Benchmarking dna foundation models for genomic sequence classification running title: Dna foundation models benchmarking.
H. Feng, L. Wu, B. Zhao, C. Huff, J. Zhang, J. Wu, L. Lin, P. Wei, C. Wu, P. W. pwei, and A. Professor. doi: 10.1101/2024.08.16.608288. URL https://doi.org/10.1101/2024.08.16.608288.
References
[1] OpenAI et al. GPT-4 Technical Report. Preprint at https://doi.org/10.48550/arXiv.2303.08774 (2024).
[2] Touvron, H. et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. Preprint at https://doi.org/10.48550/arXiv.2307.09288 (2023).
[3] Jiang, A. Q. et al. Mistral 7B. Preprint at https://doi.org/10.48550/arXiv.2310.06825 (2023).
[4] Chen, M. et al. Evaluating Large Language Models Trained on Code. Preprint at https://doi.org/10.48550/arXiv.2107.03374 (2021).
[5] Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat Biotechnol 41, 1099–1106 (2023).
[6] Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat Methods 1–11 (2024) doi:10.1038/s41592-024-02201-0.
[7] Lin, Z. et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. Preprint at https://doi.org/10.1101/2022.07.20.500902 (2022).
[8] Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).
[9] Wang, G. et al. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites. Biomed Res Int 2015, 757530 (2015).
[10] Zhou, Z. et al. DNABERT-2: Efficient Foundation Model and Benchmark For Multi-Species Genome. Preprint at https://doi.org/10.48550/arXiv.2306.15006 (2024).
[11] Dalla-Torre, H. et al. The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics. Preprint at https://doi.org/10.1101/2023.01.11.523679 (2023).
[12] Nguyen, E. et al. HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution. Preprint at https://doi.org/10.48550/arXiv.2306.15794 (2023).
[13] Genome Reference Consortium. Genome reference consortium human build 38 (grch38). National Center for Biotechnology Information, 2013. URL https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
[14] M. Byrska-Bishop, U. S. Evani, X. Zhao, A. O. Basile, H. J. Abel, A. A. Regier, A. Corvelo, W. E. Clarke, R. Musunuri, K. Nagulapalli, et al., “High-coverage whole-genome sequencing of the expanded 1000 genomes project cohort including 602 trios,” Cell, vol. 185, no. 18, pp. 3426– 3440, 2022.
[15] Hu, E. J. et al. LoRA: Low-Rank Adaptation of Large Language Models. Preprint at https://doi.org/10.48550/arXiv.2106.09685 (2021).
[16] Liu, H. et al. Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning. Preprint at https://doi.org/10.48550/arXiv.2205.05638 (2022).
[17] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Preprint at https://doi.org/10.48550/arXiv.1810.04805 (2019).
[18] Xu, H., Jia, P. & Zhao, Z. Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine sites by deep learning. Briefings in Bioinformatics 22, bbaa099 (2021).
[19] Liu, B., Long, R. & Chou, K.-C. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics 32, 2411–2418 (2016).
[20] Jin, J. et al. iDNA-ABF: multi-scale deep biological language learning model for the interpretable prediction of DNA methylations. Genome Biology 23, 219 (2022).
[21] Zhang, P., Zhang, H. & Wu, H. iPro-WAEL: a comprehensive and robust framework for identifying promoters in multiple species. Nucleic Acids Research 50, 10278–10289 (2022).
[22] Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based models still outperform deep learning on typical tabular data? Advances in Neural Information Processing Systems 35, 507–520 (2022).
[23] Gillioz, A., Casas, J., Mugellini, E. & Khaled, O. A. Overview of the Transformer-based Models for NLP Tasks. in Annals of Computer Science and Information Systems vol. 21 179–183 (2020).
[24] Zhang, H. & Shafiq, M. O. Survey of transformers and towards ensemble learning using transformers for natural language processing. Journal of Big Data 11, 25 (2024).
[25] Yang, X., Huang, J. Y., Zhou, W. & Chen, M. Parameter-Efficient Tuning with Special Token Adaptation. Preprint at https://doi.org/10.48550/arXiv.2210.04382 (2023).
[26] Hubert, L. & Arabie, P. Comparing partitions. Journal of Classification 2, 193–218 (1985).
[27] Vinh, N. X., Epps, J. & Bailey, J. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. Journal of Machine Learning Research 11, 2837–2854 (2010).
[28] Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987).
[29] Matthews, B. W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 405, 442–451 (1975).
[30] Marin, F. I. et al. BEND: Benchmarking DNA Language Models on biologically meaningful tasks. Preprint at https://doi.org/10.48550/arXiv.2311.12570 (2024).
[31] Lester, B., Al-Rfou, R. & Constant, N. The Power of Scale for Parameter-Efficient Prompt Tuning. Preprint at https://doi.org/10.48550/arXiv.2104.08691 (2021).
[32] Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, New York, NY, USA, 2016). doi:10.1145/2939672.2939785.
[33] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).
[34] DeLong, Elizabeth R., et al. “Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach.” Biometrics, vol. 44, no. 3, 1988, pp. 837–45. JSTOR, https://doi.org/10.2307/2531595.
Related document on the Qiita
making reference list on biorxiv pdf file
https://qiita.com/kaizen_nagoya/items/75f6f93ce9872a5d622d
Genome modeling and design across all domains of life with evo 2
https://qiita.com/kaizen_nagoya/items/eecda74f758008633ee2
BIOREASON: DNA-LLMモデルによるマルチモーダル生物学的推論の動機付け
https://qiita.com/kaizen_nagoya/items/0718b214043a614deee0
Mckusick’s online mendelian inheritance in man (omim®)
https://qiita.com/kaizen_nagoya/items/c599d867201d1ffb1f4d
Anthropic. Claude 3.7 sonnet
https://qiita.com/kaizen_nagoya/items/4364d9c475114353cf2a
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
A dna language model based on multispecies alignment predicts the effects of genome-wide variants
https://qiita.com/kaizen_nagoya/items/6e8858c2395dcc98804a
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
Nucleotide transformer: building and evaluating robust foundation models for human genomics
https://qiita.com/kaizen_nagoya/items/1c147c2b095364f04ef7
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
DeepSeek-AI
https://qiita.com/kaizen_nagoya/items/bb5ee9f17c03e07659d8
Codontransformer: A multispecies codon optimizer using context-aware neural networks.
https://qiita.com/kaizen_nagoya/items/d4be1d4dd9eb307f09cc
Medrax: Medical reasoning agent for chest x-ray
https://qiita.com/kaizen_nagoya/items/94c7835b2f461452b2e7
Benchmarking dna foundation models for genomic sequence classification running title: Dna foundation models benchmarking.
https://qiita.com/kaizen_nagoya/items/01e3dde0d8274fee0fd8