0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Genomic language models: Opportunities and challenges

Last updated at Posted at 2025-08-02

G. Benegas, C. Ye, C. Albors, J. C. Li, and Y. S. Song. Genomic language models: Opportunities and challenges. ArXiv, page arXiv:2407.11435v2, 9 2024. ISSN 2331-8422. URL https://pmc.ncbi.nlm.nih.gov/articles/PMC11275703/
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC11275703.
https://pubmed.ncbi.nlm.nih.gov/39753409/

Genomic Language Models: Opportunities and Challenges, Gonzalo Benegas, Chengzhong Ye, Carlos Albors, Jianan Canal Li, Yun S. Song https://arxiv.org/pdf/2407.11435?

References

  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all you need. In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., eds. Advances in Neural Information Processing Systems vol. 30. Curran Associates, Inc. (2017):.
  2. Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z., Wu, Y. et al. (2020). Conformer: Convolution-augmented transformer for speech recognition. arXiv preprint arXiv:2005.08100. https://arxiv.org/abs/2005.08100.
  3. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S. et al. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774. https://arxiv.org/abs/2303.08774.
  4. Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Cukura, A., Denny, P. et al. (2023). UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research 51, D523–D531.
  5. Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y. et al. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130.
  6. Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., and Rives, A. Language models enable zero-shot prediction of the effects of mutations on protein function. In:Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., eds. Advances in Neural Information Processing Systems vol. 34. Curran Associates, Inc. 2021):( 29287–29303). https://proceedings.neurips.cc/paper_files/paper/2021/file/f51338d736f95dd42427296047067694-Paper.pdf.
  7. Truong Jr, T., and Bepler, T. PoET: A generative model of protein families as sequences-of-sequences. In: Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., eds. Advances in Neural Information Processing Systems vol. 36. Curran Associates, Inc. (2023):( 77379–77415). https://proceedings.neurips.cc/paper_files/paper/2023/file/f4366126eba252699b280e8f93c0ab2f-Paper-Conference.pdf.
  8. Bepler, T., and Berger, B. (2021). Learning the protein language: Evolution, structure, and function. Cell Systems 12, 654–669.
  9. Ruffolo, J. A., and Madani, A. (2024). Designing proteins with language models. Nature Biotechnology 42, 200–202.
  10. Riesselman, A. J., Ingraham, J. B., and Marks, D. S. (2018). Deep generative models of genetic variation capture the effects of mutations. Nature Methods 15, 816–822.
  11. Frazer, J., Notin, P., Dias, M., Gomez, A., Min, J. K., Brock, K., Gal, Y., and Marks, D. S. (2021). Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95.
  12. Brandes, N., Goldman, G., Wang, C. H., Ye, C. J., and Ntranos, V. (2023). Genome-wide prediction of disease variant effects with a deep protein language model. Nature Genetics. https://doi.org/10.1038/s41588-023-01465-0. doi:10.1038/s41588-023-01465-0.
  13. Benegas, G., Batra, S. S., and Song, Y. S. (2023). DNA language models are powerful predictors of genome-wide variant effects. Proceedings of the National Academy of Sciences 120,e2311219120.
  14. Mendoza-Revilla, J., Trop, E., Gonzalez, L., Roller, M., Dalla-Torre, H., de Almeida, B. P., Richard, G., Caton, J., Lopez Carranza, N., Skwark, M., Laterre, A., Beguir, K., Pierrot, T., and Lopez, M. (2024). A foundational large language model for edible plant genomes. Communications Biology 7, 835. https://doi.org/10.1038/s42003-024-06465-2. doi:10.1038/s42003-024-06465-2.
  15. Zhai, J., Gokaslan, A., Schiff, Y., Berthel, A., Liu, Z.-Y., Miller, Z. R., Scheben, A., Stitzer, M. C., Romay, C., Buckler, E. S., and Kuleshov, V. (2024). Cross-species plant genomes modeling at single nucleotide resolution using a pre-trained DNA language model. bioRxiv preprint. https://www.biorxiv.org/content/early/2024/06/05/2024.06.04.596709. doi:10.1101/2024.06.04.596709.
  16. Dalla-Torre, H., Gonzalez, L., Mendoza Revilla, J., Lopez Carranza, N., Henryk Grywaczewski, A., Oteri, F., Dallago, C., Trop, E., Sirelkhatim, H., Richard, G. et al. (2023). The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2023.01.11.523679v3.
  17. Benegas, G., Albors, C., Aw, A. J., Ye, C., and Song, Y. S. (2023). GPN-MSA: an alignment- based DNA language model for genome-wide variant effect prediction. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2023.10.10.561776v2.
  18. Hsu, C., Nisonoff, H., Fannjiang, C., and Listgarten, J. (2022). Learning protein fitness models from evolutionary and assay-labeled data. Nature Biotechnology 40, 1114–1122.
  19. Tomaz da Silva, P., Karollus, A., Hingerl, J., Galindez, G., Wagner, N., Hernandez-Alias, X., Incarnato, D., and Gagneur, J. (2024). Nucleotide dependency analysis of DNA language models reveals genomic functional elements. bioRxiv preprint ( 2024–07). https://www.biorxiv.org/content/10.1101/2024.07.27.605418v1.
  20. Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L. W., Richards, S. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research 15, 1034–1050.
  21. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R., and Siepel, A. (2010). Detection of nonneutral substitution rates on mammalian phylogenies. Genome Research 20, 110–121.
  22. Avsec, Z., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor, K. R., Assael, Y., Jumper, J., Kohli, P., and Kelley, D. R. (2021). Effective gene expression prediction from sequence by integrating long-range interactions. Nature Methods 18, 1196–1203.
  23. Jaganathan, K., Panagiotopoulou, S. K., McRae, J. F., Darbandi, S. F., Knowles, D., Li, Y. I., Kosmicki, J. A., Arbelaez, J., Cui, W., Schwartz, G. B. et al. (2019). Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.
  24. Schiff, Y., Kao, C.-H., Gokaslan, A., Dao, T., Gu, A., and Kuleshov, V. (2024). Caduceus: Bi-directional equivariant long-range DNA sequence modeling. arXiv preprint arXiv:2403.03234.https://arxiv.org/abs/2403.03234.
  25. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., eds. Advances in Neural Information Processing Systems vol. 33. Curran Associates, Inc. (2020):( 1877–1901). https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
  26. Madani, A., Krause, B., Greene, E. R., Subramanian, S., Mohr, B. P., Holton, J. M., Olmos, J. L., Xiong, C., Sun, Z. Z., Socher, R. et al. (2023). Large language models generate functional protein sequences across diverse families. Nature Biotechnology 41, 1099–1106.
  27. Ingraham, J., Garg, V., Barzilay, R., and Jaakkola, T. Generative models for graph-based protein design. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alch´e-Buc, F., Fox, E., and Garnett, R., eds. Advances in Neural Information Processing Systems vol. 32. Curran Associates, Inc. (2019):https://proceedings.neurips.cc/paper_files/paper/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf.
  28. Hsu, C., Verkuil, R., Liu, J., Lin, Z., Hie, B., Sercu, T., Lerer, A., and Rives, A. Learning inverse folding from millions of predicted structures. In: International Conference on Machine Learning. PMLR (2022):( 8946–8970).
  29. Shin, J.-E., Riesselman, A. J., Kollasch, A. W., McMahon, C., Simon, E., Sander, C., Manglik, A., Kruse, A. C., and Marks, D. S. (2021). Protein design and variant prediction using autoregressive generative models. Nature Communications 12, 2403.
  30. Lal, A., Garfield, D., Biancalani, T., and Eraslan, G. regLM: Designing realistic regulatory DNA with autoregressive language models. In: International Conference on Research in Computational Molecular Biology. Springer (2024):( 332–335).
  31. Nguyen, E., Poli, M., Durrant, M. G., Thomas, A. W., Kang, B., Sullivan, J., Ng, M. Y., Lewis, A., Patel, A., Lou, A. et al. (2024). Sequence modeling and design from molecular to genome scale with Evo. bioRxiv preprint ( 2024–02). https://www.biorxiv.org/content/10.1101/2024.02.27.582234v2.
  32. Wang, Y., Wang, H., Wei, L., Li, S., Liu, L., and Wang, X. (2020). Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Research 48,6403–6412.
  33. Jores, T., Tonnies, J., Wrightsman, T., Buckler, E. S., Cuperus, J. T., Fields, S., and Queitsch, C. (2021). Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nature Plants 7, 842–855.
  34. de Almeida, B. P., Reiter, F., Pagani, M., and Stark, A. (2022). DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers. Nature Genetics 54, 613–624.
  35. Nguyen, E., Poli, M., Faizi, M., Thomas, A., Wornow, M., Birch-Sykes, C., Massaroli, S., Patel, A., Rabideau, C., Bengio, Y., Ermon, S., R´e, C., and Baccus, S. HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution. In: Oh, A., Naumann,
    T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., eds. Advances in Neural Information Processing Systems vol. 36. Curran Associates, Inc. (2023):( 43177–43201).
  36. Shao, B. (2023). A long-context language model for deciphering and generating bacteriophage genomes. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2023.12.18.572218v3.
  37. Ratcliff, J. D. (2024). Transformer model generated bacteriophage genomes are compositionally distinct from natural sequences. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2024.03.19.585716v1.
  38. Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature Biotechnology 33, 831–838.
  39. Zhou, J., and Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods 12, 931–934.
  40. Kelley, D. R., Snoek, J., and Rinn, J. L. (2016). Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Research 26, 990–999.
  41. Kelley, D. R., Reshef, Y. A., Bileschi, M., Belanger, D., McLean, C. Y., and Snoek, J. (2018). Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Research 28, 739–750.
  42. Zeng, T., and Li, Y. I. (2022). Predicting RNA splicing from DNA sequence using Pangolin. Genome Biology 23, 103. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02664-4. doi:10.1186/s13059-022-02664-4.
  43. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., and Solorio, T., eds. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics (2019):(4171–4186). https://aclanthology.org/N19-1423. doi:10.18653/v1/N19-1423.
  44. Bommasani, R., Hudson, D. A. et al. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258. https://arxiv.org/abs/2108.07258.
  45. West-Roberts, J., Kravitz, J., Jha, N., Cornman, A., and Hwang, Y. (2024). Diverse genomic embedding benchmark for functional evaluation across the tree of life. bioRxiv ( 2024–07). https://www.biorxiv.org/content/10.1101/2024.07.10.602933v1.
  46. de Almeida, B. P., Dalla-Torre, H., Richard, G., Blum, C., Hexemer, L., G´elard, M., Mendoza-Revilla, J., Pandey, P., Laurent, S., Lopez, M. et al. (2024). SegmentNT: annotating the genome at single-nucleotide resolution with DNA foundation models. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2024.03.14.584712v2.
  47. Zhou, Z., Wu, W., Ho, H., Wang, J., Shi, L., Davuluri, R. V., Wang, Z., and Liu, H. (2024). DNABERT-S: Learning species-aware dna embedding with genome foundation models. arXiv preprint. https://arxiv.org/abs/2402.08777.
  48. Zhou, Z., Ji, Y., Li, W., Dutta, P., Davuluri, R., and Liu, H. (2023). DNABERT-2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006. https://arxiv.org/abs/2306.15006.
  49. Garau-Luis, J. J., Bordes, P., Gonzalez, L., Roller, M., de Almeida, B. P., Hexemer, L., Blum, C., Laurent, S., Grzegorzewski, J., Lang, M. et al. (2024). Multi-modal transfer learning between biological foundation models. arXiv preprint arXiv:2406.14150.
  50. Marin, F. I., Teufel, F., Horlacher, M., Madsen, D., Pultz, D., Winther, O., and Boomsma, W. BEND: Benchmarking DNA Language Models on Biologically Meaningful Tasks. In: International Conference on Learning Representations (2024):.
  51. Tang, Z., and Koo, P. K. (2024). Evaluating the representational power of pre-trained DNA language models for regulatory genomics. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2024.02.29.582810v1.
  52. Li, F.-Z., Amini, A. P., Yue, Y., Yang, K. K., and Lu, A. X. (2024). Feature reuse and scaling: Understanding transfer learning with protein language models. bioRxiv preprint ( 202402).
  53. Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., Yang, L., and Ahmed, A. Big Bird: Transformers for Longer Sequences. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., eds. Advances in Neural Information Processing Systems vol. 33. Curran Associates, Inc. (2020):(17283–17297).
  54. Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. (2021). DNABERT: pre-trained bidirectional encoder representations from Transformers model for DNA-language in genome. Bioinformatics 37, 2112–2120.
  55. Mo, S., Fu, X., Hong, C., Chen, Y., Zheng, Y., Tang, X., Lan, Y., Shen, Z., and Xing, E. Multi-modal Self-supervised Pre-training for Large-scale Genome Data. In: NeurIPS 2021 AI for Science Workshop (2021):.
  56. Trotter, M. V., Nguyen, C. Q., Young, S., Woodruff, R. T., and Branson, K. M. (2021). Epigenomic language models powered by Cerebras. arXiv preprint arXiv:2112.07571. https://arxiv.org/abs/2112.07571.
  57. Zhang, Y., An, L., Yue, F., and Hardison, R. C. (2016). Jointly characterizing epigenetic dynamics across multiple human cell types. Nucleic Acids Research 44, 6721–6731.
  58. Hoarfrost, A., Aptekmann, A., Farfa˜nuk, G., and Bromberg, Y. (2022). Deep learning of a bacterial and archaeal universal language of life enables transfer learning and illuminates microbial dark matter. Nature Communications 13, 2606.
  59. Yang, M., Huang, L., Huang, H., Tang, H., Zhang, N., Yang, H., Wu, J., and Mu, F. (2022). Integrating convolution and self-attention improves language model of human genome for interpreting non-coding regions at base-resolution. Nucleic Acids Research 50, e81–e81.
  60. Gwak, H.-J., and Rho, M. (2022). ViBE: a hierarchical BERT model to identify eukaryotic viruses using metagenome sequencing data. Briefings in Bioinformatics 23. doi:10.1093/bib/bbac204. Bbac204.
  61. Levy, B., Xu, Z., Zhao, L., Kremling, K., Altman, R., Wong, P., and Tanner, C. FloraBERT: cross-species transfer learning withattention-based neural networks for gene expression prediction (2022). https://doi.org/10.21203/rs.3.rs-1927200/v1. doi:10.21203/rs.3.rs-1927200/v1.
  62. Bai, Z., Zhang, Y.-z., Miyano, S., Yamaguchi, R., Fujimoto, K., Uematsu, S., and Imoto, S. (2022). Identification of bacteriophage genome sequences with representation learning. Bioinformatics. Btac509.
  63. Zvyagin, M., Brace, A., Hippe, K., Deng, Y., Zhang, B., Bohorquez, C. O., Clyde, A.,Kale, B., Perez-Rivera, D., Ma, H. et al. (2023). GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics. The International Journal of High Performance Computing Applications 37, 683–705.
  64. Chen, K., Zhou, Y., Ding, M., Wang, Y., Ren, Z., and Yang, Y. (2024). Self-supervised learning on millions of primary RNA sequences from 72 vertebrates improves sequence-based RNA splicing prediction. Briefings in Bioinformatics 25, bbae163.
  65. Karollus, A., Hingerl, J., Gankin, D., Grosshauser, M., Klemon, K., and Gagneur, J. (2024). Species-aware DNA language models capture regulatory elements and their evolution. Genome Biology 25, 83.
  66. Fishman, V., Kuratov, Y., Petrov, M., Shmelev, A., Shepelin, D., Chekanov, N., Kardymon, O., and Burtsev, M. (2023). GENA-LM: A Family of Open-Source Foundational Models for Long DNA Sequences. bioRxiv preprint. https://www.biorxiv.org/content/early/2023/06/13/2023.06.12.544594. doi:10.1101/2023.06.12.544594.
  67. Sanabria, M., Hirsch, J., and Poetsch, A. R. (2023). The human genome’s vocabulary as proposed by the DNA language model GROVER. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2023.07.19.549677v2.
  68. Zhang, D., Zhang, W., He, B., Zhang, J., Qin, C., and Yao, J. (2023). DNAGPT: A generalized pretrained tool for multiple DNA sequence analysis tasks. bioRxiv preprint. https://arxiv.org/abs/2307.05628.
  69. Chu, Y., Yu, D., Li, Y., Huang, K., Shen, Y., Cong, L., Zhang, J., and Wang, M. (2024). A 5’ UTR language model for decoding untranslated regions of mRNA and function predictions. Nature Machine Intelligence 6, 449–460.
  70. Lorenz, R., Bernhart, S. H., H¨oner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., and Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology 6, 1–14.
  71. Robson, E. S., and Ioannidis, N. M. (2023). GUANinE v1. 0: Benchmark Datasets for Genomic AI Sequence-to-Function Models. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2023.10.12.562113v3.
  72. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research 21, 1–67. http://jmlr.org/papers/v21/20-074.html.
  73. Kudo, T. Subword regularization: Improving neural network translation models with multiple subword candidates. In: Gurevych, I., and Miyao, Y., eds. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics (2018):( 66–75). https://aclanthology.org/P18-1007. doi:10.18653/v1/P18-1007.
  74. Richard, G., de Almeida, B. P., Dalla-Torre, H., Blum, C., Hexemer, L., Pandey, P., Laurent, S., Lopez, M. P., Laterre, A., Lang, M. et al. (2024). ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2024.04.30.591835v1.
  75. Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E., Stoica, I., and Xing, E. P. Vicuna: An Open-Source Chat- bot Impressing GPT-4 with 90%* ChatGPT Quality (2023). https://lmsys.org/blog/2023-03-30-vicuna/.
  76. He, Y., Fang, P., Shan, Y., Pan, Y., Wei, Y., Chen, Y., Chen, Y., Liu, Y., Zeng, Z., Zhou, Z. et al. (2024). LucaOne: Generalized Biological Foundation Model with Unified Nucleic Acid and Protein Language. bioRxiv preprint ( 2024–05). https://www.biorxiv.org/content/10.1101/2024.05.10.592927v1.
  77. Zhu, X., Qin, C., Wang, F., Yang, F., He, B., Zhao, Y., and Yao, J. (2024). CD-GPT: A Biological Foundation Model Bridging the Gap between Molecular Sequences Through Central Dogma. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2024.06.24.600337v1.
  78. Cornman, A., West-Roberts, J., Camargo, A. P., Roux, S., Beracochea, M., Mirdita, M., Ovchinnikov, S., and Hwang, Y. (2024). The OMG dataset: An Open MetaGenomic corpus for mixed-modality genomic language modeling. bioRxiv preprint ( 2024–08). https://www.biorxiv.org/content/10.1101/2024.08.14.607850v1.
  79. Markowitz, V. M., Chen, I.-M. A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P. et al. (2012). IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Research 40, D115–D122.
  80. Richardson, L., Allen, B., Baldi, G., Beracochea, M., Bileschi, M. L., Burdett, T., Burgin, J., Caballero-P´erez, J., Cochrane, G., Colwell, L. J. et al. (2023). MGnify: the microbiome sequence data analysis resource in 2023. Nucleic Acids Research 51, D753–D759.
  81. Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N., Presser, S., and Leahy, C. (2020). The Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv preprint arXiv:2101.00027. https://arxiv.org/abs/2101.00027.
  82. Longpre, S., Biderman, S., Albalak, A., Schoelkopf, H., McDuff, D., Kapoor, S., Klyman, K., Lo, K., Ilharco, G., San, N. et al. (2024). The responsible foundation model development cheatsheet: A review of tools & resources. arXiv preprint arXiv:2406.16746. https://arxiv.org/abs/2406.16746.
  83. Sullivan, P. F., Meadows, J. R., Gazal, S., Phan, B. N., Li, X., Genereux, D. P., Dong, M. X., Bianchi, M., Andrews, G., Sakthikumar, S. et al. (2023). Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science 380, eabn2937.
  84. Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D., Callison-Burch, C., and Carlini, N. Deduplicating training data makes language models better. In: Muresan, S., Nakov, P., and Villavicencio, A., eds. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Compu- tational Linguistics (2022):( 8424–8445). https://aclanthology.org/2022.acl-long.577. doi:10.18653/v1/2022.acl-long.577.
  85. Schoenfelder, S., and Fraser, P. (2019). Long-range enhancer–promoter contacts in gene expression control. Nature Reviews Genetics 20, 437–455.
  86. Karnuta, J. M., and Scacheri, P. C. (2018). Enhancers: bridging the gap between gene control and human disease. Human Molecular Genetics 27, R219–R227.
  87. King, J. L., and Jukes, T. H. (1969). Non-darwinian evolution. Science 164, 788–798. doi:10.1126/science.164.3881.788.
  88. Tay, Y., Dehghani, M., Gupta, J. P., Aribandi, V., Bahri, D., Qin, Z., and Metzler, D. Are pretrained convolutions better than pretrained transformers? In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (2021):( 4349–4359). https://aclanthology.org/2021.acl-long.335/.
  89. Yang, K. K., Fusi, N., and Lu, A. X. (2024). Convolutions are competitive with transformers for protein sequence pretraining. Cell Systems 15, 286–294.
  90. Linder, J., Srivastava, D., Yuan, H., Agarwal, V., and Kelley, D. R. (2023). Predicting RNA-seq coverage from DNA sequence as a unifying model of gene regulation. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2023.08.30.555582v1.
  91. Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. (2024). Roformer: Enhanced transformer with rotary position embedding. Neurocomputing 568, 127063.
  92. Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and Salakhutdinov, R. Transformer-XL: Attentive Language Models beyond a Fixed-Length Context. In: Korhonen, A., Traum, D. R., and M`arquez, L., eds. Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. Association for Computational Linguistics (2019):( 2978–2988). https://doi.org/10.18653/v1/p19-1285. doi:10.18653/V1/P19-1285.
  93. Yu, L., Simig, D., Flaherty, C., Aghajanyan, A., Zettlemoyer, L., and Lewis, M. MEGABYTE: Predicting million-byte sequences with multiscale transformers. In: Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., eds. Advances in Neural Information Processing Systems vol. 36. Curran Associates, Inc. (2023):( 78808–78823). https://proceedings.neurips.cc/paper_files/paper/2023/file/f8f78f8043f35890181a824e53a57134-Paper-Conference.pdf.
  94. Gu, A., Goel, K., and Re, C. Efficiently modeling long sequences with structured state spaces. In: International Conference on Learning Representations (2022):.
  95. Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T., Baccus, S., Bengio, Y., Ermon, S., and R´e, C. Hyena Hierarchy: Towards larger convolutional language models. In: International Conference on Machine Learning. PMLR (2023):( 28043–28078).
  96. Gu, A., and Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752. https://arxiv.org/abs/2312.00752.
  97. Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L., Ma, J., and Ferguson, A. L. (2021). Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences 118, e2016239118.
  98. Cheng, X., Chen, B., Li, P., Gong, J., Tang, J., and Song, L. (2024). Training compute-optimal protein language models. bioRxiv preprint. https://www.biorxiv.org/content/ 10.1101/2024.06.06.597716v1.
  99. Samuel, D. (2024). BERTs are Generative In-Context Learners. arXiv:2406.04823. https://arxiv.org/abs/2406.04823. arXiv preprint
  100. Hayes, T., Rao, R., Akin, H., Sofroniew, N. J., Oktay, D., Lin, Z., Verkuil, R., Tran, V. Q., Deaton, J., Wiggert, M. et al. (2024). Simulating 500 million years of evolution with a language model. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2024.07.01.600583v1.
  101. Sennrich, R., Haddow, B., and Birch, A. Neural machine translation of rare words with subword units. In: Erk, K., and Smith, N. A., eds. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics (2016):( 1715–1725). https://aclanthology.org/P16-1162. doi:10.18653/v1/P16-1162.
  102. Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F., Roskin, K. M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E. D. et al. (2004). Aligning multiple genomic sequences with the threaded blockset aligner. Genome Research 14, 708–715.
  103. Armstrong, J., Hickey, G., Diekhans, M., Fiddes, I. T., Novak, A. M., Deran, A., Fang, Q., Xie, D., Feng, S., Stiller, J. et al. (2020). Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251.
  104. Song, B., Buckler, E. S., and Stitzer, M. C. (2024). New whole-genome alignment tools are needed for tapping into plant diversity. Trends in Plant Science 29, 355–369.
  105. Phan, M. H., Zehnder, T. M., Puntieri, F., Lo, B.-W., Lenhard, B., Mueller, F., Vingron, M., and Ibrahim, D. M. (2024). Conservation of regulatory elements with highly diverged sequences across large evolutionary distances. bioRxiv preprint ( 2024–05). https://www.biorxiv.org/content/10.1101/2024.05.13.590087v1.
  106. Linardatos, P., Papastefanopoulos, V., and Kotsiantis, S. (2020). Explainable AI: A review of machine learning interpretability methods. Entropy 23, 18.
  107. Zhang, Y., Tiˇno, P., Leonardis, A., and Tang, K. (2021). A survey on neural network inter-pretability. IEEE Transactions on Emerging Topics in Computational Intelligence 5, 726–742.
  108. Talukder, A., Barham, C., Li, X., and Hu, H. (2021). Interpretation of deep learning in genomics and epigenomics. Briefings in Bioinformatics 22, bbaa177.
  109. Shrikumar, A., Tian, K., Avsec, Z., Shcherbina, A., Banerjee, A., Sharmin, M., Nair, S., and Kundaje, A. (2018). Technical note on transcription factor motif discovery from importance scores (TF-MoDISco) version 0.5. 6.5. arXiv preprint arXiv:1811.00416. https://arxiv.org/abs/1811.00416.
  110. Fowler, D. M., Adams, D. J., Gloyn, A. L., Hahn, W. C., Marks, D. S., Muffley, L. A., Neal, J. T., Roth, F. P., Rubin, A. F., Starita, L. M., and Hurles, M. E. (2023). An Atlas of Variant Effects to understand the genome at nucleotide resolution. Genome Biology 24, 147.
  111. Kircher, M., Xiong, C., Martin, B., Schubach, M., Inoue, F., Bell, R. J. A., Costello, J. F., Shendure, J., and Ahituv, N. (2019). Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nature Communications 10. doi:10.1038/s41467-019-11526-w.
  112. Findlay, G. M., Daza, R. M., Martin, B., Zhang, M. D., Leith, A. P., Gasperini, M., Janizek, J. D., Huang, X., Starita, L. M., and Shendure, J. (2018). Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222.
  113. Notin, P., Kollasch, A. W., Ritter, D., Niekerk, L. V., Paul, S., Spinner, H., Rollins, N. J., Shaw, A., Orenbuch, R., Weitzman, R., Frazer, J., Dias, M., Franceschi, D., Gal, Y., and Marks, D. S. ProteinGym: Large-Scale Benchmarks for Protein Fitness Prediction and Design. In: Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2023):https://openreview.net/forum?id=URoZHqAohf.
  114. Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W. et al. (2016). ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Research 44, D862–D868.
  115. Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Heywood, S., Hussain, M., Phillips, A. D., and Cooper, D. N. (2017). The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Human Genetics 136, 665–677. doi:10.1007/s00439-017-1779-6.
  116. Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F., and Hamosh, A. (2015). OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Research 43, D789–D798.
  117. Pritchard, J. K., and Cox, N. (2002). The allelic architecture of human disease genes: common disease–common variant...or not? Human Molecular Genetics 11, 2417–2423. doi:10.1093/hmg/11.20.2417.
  118. Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alf¨oldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., Walters, R. K., Tashman, K., Farjoun, Y., Banks, E., Poterba, T., Consortium, G. A. D., and MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443. doi:10.1038/s41586-020-2308-7.
  119. Vapnik, V. N. The Nature of Statistical Learning Theory. New York: Springer (1999).
  120. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 115, 211–252. doi:10.1007/s11263-015-0816-y.
  121. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., and Tramontano, A. (2018). Critical assessment of methods of protein structure prediction (CASP)—round XII. Proteins: Structure, Function, and Bioinformatics 86, 7–15.
  122. Johnson, A. D., Handsaker, R. E., Pulit, S. L., Nizzari, M., O’Donnell, C. J., and de Bakker, P. I. (2017). CAGI: The Critical Assessment of Genome Interpretation. Genome Biology 18, 1–5.
  123. Grimm, D. G., Azencott, C.-A., Aicheler, F., Gieraths, U., MacArthur, D. G., Samocha, K. E., Cooper, D. N., Stenson, P. D., Daly, M. J., Smoller, J. W. et al. (2015). The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Human Mutation 36, 513–523.
  124. Hartl, D. L., Clark, A. G., and Clark, A. G. Principles of population genetics vol. 116. Sinauer associates Sunderland, MA (1997).
  125. Livesey, B. J., Badonyi, M., Dias, M., Frazer, J., Kumar, S., Lindorff-Larsen, K., McCandlish, D. M., Orenbuch, R., Shearer, C. A., Muffley, L. et al. (2024). Guidelines for releasing a variant effect predictor. arXiv preprint. https://arxiv.org/abs/2404.10807.
  126. Gupta, A., Lal, A., Gunsalus, L. M., Biancalani, T., and Eraslan, G. (2023). Polygraph: A software framework for the systematic assessment of synthetic regulatory DNA elements. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2023.11.27.568764v2.
  127. Consortium, E. P. et al. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.
  128. Kundaje, A., Meuleman, W., Ernst, J. et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330.
  129. Greˇsov´a, K., Martinek, V., Cech´ak, D., Simeˇcek, P., and Alexiou, P. (2023). Genomic bench-marks: a collection of datasets for genomic sequence classification. BMC Genomic Data 24, Article number: 25.
  130. Helfrich, G. (2024). The harms of terminology: why we should reject so-called “frontier AI”. AI and Ethics ( 1–7).

Related document on Qiita

Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39

A dna language model based on multispecies alignment predicts the effects of genome-wide variants
https://qiita.com/kaizen_nagoya/items/6e8858c2395dcc98804a

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?