts N.H.T.S.S.A., 2015, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812384 | |||
18 | 1 | B | 16 | TRANS/WP. 29/1045+Amend.1&2 | https://unece.org/fileadmin/DAM/trans/doc/2012/wp29other/ECE-TRANS-wp29-1045am2e.pdf | ||
386 | 14 | B | 53 | Tsugawa S., Jeschke S., Shladover S. E., “A Review of Truck Platooning Projects for Energy Savings”, IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, 2016 | |||
385 | 14 | B | 52 | U.S. Department of Transportation. (Jul.2017). Vehicle-to-vehicle communication technology.[Online]. Available:https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/v2v_fact_sheet_101414_v2a.pdf | |||
314 | 13 | B | 22 | UcedaVelez, Tony and Morana, Marco M. Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis. Hoboken, New Jersey: Wiley, May 2015. ISBN: 978-1-118-98835-0. | |||
336 | 14 | B | 3 | Ulbrich S., Menzel T., Reschka A., Schuldt F., Mauer M., Defining and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving", 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), https://doi.org/10.1109/ITSC.2015.164 | |||
40 | 2 | B | 11 | United Kingdom Health and Safety Executive, Managing competence for safety-related systems, 2007 | https://www.sintef.no/globalassets/project/hfc/documents/mancomppt1.pdf/ | ||
98 | 5 | B | 19 | UTE C80-811, Reliability methodology for electronic systems | |||
375 | 14 | B | 42 | Vaicenavicius J., Wiklund T., Grigaite A., Kalkauskas A., Vysniauskas I., Keen S. D., Self driving car safety quantification via component-level analysis’. SAE International Journal of Connected and Automated Vehicles, Volume 4, Issue 1, pp 35-45, 2021. | |||
238 | 11 | B | 34 | Van De Goor A.J. Testing Semiconductor Memories, Theory and Practice, 2nd. ComTex Publishing | https://dl.acm.org/doi/10.5555/120330 | ||
305 | 13 | B | 13 | VDA QMC WORKING GROUP 13 / AUTOMOTIVE SIG. Automotive SPICE Process Assessment / Reference Model, Version 3.1 [online]. Berlin: VDA QMC, November 2017. Available at: http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf | |||
251 | 11 | B | 47 | Vonkyoung Kim, Chen T. Assessing SRAM test coverage for sub-micron CMOS technologies. VLSI Test Symposium, 1997, 15th IEEE [online]. IEEE. May 1997, 24-30 [viewed 2017-10-10]. Available at: 10.1109/VTEST.1997.599437 | https://www.semanticscholar.org/paper/Assessing-SRAM-test-coverage-for-sub-micron-CMOS-Kim-Chen/21201fb79690b5617265dc3f814215d27624ed59 | ||
249 | 11 | B | 45 | Walraven Jeremy A. Failure Mechanisms in MEMS. IEEE ITC International Test Conference [online]. IEEE. October 2003, 828-833 [viewed 2017-10-10]. Available at: 10.1109/TEST.2003.1270915 | https://www.researchgate.net/publication/4058312_Failure_mechanisms_in_mems/link/0046352d5c802d7f81000000/download | ||
387 | 14 | B | 54 | Wang J., Liu J., Kato N.“, Networking and communications in autonomous driving: A survey”, IEEE Communications Surveys & Tutorials, vol. 21. no.2, Q2, 2019 | |||
236 | 11 | B | 32 | Wei Jiesheng, et al. Quantifying the accuracy of high-level fault injection techniques for hardware faults. Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference [online]. IEEE. June 2014 [viewed 2017-10-10]. Available at: 10.1109/DSN.2014.2 | https://www.bing.com/ck/a?!&&p=979fc5592988d602JmltdHM9MTY5Njk4MjQwMCZpZ3VpZD0wNzYxYjQyMS04NzY2LTZhZmMtMTUwNS1hNTg4ODY5NDZiNDgmaW5zaWQ9NTIwOQ&ptn=3&hsh=3&fclid=0761b421-8766-6afc-1505-a58886946b48&psq=Wei+Jiesheng%2c+et+al.+Quantifying+the+accuracy+of+high-level+fault+injection+techniques+for+hardware+faults.+Dependable+Systems+and+Networks+(DSN)%2c+2014+44th+Annual+IEEE%2fIFIP+International+Conference+%5bonline%5d.+IEEE.+June+2014+%5bviewed+2017-10-10%5d.+Available+at%3a+10.1109%2fDSN.2014.2&u=a1aHR0cHM6Ly9ibG9ncy51YmMuY2Eva2FydGhpay9maWxlcy8yMDE0LzA0L0RTTi1KaWVzaGVuZy5wZGY&ntb=1 | ||
233 | 11 | B | 29 | White M., Bernstein J.B. Microelectronics Reliability: Physics-of-Failure Based Modeling and Lifetime Evaluation. JPL Publication [online]. February 2008 [viewed 2017-10-10]. Available at: http://www.acceleratedreliabilitysolutions.com/images/_NASA_Physics_of_Failure_for_Microelectronics.pdf | http://www.acceleratedreliabilitysolutions.com/images/_NASA_Physics_of_Failure_for_Microelectronics.pdf | ||
247 | 11 | B | 43 | V | White Richard M. A Sensor Classification Scheme. IEEE Transactions On Ultrasonics, Ferroelectrics, And Frequency Control [online]. IEEE. March 1987, 34(2), 124-126 [viewed 2017-10-10]. Available at: 10.1109/T-UFFC.1987.26922 | http://ijlalhaider.pbworks.com/w/file/fetch/64130986/A%20Sensor%20Classification%20Scheme.pdf | |
383 | 14 | B | 50 | Zhang Q., Zhu S.-C., Visual Interpretability for Deep Learning: a Survey", 2018, https://arxiv.org/abs/1802.00614 |
<この項は書きかけです。順次追記します。>
This article is not completed. I will add some words in order.
一覧
物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff
量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4
数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d
統計(0)一覧
https://qiita.com/kaizen_nagoya/items/80d3b221807e53e88aba
品質一覧
https://qiita.com/kaizen_nagoya/items/2b99b8e9db6d94b2e971
言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6
医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82
自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5
通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7
日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68
英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d
転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe
仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df
音楽 一覧(0)
https://qiita.com/kaizen_nagoya/items/b6e5f42bbfe3bbe40f5d
「@kazuo_reve 新人の方によく展開している有益な情報」確認一覧
https://qiita.com/kaizen_nagoya/items/b9380888d1e5a042646b
Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6
鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/26bda595f341a27901a0
安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409
一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39
Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794
Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0
線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001
OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3
Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8
++ Support(0)
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514
Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0
プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909
なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2
言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4
プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394
Python(0)記事をまとめたい。
https://qiita.com/kaizen_nagoya/items/088c57d70ab6904ebb53
官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3
「はじめての」シリーズ ベクタージャパン
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb
AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869
プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945
LaTeX(0) 一覧
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792
自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b
Rust(0) 一覧
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927
小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on the individual's experience. It has nothing to do with the organization or business to which I currently belong.
文書履歴(document history)
ver. 0.01 初稿 20240504
最後までおよみいただきありがとう4ざいました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.