Txgemma: Efficient and agentic llms for therapeutics.
E. Wang, S. Schmidgall, P. F. Jaeger, F. Zhang, R. Pilgrim, Y. Matias, J. Barral, D. Fleet, and S. Azizi. Txgemma: Efficient and agentic llms for therapeutics. https://arxiv.org/pdf/2504.06196
References
Chen, J., Hu, Y., Wang, Y., Lu, Y., Cao, X., Lin, M., Xu, H., Wu, J., Xiao, C., Sun, J., et al. TrialBench: Multi-modal artificial intelligence-ready clinical trial datasets. arXiv preprint arXiv:2407.00631 (2024).
Kuo, K.-T., Mao, T.-L., Jones, S., Veras, E., Ayhan, A., Wang, T.-L., Glas, R., Slamon, D., Velculescu, V. E., Kuman, R. J., et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. The American journal of pathology 174, 1597–1601 (2009).
Leontiadou, H., Galdadas, I., Athanasiou, C. & Cournia, Z. Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Scientific reports 8, 15544 (2018).
Chen, H., Si, Y., Wen, J., Hu, C., Xia, E., Wang, Y. & Wang, O. P110αinhibitor alpelisib exhibits a synergistic effect with pyrotinib and reverses pyrotinib resistant in HER2+ breast cancer. Neoplasia 43, 100913 (2023).
Fritsch, C., Huang, A., Chatenay-Rivauday, C., Schnell, C., Reddy, A., Liu, M., Kauffmann, A., Guthy, D., Erdmann, D., De Pover, A., et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Molecular cancer therapeutics 13, 1117–1129 (2014).
Narayan, P., Prowell, T. M., Gao, J. J., Fernandes, L. L., Li, E., Jiang, X., Qiu, J., Fan, J., Song, P., Yu, J., et al. FDA approval summary: alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clinical Cancer Research 27, 1842–1849 (2021).
Passarelli, A., Carbone, V., Pignata, S., Mazzeo, R., Lorusso, D., Scambia, G., Canova, S., Di Palma, T., Tasca, G., Mantiero, M., et al. Alpelisib for PIK3CA-mutated advanced gynecological cancers: first clues of clinical activity. Gynecologic Oncology 183, 61–67 (2024).
Thibault, B., Thole, A., D’Angelo, R., Basset, C. & Guillermet-Guibert, J. PI3Kα-specific inhibitor BYL-719 synergizes with cisplatin in vitro in PIK3CA-mutated ovarian cancer cells. Scientific Reports 15, 6265 (2025).
Hu, X., Xia, M., Wang, J., Yu, H., Chai, J., Zhang, Z., Sun, Y., Su, J. & Sun, L. Dual PI3K/mTOR inhibitor PKI-402 suppresses the growth of ovarian cancer cells by degradation of Mcl-1 through autophagy. Biomedicine & Pharmacotherapy 129, 110397 (2020).
Turon, G., Hlozek, J., Woodland, J. G., Kumar, A., Chibale, K. & Duran-Frigola, M. First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa. Nature Communications 14, 5736 (2023).
Fontenot, R., Kathad, U., McDermott, J., Sturtevant, D., Sharma, P. & Carr, P. Predicting a Compounds Blood-Brain-Barrier Permeability with Lantern Pharma’s AI and ML Platform, RADR 2023.
Bera, S., Dent, J., Gill, G., Stolman, A. & Wu, B. SimGCN for TDC Benchmarks (2022).
Plonka, W., Stork, C., Šícho, M. & Kirchmair, J. CYPlebrity: Machine learning models for the prediction of inhibitors of cytochrome P450 enzymes. Bioorganic & medicinal chemistry 46, 116388 (2021).
Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V. & Leskovec, J. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265 (2019).
Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C. & Sun, J. DeepPurpose: a deep learning library for drug–target interaction prediction. Bioinformatics 36, 5545–5547 (2020).
Lagunin, A., Filimonov, D., Zakharov, A., Xie, W., Huang, Y., Zhu, F., Shen, T., Yao, J. & Poroikov, V. Computer-aided prediction of rodent carcinogenicity by PASS and CISOC-PSCT. QSAR & Combinatorial Science 28, 806–810 (2009).
Li, P., Li, Y., Hsieh, C.-Y., Zhang, S., Liu, X., Liu, H., Song, S. & Yao, X. TrimNet: learning molecular representation from triplet messages for biomedicine. Briefings in Bioinformatics 22, bbaa266 (2021).
Huang, D., Chowdhuri, S. R., Li, A., Li, A., Agrawal, A., Gano, K. & Zhu, A. A Unified System for Molecular Property Predictions: Oloren ChemEngine and its Applications (2022).
Li, J., Cai, D. & He, X. Learning graph-level representation for drug discovery. arXiv preprint arXiv:1709.03741 (2017).
Raimondi, D., Simm, J., Arany, A. & Moreau, Y. A novel method for data fusion over entity-relation graphs and its application to protein–protein interaction prediction. Bioinformatics 37, 2275–2281 (2021).
Gfeller, D., Schmidt, J., Croce, G., Guillaume, P., Bobisse, S., Genolet, R., Queiroz, L., Cesbron, J., Racle, J. & Harari, A. Improved predictions of antigen presentation and TCR recognition with MixMHCpred2. 2 and PRIME2. 0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes. Cell Systems 14, 72–83 (2023).
Motmaen, A., Dauparas, J., Baek, M., Abedi, M. H., Baker, D. & Bradley, P. Peptide-binding specificity prediction using fine-tuned protein structure prediction networks. Proceedings of the National Academy of Sciences 120, e2216697120 (2023).
Siramshetty, V., Williams, J., Nguyen, Ð., Neyra, J., Southall, N., Mathé, E., Xu, X. & Shah, P. Validating ADME QSAR models using marketed drugs. SLAS DISCOVERY: Advancing the Science of Drug Discovery 26, 1326–1336 (2021).
Haneczok, J. & Delijewski, M. Machine learning enabled identification of potential SARS-CoV-2 3CLpro inhibitors based on fixed molecular fingerprints and Graph-CNN neural representations. Journal of Biomedical Informatics 119, 103821 (2021).
Liu, Y., Wu, Y., Shen, X. & Xie, L. COVID-19 multi-targeted drug repurposing using few-shot learning. Frontiers in Bioinformatics 1, 693177 (2021).
Chen, X., Dougherty, T., Hong, C., Schibler, R., Zhao, Y. C., Sadeghi, R., Matasci, N., Wu, Y.-C. & Kerman, I. Predicting antibody developability from sequence using machine learning. biorxiv, 2020–06 (2020).
Alves, V. M., Muratov, E., Fourches, D., Strickland, J., Kleinstreuer, N., Andrade, C. H. & Tropsha, A. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicology and applied pharmacology 284, 262–272 (2015).
Shermukhamedov, S., Mamurjonova, D. & Probst, M. Structure to Property: Chemical Element Embeddings and a Deep Learning Approach for Accurate Prediction of Chemical Properties. arXiv preprint arXiv:2309.09355 (2023).
29. Vu, O., Mendenhall, J., Altarawy, D. & Meiler, J. BCL:: Mol2D—a robust atom environment descriptor for QSAR modeling and lead optimization. Journal of computer-aided molecular design 33, 477–486 (2019).
30. Karim, A., Lee, M., Balle, T. & Sattar, A. CardioTox net: a robust predictor for hERG channel blockade based on deep learning meta-feature ensembles. Journal of Cheminformatics 13, 1–13 (2021).
31. Korotcov, A., Tkachenko, V., Russo, D. P. & Ekins, S. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Molecular pharmaceutics 14, 4462–4475 (2017).
32. Wong, L., You, Z.-H., Guo, Z.-H., Yi, H.-C., Chen, Z.-H. & Cao, M.-Y. MIPDH: a novel computational model for predicting microRNA–mRNA interactions by DeepWalk on a heterogeneous network. ACS omega 5, 17022–17032 (2020).
33. Fu, T., Huang, K., Xiao, C., Glass, L. M. & Sun, J. Hint: Hierarchical interaction network for clinical-trial-outcome predictions. Patterns 3 (2022).
34. Weber, A., Born, J. & Rodriguez Martínez, M. TITAN: T-cell receptor specificity prediction with bimodal attention networks. Bioinformatics 37, i237–i244 (2021).
35. Lam, H. T., Sbodio, M. L., Galindo, M. M., Zayats, M., Fernandez-Diaz, R., Valls, V., Picco, G., Ramis, C. B. & Lopez, V. Otter-Knowledge: benchmarks of multimodal knowledge graph representation learning from different sources for drug discovery. arXiv preprint arXiv:2306.12802 (2023).
36. Kinnings, S. L., Liu, N., Tonge, P. J., Jackson, R. M., Xie, L. & Bourne, P. E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. Journal of chemical information and modeling 51, 408–419 (2011).
37. Kalemati, M., Zamani Emani, M. & Koohi, S. BiComp-DTA: Drug-target binding affinity prediction through complementary biological-related and compression-based featurization approach. PLOS Computational Biology 19, e1011036 (2023).
38. 39. Wei, B. & Gong, X. DeepPLA: a novel deep learning-based model for protein-ligand binding affinity prediction (2021).
Probst, D., Schwaller, P. & Reymond, J.-L. Reaction classification and yield prediction using the differential reaction fingerprint DRFP. Digital discovery 1, 91–97 (2022).
40. Rivera, Z. A., Tayo, L., Chen, B.-Y. & Tsai, P.-W. In silico Evaluation of the Feasibility of Magnolia officinalis Electron-shuttling Compounds as Parkinson’s Disease Remedy. Letters in Drug Design & Discovery 21, 3039–3048 (2024).
41. Pei, Q., Wu, L., Zhu, J., Xia, Y., Xie, S., Qin, T., Liu, H., Liu, T.-Y. & Yan, R. Breaking the barriers of data scarcity in drug–target affinity prediction. Briefings in Bioinformatics 24, bbad386 (2023).
42. Xia, F., Shukla, M., Brettin, T., Garcia-Cardona, C., Cohn, J., Allen, J. E., Maslov, S., Holbeck, S. L., Doroshow, J. H., Evrard, Y. A., et al. Predicting tumor cell line response to drug pairs with deep learning. BMC bioinformatics 19, 71–79 (2018).
43. Lind, A. P. & Anderson, P. C. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PloS one 14, e0219774 (2019).
44. Euclia. https://github.com/euclia/public-models. 2023.
45. Leenay, R. T., Aghazadeh, A., Hiatt, J., Tse, D., Roth, T. L., Apathy, R., Shifrut, E., Hultquist, J. F., Krogan, N., Wu, Z., et al. Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells. Nature biotechnology 37,1034–1037 (2019).
46. Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., Guzman-Perez, A., Hopper, T., Kelley, B., Mathea, M., et al. Analyzing learned molecular representations for property prediction. Journal of chemical information and modeling 59, 3370–3388 (2019).
47. Preuer, K., Lewis, R. P., Hochreiter, S., Bender, A., Bulusu, K. C. & Klambauer, G. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics 34, 1538–1546 (2018).
48. Zheng, S., Rao, J., Zhang, Z., Xu, J. & Yang, Y. Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60, 47–55 (2019).
49. Boral, N., Ghosh, P., Goswami, A. & Bhattacharyya, M. Accountable prediction of drug ADMET Properties with molecular descriptors. bioRxiv, 2022–06 (2022).
50. Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D. & Steinhardt, J. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300 (2020).
Related document on the Qiita
making reference list on biorxiv pdf file
https://qiita.com/kaizen_nagoya/items/75f6f93ce9872a5d622d
Genome modeling and design across all domains of life with evo 2
https://qiita.com/kaizen_nagoya/items/eecda74f758008633ee2
BIOREASON: DNA-LLMモデルによるマルチモーダル生物学的推論の動機付け
https://qiita.com/kaizen_nagoya/items/0718b214043a614deee0
Mckusick’s online mendelian inheritance in man (omim®)
https://qiita.com/kaizen_nagoya/items/c599d867201d1ffb1f4d
Anthropic. Claude 3.7 sonnet
https://qiita.com/kaizen_nagoya/items/4364d9c475114353cf2a
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
A dna language model based on multispecies alignment predicts the effects of genome-wide variants
https://qiita.com/kaizen_nagoya/items/6e8858c2395dcc98804a
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
Nucleotide transformer: building and evaluating robust foundation models for human genomics
https://qiita.com/kaizen_nagoya/items/1c147c2b095364f04ef7
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
DeepSeek-AI
https://qiita.com/kaizen_nagoya/items/bb5ee9f17c03e07659d8
Codontransformer: A multispecies codon optimizer using context-aware neural networks.
https://qiita.com/kaizen_nagoya/items/d4be1d4dd9eb307f09cc
Medrax: Medical reasoning agent for chest x-ray
https://qiita.com/kaizen_nagoya/items/94c7835b2f461452b2e7
Benchmarking dna foundation models for genomic sequence classification running title: Dna foundation models benchmarking.
https://qiita.com/kaizen_nagoya/items/01e3dde0d8274fee0fd8
Lora: Low-rank adaptation of large language models,
https://qiita.com/kaizen_nagoya/items/877058f681d77808b44c
kegg pull: a software package for the restful access and pulling from the kyoto encyclopedia of gene and genomes.
https://qiita.com/kaizen_nagoya/items/05be40565793f2b4f7f3
Genegpt: augmenting large language models with domain tools for improved access to biomedical information.
https://qiita.com/kaizen_nagoya/items/8897792ff52fb5e68a46
Kegg: biological systems database as a model of the real world.
https://qiita.com/kaizen_nagoya/items/f63573043eaf8f9c6a2c
Entrez direct: E-utilities on the unix command line
https://qiita.com/kaizen_nagoya/items/cc4bbde566e67abc93d9
Clinvar: Public archive of relationships among sequence variation and human phenotype.
https://qiita.com/kaizen_nagoya/items/8149b7a5a4f930490fad
Biobert: a pre-trained biomedical language representation model for biomedical text mining.
https://qiita.com/kaizen_nagoya/items/63781eb6db1fc2ded80a
Progress and opportunities of foundation models in bioinformatics. Briefings in Bioinformatics
https://qiita.com/kaizen_nagoya/items/6ef20eaf796532fed6f8
Bend: Benchmarking dna language models on biologically meaningful tasks.
https://qiita.com/kaizen_nagoya/items/8417e72454d2107a9d06
Hyenadna: Long-range genomic sequence modeling at single nucleotide resolution.
https://qiita.com/kaizen_nagoya/items/07e1ba1138b0825c8a73
Gpt-4o system card.
https://qiita.com/kaizen_nagoya/items/06e4c54af663456b49f9
wen2.5 technical report.
https://qiita.com/kaizen_nagoya/items/f87fac7f9a83f54328fe
Deepseekmath: Pushing the limits of mathematical reasoning in open language models
https://qiita.com/kaizen_nagoya/items/2add7a80056850b9ce87
dbsnp: the ncbi database of genetic variation.
https://qiita.com/kaizen_nagoya/items/756da32e4c0868d84da0
Cosmic: a curated database of somatic variants and clinical data for cancer.
https://qiita.com/kaizen_nagoya/items/2b0960d4e1ff26a9b01f
Roformer: Enhanced transformer with rotary position embedding,
https://qiita.com/kaizen_nagoya/items/a12a45518f28a5133af2
Txgemma: Efficient and agentic llms for therapeutics.
https://qiita.com/kaizen_nagoya/items/e4eff5d51f926e943b9e