OpenAI, :, A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda, A. Hayes, A. Radford, A. M ˛adry, A. Baker-Whitcomb, A. Beutel, A. Borzunov, A. Carney, A. Chow, A. Kirillov, A. Nichol, A. Paino, A. Renzin, A. T. Passos, A. Kirillov, A. Christakis, A. Conneau, A. Kamali, A. Jabri, A. Moyer, A. Tam, A. Crookes, A. Tootoochian, A. Tootoonchian, A. Kumar, A. Vallone, A. Karpathy, A. Braunstein, A. Cann, A. Codispoti, A. Galu, A. Kondrich, A. Tulloch, A. Mishchenko, A. Baek, A. Jiang, A. Pelisse, A. Woodford, A. Gosalia, A. Dhar, A. Pantuliano, A. Nayak, A. Oliver, B. Zoph, B. Ghorbani, B. Leimberger, B. Rossen, B. Sokolowsky, B. Wang, B. Zweig, B. Hoover, B. Samic, B. McGrew, B. Spero, B. Giertler, B. Cheng, B. Lightcap, B. Walkin, B. Quinn, B. Guarraci, B. Hsu, B. Kellogg, B. Eastman, C. Lugaresi, C. Wainwright, C. Bassin, C. Hudson, C. Chu, C. Nelson, C. Li, C. J. Shern, C. Conger, C. Barette, C. Voss, C. Ding, C. Lu, C. Zhang, C. Beaumont, C. Hallacy, C. Koch, C. Gibson, C. Kim, C. Choi, C. McLeavey, C. Hesse, C. Fischer, C. Winter, C. Czarnecki, C. Jarvis, C. Wei, C. Koumouzelis, D. Sherburn, D. Kappler, D. Levin, D. Levy, D. Carr, D. Farhi, D. Mely, D. Robinson, D. Sasaki, D. Jin, D. Valladares, D. Tsipras, D. Li, D. P. Nguyen, D. Findlay, E. Oiwoh, E. Wong, E. Asdar, E. Proehl, E. Yang, E. Antonow, E. Kramer, E. Peterson, E. Sigler, E. Wallace, E. Brevdo, E. Mays, F. Khorasani, F. P. Such, F. Raso, F. Zhang, F. von Lohmann, F. Sulit, G. Goh, G. Oden, G. Salmon, G. Starace, G. Brockman, H. Salman, H. Bao, H. Hu, H. Wong, H. Wang, H. Schmidt, H. Whitney, H. Jun, H. Kirchner, H. P. de Oliveira Pinto, H. Ren, H. Chang, H. W. Chung, I. Kivlichan, I. O’Connell, I. O’Connell, I. Osband, I. Silber, I. Sohl, I. Okuyucu, I. Lan, I. Kostrikov, I. Sutskever, I. Kanitscheider, I. Gulrajani, J. Coxon, J. Menick, J. Pachocki, J. Aung, J. Betker, J. Crooks, J. Lennon, J. Kiros, J. Leike, J. Park, J. Kwon, J. Phang, J. Teplitz, J. Wei, J. Wolfe, J. Chen, J. Harris, J. Varavva, J. G. Lee, J. Shieh, J. Lin, J. Yu, J. Weng, J. Tang, J. Yu, J. Jang, J. Q. Candela, J. Beutler, J. Landers, J. Parish, J. Heidecke, J. Schulman, J. Lachman, J. McKay, J. Uesato, J. Ward, J. W. Kim, J. Huizinga, J. Sitkin, J. Kraaijeveld, J. Gross, J. Kaplan, J. Snyder, J. Achiam, J. Jiao, J. Lee, J. Zhuang, J. Harriman, K. Fricke, K. Hayashi, K. Singhal, K. Shi, K. Karthik, K. Wood, K. Rimbach, K. Hsu, K. Nguyen, K. Gu-Lemberg, K. Button, K. Liu, K. Howe, K. Muthukumar, K. Luther, L. Ahmad, L. Kai, L. Itow, L. Workman, L. Pathak, L. Chen, L. Jing, L. Guy, L. Fedus, L. Zhou, L. Mamitsuka, L. Weng, L. McCallum, L. Held, L. Ouyang, L. Feuvrier, L. Zhang, L. Kondraciuk, L. Kaiser, L. Hewitt, L. Metz, L. Doshi, M. Aflak, M. Simens, M. Boyd, M. Thompson, M. Dukhan, M. Chen, M. Gray, M. Hudnall, M. Zhang, M. Aljubeh, M. Litwin, M. Zeng, M. Johnson, M. Shetty, M. Gupta, M. Shah, M. Yatbaz, M. J. Yang, M. Zhong, M. Glaese, M. Chen, M. Janner, M. Lampe, M. Petrov, M. Wu, M. Wang, M. Fradin, M. Pokrass, M. Castro, M. O. T. de Castro, M. Pavlov, M. Brundage, M. Wang, M. Khan, M. Murati, M. Bavarian, M. Lin, M. Yesildal, N. Soto, N. Gimelshein, N. Cone, N. Staudacher, N. Summers, N. LaFontaine, N. Chowdhury, N. Ryder, N. Stathas, N. Turley, N. Tezak, N. Felix, N. Kudige, N. Keskar, N. Deutsch, N. Bundick, N. Puckett, O. Nachum, O. Okelola, O. Boiko, O. Murk, O. Jaffe, O. Watkins, O. Godement, O. Campbell-Moore, P. Chao, P. McMillan, P. Belov, P. Su, P. Bak, P. Bakkum, P. Deng, P. Dolan, P. Hoeschele, P. Welinder, P. Tillet, P. Pronin, P. Tillet, P. Dhariwal, Q. Yuan, R. Dias, R. Lim, R. Arora, R. Troll, R. Lin, R. G. Lopes, R. Puri, R. Miyara, R. Leike, R. Gaubert, R. Zamani, R. Wang, R. Donnelly, R. Honsby, R. Smith, R. Sahai, R. Ramchandani, R. Huet, R. Carmichael, R. Zellers, R. Chen, R. Chen, R. Nigmatullin, R. Cheu, S. Jain, S. Altman, S. Schoenholz, S. Toizer, S. Miserendino, S. Agarwal, S. Culver, S. Ethersmith, S. Gray, S. Grove, S. Metzger, S. Hermani, S. Jain, S. Zhao, S. Wu, S. Jomoto, S. Wu, Shuaiqi, Xia, S. Phene, S. Papay, S. Narayanan, S. Coffey, S. Lee, S. Hall, S. Balaji, T. Broda, T. Stramer, T. Xu, T. Gogineni, T. Christianson, T. Sanders, T. Patwardhan, T. Cunninghman, T. Degry, T. Dimson, T. Raoux, T. Shadwell, T. Zheng, T. Underwood, T. Markov, T. Sherbakov, T. Rubin, T. Stasi, T. Kaftan, T. Heywood, T. Peterson, T. Walters, T. Eloundou, V. Qi, V. Moeller, V. Monaco, V. Kuo, V. Fomenko, W. Chang, W. Zheng, W. Zhou, W. Manassra, W. Sheu, W. Zaremba, Y. Patil, Y. Qian, Y. Kim, Y. Cheng, Y. Zhang, Y. He, Y. Zhang, Y. Jin, Y. Dai, and Y. Malkov. Gpt-4o system card. 10 2024. URL https://arxiv.org/pdf/2410.21276.
References
[1] OpenAI, “Hello gpt-4,” 2024.
[2] T. Stivers, N. J. Enfield, P. Brown, C. Englert, M. Hayashi, T. Heinemann, G. Hoymann, F. Rossano, J. P. de Ruiter, K. E. Yoon, and S. C. Levinson, “Universals and cultural variation in turn-taking in conversation,” Proceedings of the National Academy of Sciences, vol. 106, no. 26, pp. 10587–10592, 2009.
[3] The White House, “Fact sheet: Biden-harris administration secures voluntary commitments from leading artificial intelligence companies to manage the risks posed by ai,” 2023.
[4] OpenAI, “Openai preparedness framework beta,” 2023. https://cdn.openai.com/openai-preparedness-framework-beta.pdf.
[5] Shutterstock, “Shutterstock press release,” 2023.
[6] OpenAI, “Gpt-4 technical report,” 2023.
[7] OpenAI, “Gpt-4v(ision) system card.” https://openai.com/index/gpt-4v-system-card/, 2023. Accessed: 2024-07-22.
[8] OpenAI, “Navigating the challenges and opportunities of synthetic voices.” https://openai.com/index/navigating-the-challenges-and-opportunities-of-synthetic-voices/, 2024. Accessed: 2024-07-22.
[9] K. T. Mai, S. Bray, T. Davies, and L. D. Griffin, “Warning: Humans cannot reliably detect speech deepfakes,” PLoS One, vol. 18, p. e0285333, Aug. 2023.
[10] M. Mori, K. F. MacDorman, and N. Kageki, “The uncanny valley [from the field],” IEEE Robotics & automation magazine, vol. 19, no. 2, pp. 98–100, 2012.
[11] OpenAI, “How the voices for chatgpt were chosen,” 2024.
[12] I. Solaiman, Z. Talat, W. Agnew, L. Ahmad, D. Baker, S. L. Blodgett, C. Chen, H. D. I. au2, J. Dodge, I. Duan, E. Evans, F. Friedrich, A. Ghosh, U. Gohar, S. Hooker, Y. Jernite, R. Kalluri, A. Lusoli, A. Leidinger, M. Lin, X. Lin, S. Luccioni, J. Mickel, M. Mitchell, J. Newman, A. Ovalle, M.-T. Png, S. Singh, A. Strait, L. Struppek, and A. Subramonian, “Evaluating the social impact of generative ai systems in systems and society,” 2024.
[13] R. Shelby, S. Rismani, K. Henne, A. Moon, N. Rostamzadeh, P. Nicholas, N. Yilla, J. Gallegos, A. Smart, E. Garcia, and G. Virk, “Sociotechnical harms of algorithmic systems: Scoping a taxonomy for harm reduction,” 2023.
[14] S. L. Blodgett, Q. V. Liao, A. Olteanu, R. Mihalcea, M. Muller, M. K. Scheuerman, C. Tan, and Q. Yang, “Responsible language technologies: Foreseeing and mitigating harms,” in Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, CHI EA ’22, (New York, NY, USA), Association for Computing Machinery, 2022.
[15] H. Suresh and J. Guttag, “A framework for understanding sources of harm throughout the machine learning life cycle,” in Equity and Access in Algorithms, Mechanisms, and Optimization, EAAMO ’21, ACM, Oct. 2021.
[16] S. Shahriar, S. Allana, S. M. Hazratifard, and R. Dara, “A survey of privacy risks and mitigation strategies in the artificial intelligence life cycle,” IEEE Access, vol. 11, pp. 61829–61854, 2023.
[17] OpenAI, “Moderation overview,” 2024.
[18] A. Tamkin, M. Brundage, J. Clark, and D. Ganguli, “Understanding the capabilities, limitations, and societal impact of large language models,” 2021.
[19] B. Buchanan, A. Lohn, M. Musser, and K. Sedova, “Truth, lies, and automation: How language models could change disinformation,” May 2021.
[20] OpenAI, “Openai usage policies,” 2023. https://openai.com/policies/usagepolicies/.
[21] OpenAI, “Building an early warning system for llm-aided biological threat creation,” 2024. https://openai.com/index/building-an-early-warning-system-for-llm-aided-biological-threat-creation/.
[22] Deloitte, “Deloitte acquires gryphon scientific business to expand security science and public health capabilities,” 2024. https://www2.deloitte.com/us/en/pages/about-deloitte/articles/press-releases/deloitte-acquires-gryphon-scientific-business-to-expand-security-science-and-public-health-capabilities.html.
[23] L. Weidinger, M. Rauh, N. Marchal, A. Manzini, L. A. Hendricks, J. Mateos-Garcia, S. Bergman, J. Kay, C. Griffin, B. Bariach, I. Gabriel, V. Rieser, and W. Isaac, “Sociotechnical safety evaluation of generative ai systems,” 2023.
[24] A. Tamkin, A. Askell, L. Lovitt, E. Durmus, N. Joseph, S. Kravec, K. Nguyen, J. Kaplan, and D. Ganguli, “Evaluating and mitigating discrimination in language model decisions,” 2023.
[25] J. A. Goldstein, G. Sastry, M. Musser, R. DiResta, M. Gentzel, and K. Sedova, “Generative language models and automated influence operations: Emerging threats and potential mitigations,” 2023.
[26] I. Pentina, T. Hancock, and T. Xie, “Exploring relationship development with social chatbots: A mixed-method study of replika,” Computers in Human Behavior, vol. 140, p. 107600, 2023.
[27] Y. Bengio, G. Hinton, A. Yao, D. Song, P. Abbeel, T. Darrell, Y. N. Harari, Y.-Q. Zhang, L. Xue, S. Shalev-Shwartz, G. Hadfield, J. Clune, T. Maharaj, F. Hutter, A. G. Baydin, S. McIlraith, Q. Gao, A. Acharya, D. Krueger, A. Dragan, P. Torr, S. Russell, D. Kahneman, J. Brauner, and S. Mindermann, “Managing extreme ai risks amid rapid progress,” Science, vol. 384, no. 6698, pp. 842–845, 2024.
[28] S. B. Johnson, J. R. Clark, M. C. Luetke, N. M. Butala, A. T. Pearson, J. M. Shapiro, D. M. Aleman, J. M. Lee, M. M. Beil, C. V. Winkle, M. C. Boudreaux, R. C. D’Cunha, H. J. Krouse, and C. Li, “Chatgpt in medical education: a workshop-based large language model-powered intervention for evidence-based clinical decision making in medical students,” Nature Medicine, vol. 29, pp. 1534–1542, 2023.
[29] K. Kavukcuoglu, “Real-world challenges for agi,” Nov 2021.
[30] S. Altman, “Planning for agi and beyond,” OpenAI, 2023.
[31] T. Eloundou, S. Manning, P. Mishkin, and D. Rock, “Gpts are gpts: An early look at the labor market impact potential of large language models,” arXiv preprint arXiv:2303.10130, 2023.
[32] L. Weidinger, M. Rauh, N. Marchal, A. Manzini, L. A. Hendricks, J. Mateos-Garcia, S. Bergman, J. Kay, C. Griffin, B. Bariach, et al., “Sociotechnical safety evaluation of generative ai systems,” arXiv preprint arXiv:2310.11986, 2023.
[33] S. Cox, M. Hammerling, J. Lála, J. Laurent, S. Rodriques, M. Rubashkin, and A. White, “Wikicrow: Automating synthesis of human scientific knowledge,” Future House, 2023.
[34] S. A. Athaluri, S. V. Manthena, V. S. R. K. M. Kesapragada, V. Yarlagadda, T. Dave, and R. T. S. Duddumpudi, “Exploring the boundaries of reality: Investigating the phenomenon of artificial intelligence hallucination in scientific writing through chatgpt references,” Cureus, vol. 15, no. 4, p. e37432, 2023.
[35] Z. Li, “The dark side of chatgpt: Legal and ethical challenges from stochastic parrots and hallucination,” 2023.
[36] M. Dubiel, A. Sergeeva, and L. A. Leiva, “Impact of voice fidelity on decision making: A potential dark pattern?,” 2024.
[37] B. Waber, M. Williams, J. S. Carroll, and A. S. Pentland, “A voice is worth a thousand words: The implications of the micro-coding of social signals in speech for trust research,” in Handbook of Research Methods on Trust (G. M. Fergus Lyon and M. N. Saunders, eds.), ch. 23, p. 320, New York: Edward Elgar Publishing, 2011.
[38] I. Pentina, B. Guo, and W. P. Fan, “Friend, mentor, lover: Does chatbot engagement lead to psychological dependence?,” Journal of Service Management, 2023.
[39] H. Nori, N. King, S. M. McKinney, D. Carignan, and E. Horvitz, “Capabilities of gpt-4 on medical challenge problems,” arXiv preprint arXiv:2303.13375, 2023.
[40] H. Nori, Y. T. Lee, S. Zhang, D. Carignan, R. Edgar, N. Fusi, N. King, J. Larson, Y. Li, W. Liu, et al., “Can generalist foundation models outcompete special-purpose tuning? case study in medicine,” arXiv preprint arXiv:2311.16452, 2023.
[41] K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl, P. Payne, M. Seneviratne, P. Gamble, C. Kelly, N. Scharli, A. Chowdhery, P. Mansfield, B. A. y Arcas, D. Webster, G. S. Corrado, Y. Matias, K. Chou, J. Gottweis, N. Tomasev, Y. Liu, A. Rajkomar, J. Barral, C. Semturs, A. Karthikesalingam, and V. Natarajan, “Large language models encode clinical knowledge,” 2022.
[42] K. Singhal, T. Tu, J. Gottweis, R. Sayres, E. Wulczyn, L. Hou, K. Clark, S. Pfohl, H. Cole-Lewis, D. Neal, M. Schaekermann, A. Wang, M. Amin, S. Lachgar, P. Mansfield, S. Prakash, B. Green, E. Dominowska, B. A. y Arcas, N. Tomasev, Y. Liu, R. Wong, C. Semturs, S. S. Mahdavi, J. Barral, D. Webster, G. S. Corrado, Y. Matias, S. Azizi, A. Karthikesalingam, and V. Natarajan, “Towards expert-level medical question answering with large language models,” 2023.
[43] K. Saab, T. Tu, W.-H. Weng, R. Tanno, D. Stutz, E. Wulczyn, F. Zhang, T. Strother, C. Park, E. Vedadi, J. Z. Chaves, S.-Y. Hu, M. Schaekermann, A. Kamath, Y. Cheng, D. G. T. Barrett, C. Cheung, B. Mustafa, A. Palepu, D. McDuff, L. Hou, T. Golany, L. Liu, J. baptiste Alayrac, N. Houlsby, N. Tomasev, J. Freyberg, C. Lau, J. Kemp, J. Lai, S. Azizi, K. Kanada, S. Man, K. Kulkarni, R. Sun, S. Shakeri, L. He, B. Caine, A. Webson, N. Latysheva, M. Johnson, P. Mansfield, J. Lu, E. Rivlin, J. Anderson, B. Green, R. Wong, J. Krause, J. Shlens, E. Dominowska, S. M. A. Eslami, K. Chou, C. Cui, O. Vinyals, K. Kavukcuoglu, J. Manyika, J. Dean, D. Hassabis, Y. Matias, D. Webster, J. Barral, G. Corrado, C. Semturs, S. S. Mahdavi, J. Gottweis, A. Karthikesalingam, and V. Natarajan, “Capabilities of gemini models in medicine,” 2024.
[44] Epic Systems Corporation, “Epic and microsoft bring gpt-4 to ehrs,” Epic, 2023.
[45] D. Van Veen, C. Van Uden, L. Blankemeier, J.-B. Delbrouck, A. Aali, C. Bluethgen, A. Pareek, M. Polacin, E. P. Reis, A. Seehofnerová, et al., “Adapted large language models can outperform medical experts in clinical text summarization,” Nature medicine, vol. 30, no. 4, pp. 1134–1142, 2024.
[46] Epic, “Epic and microsoft bring gpt-4 to ehrs,” 2023.
[47] P. Garcia, S. P. Ma, S. Shah, M. Smith, Y. Jeong, A. Devon-Sand, M. Tai-Seale, K. Takazawa, D. Clutter, K. Vogt, C. Lugtu, M. Rojo, S. Lin, T. Shanafelt, M. A. Pfeffer, and C. Sharp, “Artificial Intelligence–Generated Draft Replies to Patient Inbox Messages,” JAMA Network Open, vol. 7, pp. e243201–e243201, 03 2024.
[48] OpenAI, “Paradigm: Improving patient access to clinical trials.” https://openai.com/index/paradigm/, 2024. Accessed: 2024-08-07.
[49] M. Hutson, “How ai is being used to accelerate clinical trials,” Nature, vol. 627, pp. S2–S5, 2024.
[50] OpenAI, “Using gpt-4o reasoning to transform cancer care.” https://openai.com/index/color-health/, 2024. Accessed: 2024-08-07.
[51] J. Varghese and J.-L. Chapiro, “Systematic analysis of chatgpt, google search and llama 2 for clinical decision support tasks,” Nature Communications, vol. 15, no. 1, p. 46411, 2024. Accessed: 2024-08-07.
[52] E. Schmidt, “Ai will transform science.” https://www.technologyreview.com/2023/07/05/1075865/eric-schmidt-ai-will-transform-science/, 2023. Accessed: 2024-08-07.
[53] N. Rosenberg, “Science, invention and economic growth,” The Economic Journal, vol. 84, no. 333, pp. 90–108, 1974.
[54] R. M. Atlas and M. Dando, “The dual-use dilemma for the life sciences: Perspectives, conundrums, and global solutions,”Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, vol. 4, no. 3, pp. 276–286, 2006. PMID:16999588.
[55] X. Gu and M. Krenn, “Generation and human-expert evaluation of interesting research ideas using knowledge graphs and large language models,” 2024.
[56] A. Ghafarollahi and M. J. Buehler, “Atomagents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence,” 2024.
[57] J. M. Laurent, J. D. Janizek, M. Ruzo, M. M. Hinks, M. J. Hammerling, S. Narayanan, M. Ponnapati, A. D. White, and S. G. Rodriques, “Lab-bench: Measuring capabilities of language models for biology research,” 2024.
[58] H. Cai, X. Cai, J. Chang, S. Li, L. Yao, C. Wang, Z. Gao, H. Wang, Y. Li, M. Lin, S. Yang, J. Wang, M. Xu, J. Huang, F. Xi, J. Zhuang, Y. Yin, Y. Li, C. Chen, Z. Cheng, Z. Zhao, L. Zhang, and G. Ke, “Sciassess: Benchmarking llm proficiency in scientific literature analysis,” 2024.
[59] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord, “Think you have solved question answering? try arc, the AI2 reasoning challenge,” CoRR, vol. abs/1803.05457, 2018.
[60] S. Lin, J. Hilton, and O. Evans, “Truthfulqa: Measuring how models mimic human falsehoods,” CoRR, vol. abs/2109.07958, 2021.
Related document on the Qiita
making reference list on biorxiv pdf file
https://qiita.com/kaizen_nagoya/items/75f6f93ce9872a5d622d
Genome modeling and design across all domains of life with evo 2
https://qiita.com/kaizen_nagoya/items/eecda74f758008633ee2
BIOREASON: DNA-LLMモデルによるマルチモーダル生物学的推論の動機付け
https://qiita.com/kaizen_nagoya/items/0718b214043a614deee0
Mckusick’s online mendelian inheritance in man (omim®)
https://qiita.com/kaizen_nagoya/items/c599d867201d1ffb1f4d
Anthropic. Claude 3.7 sonnet
https://qiita.com/kaizen_nagoya/items/4364d9c475114353cf2a
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
A dna language model based on multispecies alignment predicts the effects of genome-wide variants
https://qiita.com/kaizen_nagoya/items/6e8858c2395dcc98804a
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
Nucleotide transformer: building and evaluating robust foundation models for human genomics
https://qiita.com/kaizen_nagoya/items/1c147c2b095364f04ef7
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
DeepSeek-AI
https://qiita.com/kaizen_nagoya/items/bb5ee9f17c03e07659d8
Codontransformer: A multispecies codon optimizer using context-aware neural networks.
https://qiita.com/kaizen_nagoya/items/d4be1d4dd9eb307f09cc
Medrax: Medical reasoning agent for chest x-ray
https://qiita.com/kaizen_nagoya/items/94c7835b2f461452b2e7
Benchmarking dna foundation models for genomic sequence classification running title: Dna foundation models benchmarking.
https://qiita.com/kaizen_nagoya/items/01e3dde0d8274fee0fd8
Lora: Low-rank adaptation of large language models,
https://qiita.com/kaizen_nagoya/items/877058f681d77808b44c
kegg pull: a software package for the restful access and pulling from the kyoto encyclopedia of gene and genomes.
https://qiita.com/kaizen_nagoya/items/05be40565793f2b4f7f3
Genegpt: augmenting large language models with domain tools for improved access to biomedical information.
https://qiita.com/kaizen_nagoya/items/8897792ff52fb5e68a46
Kegg: biological systems database as a model of the real world.
https://qiita.com/kaizen_nagoya/items/f63573043eaf8f9c6a2c
Entrez direct: E-utilities on the unix command line
https://qiita.com/kaizen_nagoya/items/cc4bbde566e67abc93d9
Clinvar: Public archive of relationships among sequence variation and human phenotype.
https://qiita.com/kaizen_nagoya/items/8149b7a5a4f930490fad
Biobert: a pre-trained biomedical language representation model for biomedical text mining.
https://qiita.com/kaizen_nagoya/items/63781eb6db1fc2ded80a
Progress and opportunities of foundation models in bioinformatics. Briefings in Bioinformatics
https://qiita.com/kaizen_nagoya/items/6ef20eaf796532fed6f8
Bend: Benchmarking dna language models on biologically meaningful tasks.
https://qiita.com/kaizen_nagoya/items/8417e72454d2107a9d06
Hyenadna: Long-range genomic sequence modeling at single nucleotide resolution.
https://qiita.com/kaizen_nagoya/items/07e1ba1138b0825c8a73
Gpt-4o system card.
https://qiita.com/kaizen_nagoya/items/06e4c54af663456b49f9