Progress and opportunities of foundation models in bioinformatics. Briefings in
[22] Q. Li, Z. Hu, Y. Wang, L. Li, Y. Fan, I. King, G. Jia, S. Wang, L. Song, and Y. Li., 25:548, 9 2024. ISSN 14774054. doi: 10.1093/BIB/BBAE548. URL https://dx.doi.org/10.1093/bib/bbae548.
References
- Hughes JP, Rees S, Kalindjian SB. et al. Principles of early drug discovery. Br J Pharmacol 2011;162:1239–49. 10.1111/j.1476-5381.2010.01127.x.
- Bommasani DA, Hudson E, Adeli E. et al. On the opportunities and risks of foundation models.arXiv preprint arXiv:2108.07258, 2021.
- Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25:44–56. 10.1038/s41591-018-0300-7.
- Park Y S, Lek S. Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling[M]. In: Jørgensen SE, (eds.), Developments in Environmental Modeling. Netherlands: Elsevier, 2016;28: 123–40, 10.1016/B978-0-444-63623-2.00007-4.
- Wang M, Tai CEW, Wei L. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants. Nucleic Acids Res 2018;46:e69–9. 10.1093/nar/gky215.
- Shen J, Liu F, Tu Y. et al. Finding gene network topologies for given biological function with recurrent neural network. Nat Commun 2021;12:3125. 10.1038/s41467-021-23420-5.
- Whalen S, Truty RM, Pollard KS. Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet 2016;48:488–96. 10.1038/ng.3539.
- Forster DT, Li SC, Yashiroda Y. et al. BIONIC: biological network integration using convolutions. Nat Methods 2022;19:1250–61. 10.1038/s41592-022-01616-x.
- Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat Commun 2022;13:1739. 10.1038/s41467-022-29439-6.
- Mahmud M, Kaiser MS, Hussain A. et al. Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst 2018;29:2063–79. 10.1109/TNNLS.2018.2790388.
- Wiggins WF, Tejani AS. On the opportunities and risks of foundation models for natural language processing in radiology. Radiol Artif Intell 2022;4:e220119. 10.1148/ryai.220119.
- Baker B, Akkaya I, Zhokov P. et al. Video pretraining (vpt): learning to act by watching unlabeled online videos. Adv Neural Inf Process Syst 2022;35:24639–54.
- Tack A, Piech C. The AI teacher test: measuring the pedagogical ability of blender and GPT-3 in educational dialogues. arXiv preprint arXiv:2205.07540, 2022.
- Moor M, Banerjee O, Abad ZSH. et al. Foundation models for generalist medical artificial intelligence. Nature 2023;616:259–65. 10.1038/s41586-023-05881-4.
- Rao R M, Liu J, Verkuil R. et al. MSA transformer. International Conference on Machine Learning PMLR 2021;139:8844–56.
- Sapoval N, Aghazadeh A, Nute MG. et al. Current progress and open challenges for applying deep learning across the biosciences. Nat Commun 2022;13:1728. 10.1038/s41467-022-29268-7.
- Theodoris CV, Xiao L, Chopra A. et al. Transfer learning enables predictions in network biology. Nature 2023;618:616–24. 10.1038/s41586-023-06139-9.
- Zou J, Huss M, Abid A. et al. A primer on deep learning in genomics. Nat Genet 2019;51:12–8. 10.1038/s41588-018-0295-5.
- Uhlmann V, Donati L, Sage D. A practical guide to supervised deep learning for bioimage analysis: challenges and good practices. IEEE Signal Process Mag 2022;39:73–86. 10.1109/MSP.2021.3123589.
- Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 2004;5:276–87. 10.1038/nrg1315.
- Howard J, Ruder S. Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146, 2018.
- Yuan L, Chen D, Chen YL. et al. Florence: a new foundation model for computervision, arXiv preprint arXiv:2111.11432, 2021.
- Devlin J, Chang MW, Lee K. et al. Bert: pre-training of deep bidirectional transformers for languageunderstanding. arXiv preprint arXiv:1810.04805, 2018.
- Lee J, Yoon W, Kim S. et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020;36:1234–40. 10.1093/bioinformatics/btz682.
- Gu Y, Tinn R, Cheng H. et al. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans Comput Healthc 2021;3:1–23.
- Ji Y, Zhou Z, Liu H. et al. DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language in genome. Bioinformatics 2021;37:2112–20. 10.1093/bioinformatics/btab083.
- Brandes N, Ofer D, Peleg Y. et al. Proteinbert: a universal deep-learning model of protein sequence and function. Bioinformatics 2022;38:2102–10. 10.1093/bioinformatics/btac020.
- Radford A, Wu J, Child R. et al. Language models are unsupervised multitask learners. OpenAI Blog 2019;1:9.
- Wu Y, Wang S, Yang H. et al. An early evaluation of gpt-4v(ision).arXiv preprintarXiv:2310.16534, 2023.
- Lin Z, Akin H, Rao R. et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv 500902, 2022.
- Hayes T, Rao R, Akin H. et al. Simulating 500 million years of evolution with a language model. bioRxiv 600583, 2024.
- Raffel C, Shazeer N, Roberts A. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 2020;21:1–67.
- Song K, Tan X, Qin T. et al. Mpnet: masked and permuted pre-training for language understanding. Adv Neural Inf Process Syst 2020;33:16857–67.
- Avsec Ž, Agarwal V, Visentin D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 2021;18:1196–203. 10.1038/s41592-021-01252-x.
- Xu M, Yuan X, Miret S. et al. Protst: multi-modality learning of protein sequences and biomedicaltexts. arXiv preprint arXiv:2301.12040, 2023.
- Ferruz N, Schmidt S, Höcker B. ProtGPT2 is a deep unsupervised language model for protein design. Nat Commun 2022;13:4348. 10.1038/s41467-022-32007-7.
- Chen B, Cheng X, Geng Y. et al. xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein. arXiv preprint arXiv:2401.06199, 2024.
- Liu Y and Tian B. Protein-DNA binding sites prediction based on pre-trained protein language model and contrastive learning [J]. arXiv preprint arXiv, 2023;2306:15912.
- Azher ZL, Suvarna A, Chen JQ. et al. Assessment of emerging pretraining strategies in interpretable multimodal deep learning for cancer prognostication. BioData Min 2023;16:23. 10.1186/s13040-023-00338-w.
- Liu Y, Tian B. Protein-DNA binding sites prediction based on pre-trained protein language model and contrastive learning. Briefings in Bioinformatics 2024;25.1:bbad488. 10.1093/bib/bbad488.
- Nguyen E, Poli M, Faizi M. et al. Hyenadna: long-range genomic sequence modeling at single nucleotide resolution. Advances in Neural Information Processing Systems, 2024;36.
- Cui H, Wang C, Maan H. et al. scGPT: towards building a foundation model for single-cell multi-omics using generative AI. Nature Methods 2024;1–11.
- Madani A, Krause B, Greene ER. et al. Large language models generate functional protein sequences across diverse families. Nat Biotechnol 2023;41:1099–106. 10.1038/s41587-022-01618-2.
- Senior AW, Evans R, Jumper J. et al. Improved protein structure prediction using potentials from deep learning. Nature 2020;577:706–10. 10.1038/s41586-019-1923-7.
- Walsh B, Mohamed SK, Nováček V. Biokg: A knowledge graph for relational learning on biological data. In: d'Aquin PM, Dietze PS, (eds.), Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM (Association for Computing Machinery), New York, NY, USA, 2020; 3173–3180.
- Bernstein NJ, Fong NL, Lam I. et al. Solo: doublet identification in single-cell RNA-seq via semi-supervised deep learning. Cell Syst 2020;11:95–101.e5e5. 10.1016/j.cels.2020.05.010.
- Brendel M, Su C, Bai Z. et al. Application of deep learning on single-cell RNA sequencing data analysis: a review. Genomics Proteomics Bioinformatics 2022;20:814–35. 10.1016/j.gpb.2022.11.011.
- Arisdakessian C, Poirion O, Yunits B. et al. DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data. Genome Biol 2019;20:211. 10.1186/s13059-019-1837-6.
- Tran HTN, Ang KS, Chevrier M. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 2020;21:1–32. 10.1186/s13059-019-1850-9.
- Clement L. Statistical methods for quantitative MS-based proteomics: part I. Preprocessing.
- Mowoe MO, Garnett S, Lennard K. et al. Pro-MAP: a robust pipeline for the pre-processing of single channel protein microarray data. BMC Bioinformatics 2022;23:534. 10.1186/s12859-022-05095-x.
- Hong L, Sun S, Zheng L, Tan Q X, and Li Y. fastmsa: Accelerating multiple sequence alignment with dense retrieval on protein language. bioRxiv 2021;2021–12.
- Steinegger M, Meier M, Mirdita M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 2019;20:1–15. 10.1186/s12859-019-3019-7.
- Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol 2020;37:1237–9. 10.1093/molbev/msz312.
- Chen K, Zhao H, Yang Y. Capturing large genomic contexts for accurately predicting enhancer-promoter interactions. Brief Bioinform 2022; 23:bbab577. 10.1093/bib/bbab577.
- Novakovsky G, Dexter N, Libbrecht MW. et al. Obtaining genetics insights from deep learning via explainable artificial intelligence. Nat Rev Genet 2023;24:125–37. 10.1038/s41576-022-00532-2.
- Dalla-Torre H, Gonzalez L, Mendoza J. et al. The nucleotide transformer: building and evaluating robust foundation models for human genomics. bioRxiv 2023;2023–01.
- Chen J, Hu Z, Sun S. et al. Interpretable RNA foundation model from unannotated data for highly accurate RNA structure and function predictions. arXiv preprint arXiv:2204.00300, 2022.
- Alipanahi B, Delong A, Weirauch MT. et al. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol 2015;33:831–8. 10.1038/nbt.3300.
- Liu P, Yuan W, Fu J. et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput Surv 2023;55:1–35. 10.1145/3560815.
- Rentzsch P, Schubach M, Shendure J. et al. CADD-splice—improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med 2021;13:1–12. 10.1186/s13073-021-00835-9.
- Mi H, Muruganujan A, Huang X. et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v. 14.0). Nat Protoc 2019;14:703–21. 10.1038/s41596-019-0128-8.
- Ernst J, Kheradpour P, Mikkelsen TS. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011;473:43–9. 10.1038/nature09906.
- Tang Z, Li C, Kang B. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017;45:W98–102. 10.1093/nar/gkx247.
- Saelens W, Cannoodt R, Todorov H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 2019;37:547–54. 10.1038/s41587-019-0071-9.
- Kaddour J, Harris J, Mozes M. et al. Challenges and applications of large languagemodels. arXiv preprint arXiv:2307.10169. 2023.
- Liu W, Zhou P, Zhao Z. et al. K-bert: enabling language representation with knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence 2020;34:2901–8. 10.1609/aaai.v34i03.5681.
- Brown TB, Mann B, Ryder N. et al. Language models are few-shot learners. Adv Neural Inf Process Syst 2020;33:1877–901.
- Yasunaga M, Bosselut A, Ren H. et al. Deep bidirectional language-knowledge graph pretraining. Adv Neural Inf Process Syst 2022;35:37309–23.
- Denny V, Krötzsch M. Wikidata: a free collaborative knowledgebase. Communications of the ACM, 2014;57:78–85.
- Zhu Y, Kiros R, Zemel R. et al. Aligning books and movies: towards story-like visual explanations by watching movies and reading books. arXiv preprint arXiv:1506.06724, 2015.
- Speer R, Chin J, Havasi C. Conceptnet 5.5: an open multilingual graph of general knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence 2017;31:4444–4451. 10.1609/aaai.v31i1.11164.
- Jia G, Li Y, Zhong X. et al. The high-dimensional space of human diseases built from diagnosis records and mapped to genetic loci. Nat Comput Sci 2023;3:403–17. 10.1038/s43588-023-00453-y.
- Jia G, Li Y, Zhang H. et al. Estimating heritability and genetic correlations from large health datasets in the absence of genetic data. Nat Commun 2019;10:5508. 10.1038/s41467-019-13455-0.
- Singhal K, Azizi S, Tu T. et al. Large language models encode clinical knowledge. Nature 2023;620:172–80. 10.1038/s41586-023-06291-2.
- Kanakarajan RK, Kundumani B, Sankarasubbu M. BioELECTRA: Pretrained biomedical text encoder using discriminators. In: Demner-Fushman D, Cohen KB, Ananiadou S, Tsujii J, (eds.), Proceedings of the 20th Workshop on Biomedical Language Processing. Association for Computational Linguistics, Online, 2021;143–154.
- Babjac AN, Lu Z, Emrich SJ. CodonBERT: Using BERT for sentiment analysis to better predict genes with low expression. In: Wang MD, Byung-Jun Yoon P, (eds.), Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. Association for Computing Machinery, New York, NY, United States, 2023; 1–6.
- Yuan H, Yuan Z, Gan R. et al. BioBART: Pretraining and evaluation of a biomedical generative language model. arXiv preprint arXiv:2204.03905, 2022.
- Rajpurkar P, Zhang J, Lopyrev K. et al. Squad: 100,000+ questions for machine comprehension of textarXiv preprint. arXiv preprint arXiv:1606.05250, 2016.
- Fiorini N, Leaman R, Lipman DJ. et al. How user intelligence is improving PubMed. Nat Biotechnol 2018;36:937–45. 10.1038/nbt.4267.
- Wu J, Fu R, Fang H. et al. Medical sam adapter: adapting segment anything model for medical image segmentation. arXiv preprint arXiv:2304.12620, 2023.
- Pathak Y, Shukla PK, Tiwari A. et al. Deep transfer learning based classification model for COVID-19 disease. Ing Rech Biomed 2022;43:87–92. 10.1016/j.irbm.2020.05.003.
- Bolton E, Hall D, Yasunaga M. et al. Stanford crfm introduces pubmedgpt 2.7 b. 2022.
- Zhou Z, Ji Y, Li W. et al. DNABERT-2: efficient foundation model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006, 2023.
- Wang R, Wang Z, Wang J. et al. SpliceFinder: ab initio prediction of splice sites using convolutional neural network. BMC Bioinformatics 2019;20:1–13. 10.1186/s12859-019-3306-3.
- Repecka D, Jauniskis V, Karpus L. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat Mach Intell 2021;3:324–33. 10.1038/s42256-021-00310-5.
- Gresova K, Martinek V, Cechak D. et al. Genomic benchmarks: a collection of datasets for genomic sequence classification. BMC Genomic Data, 2023;24:25.
- Wu R, Ding F, Wang R. et al. High-resolution de novo structure prediction from primary sequence. bioRxiv 2022; 2022-07.
- Lin Z, Akin H, Rao R. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023;379:1123–30. 10.1126/science.ade2574.
- Ruffolo JA, Chu LS, Mahajan SP. et al. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat Commun 2023;14:2389. 10.1038/s41467-023-38063-x.
- Wang Y, Xumeng Gong, Li S, Yang B, Sun Y, Chuan Shi, Wang Y, Yang C, Li H, and Song L. xtrimoabfold: de novo antibody structure prediction without msa. arXiv preprint arXiv:2212.00735, 2022.
- Skinnider M, Johnston C, Gunabalasingam M. et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat Commun 2020;11:6058. 10.1038/s41467-020-19986-1.
- Jumper J, Evans R, Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9. 10.1038/s41586-021-03819-2.
- Rives A, Meier J, Sercu T. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci 2021;118:e2016239118. 10.1073/pnas.2016239118.
- Klausen MS, Jespersen MC, Nielsen H. et al. NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins 2019;87:520–7. 10.1002/prot.25674.
- Elnaggar A, Heinzinger M, Dallago C. et al. Prottrans: toward understanding the language of life through self-supervised learning. IEEE Trans Pattern Anal Mach Intell 2021;44:7112–27. 10.1109/TPAMI.2021.3095381.
- Zhou G, Gao Z, Ding Q. et al. Uni-Mol: A universal 3d molecular representation learning framework. chemrxiv, 2023.
- Feynman R. The Character of Physical Law, with New Foreword. MIT Press, Cambridge, Massachusetts, USA, 2017, 10.7551/mitpress/11068.001.0001.
- Chowdhury R, Bouatta N, Biswas S. et al. Single-sequence protein structure prediction using a language model and deep learning. Nat Biotechnol 2022;40:1617–23. 10.1038/s41587-022-01432-w.
- Guo Y, Wu J, Ma H. et al. Self-supervised pre-training for protein embeddings using tertiary structures. Proceedings of the AAAI Conference on Artificial Intelligence 2022;36:6801–9. 10.1609/aaai.v36i6.20636.
- McDermott M, Yap B, Szolovits P. et al. Structure-inducing pre-training. Nat Mach Intell 2023;5:612–21. 10.1038/s42256-023-00647-z.
- Singh J, Hanson J, Paliwal K. et al. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun 2019;10:5407. 10.1038/s41467-019-13395-9.
- Fu L, Cao Y, Wu J. et al. UFold: fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Res 2022;50:e14–4. 10.1093/nar/gkab1074.
- Zhu H, Hu J, Song XN. et al. DNAPred: accurate identification of DNA-binding sites from protein sequence by ensembled hyperplane-distance-based support vector machines. J Chem Inf Model 2019;59:3057–71. 10.1021/acs.jcim.8b00749.
- Zhang J, Chen Q, Liu B. NCBRPred: predicting nucleic acid binding residues in proteins based on multilabel learning. Brief Bioinform 2021;22:bbaa397. 10.1093/bib/bbaa397.
- Su H, Liu M, Sun S. et al. Improving the prediction of protein-nucleic acids binding residues via multiple sequence profiles and the consensus of complementary methods. Bioinformatics 2019;35:930–6. 10.1093/bioinformatics/bty756.
- Ashburner M, Ball C, Blake J. et al. Gene ontology: tool for the unification of biology. Nat Genet 2000;25:25–9. 10.1038/75556.
- Gligorijević V, Renfrew PD, Kosciolek T. et al. Structure-based protein function prediction using graph convolutional networks. Nat Commun 2021;12:3168. 10.1038/s41467-021-23303-9.
- Kulmanov M, Hoehndorf R. DeepGOZero: improving protein function prediction from sequence and zero-shot learning based on ontology axioms. Bioinformatics 2022;38:i238–45. 10.1093/bioinformatics/btac256.
- Yang F, Wang W, Wang F. et al. scBERT as a large-scale pre-trained deep language model for cell type annotation of single-cell RNA-seq data. Nat Mach Intell 2022;4:852–66. 10.1038/s42256-022-00534-z.
- Choromanski K, Likhosherstov V, Dohan D. et al. Rethinking attention with performers. arXiv preprint arXiv:2009.14794, 2020.
- Lu Y, Jiang X, Fang Y. et al. Learning to pre-train graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 2021;35:4276–84. 10.1609/aaai.v35i5.16552.
- Li C, Liu B, Kang B. et al. SciBet as a portable and fast single cell type identifier. Nat Commun 2020;11:1818. 10.1038/s41467-020-15523-2.
- Kiselev VY, Yiu A, Hemberg M. Scmap: projection of single-cell RNA-seq data across data sets. Nat Methods 2018;15:359–62. 10.1038/nmeth.4644.
- Yang X, Mann KK, Wu H. et al. scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico exploration. Genome Biol 2024;25:198. 10.1186/s13059-024-03338-z.
- Hao M, Gong J, Zeng X. et al. Large-scale foundation model on single-cell transcriptomics. Nat Methods 2024;21:1481–1491.
- Saharia C, Chan W, Saxena S. et al. Photorealistic text-to-image diffusion models with deep language understanding. Adv Neural Inf Process Syst 2022;35:36479–94.
- Cao ZJ, Gao G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat Biotechnol 2022;40:1458–66. 10.1038/s41587-022-01284-4.
- Ciciani M, Demozzi M, Pedrazzoli E. et al. Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data. Nat Commun 2022;13:6474. 10.1038/s41467-022-34213-9.
- Ruiz C, Zitnik M, Leskovec J. Identification of disease treatment mechanisms through the multiscale interactome. Nat Commun 2021;12:1796. 10.1038/s41467-021-21770-8.
- Eraslan G, Avsec Ž, Gagneur J. et al. Deep learning: new computational modeling techniques for genomics. Nat Rev Genet 2019;20:389–403. 10.1038/s41576-019-0122-6.
- Poli M, Massaroli S, Nguyen E. et al. Hyena hierarchy: towards larger convolutional language models. In: International Conference on Machine Learning. PMLR, 2023;28043–28078.
- Jeliazkov JR, del Alamo D, Karpiak JD. Esmfold hallucinates native-like protein sequences. bioRxiv 2023; 2023–05.
- Wang Z, Dai Z, Póczos B. et al. Characterizing and avoiding negative transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019; 11293–11302.
- Wang H, Kaddour J, Liu S. et al. Evaluating self-supervised learning for molecular graph embeddings. Advances in Neural Information Processing Systems, 2024;36.
- Zhou H, Zhang S, Peng J. et al. Informer: beyond efficient transformer for long sequence time-series forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 2021;35:11106–15. 10.1609/aaai.v35i12.17325.
- Press O, Smith NA, Lewis M. Shortformer: better language modeling using shorterinputs. arXiv preprint arXiv:2012.15832, 2020.
- Li C, Zhang M, He Y. The stability-efficiency dilemma: investigating sequence length warmup for training GPT models. Adv Neural Inf Process Syst 2022;35:26736–50.
- Dao T, Fu D, Ermon S. et al. Flashattention: fast and memory-efficient exact attention with io-awareness. Adv Neural Inf Process Syst 2022;35:16344–59.
- Ainslie J, Lee-Thorp J, de Jong M. et al. GQA: training generalized multi-query transformer models from multi-headcheckpoints. arXiv preprint arXiv:2305.13245, 2023.
- Hijma P, Heldens S, Sclocco A. et al. Optimization techniques for GPU programming. ACM Comput Surv 2023;55:1–81. 10.1145/3570638.
- Cui P, Athey S. Stable learning establishes some common ground between causal inference and machine learning. Nat Mach Intell 2022;4:110–5. 10.1038/s42256-022-00445-z.
- Jin Q, Yuan Z, Xiong G. et al. Biomedical question answering: a survey of approaches and challenges. ACM Comput Surv 2022;55:1–36. 10.1145/3490238.
- Danaee P, Rouches M, Wiley M. et al. bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res 2018;46:5381–94. 10.1093/nar/gky285.
- Moon I, LoPiccolo J, Baca SC. et al. Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary. Nat Med 2023;29:2057–67. 10.1038/s41591-023-02482-6.
- Wornow M, Xu Y, Thapa R. et al. The shaky foundations of large language models and foundation models for electronic health records. npj Digit Med 2023;6:135. 10.1038/s41746-023-00879-8.
Related document on the Qiita
making reference list on biorxiv pdf file
https://qiita.com/kaizen_nagoya/items/75f6f93ce9872a5d622d
Genome modeling and design across all domains of life with evo 2
https://qiita.com/kaizen_nagoya/items/eecda74f758008633ee2
BIOREASON: DNA-LLMモデルによるマルチモーダル生物学的推論の動機付け
https://qiita.com/kaizen_nagoya/items/0718b214043a614deee0
Mckusick’s online mendelian inheritance in man (omim®)
https://qiita.com/kaizen_nagoya/items/c599d867201d1ffb1f4d
Anthropic. Claude 3.7 sonnet
https://qiita.com/kaizen_nagoya/items/4364d9c475114353cf2a
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
A dna language model based on multispecies alignment predicts the effects of genome-wide variants
https://qiita.com/kaizen_nagoya/items/6e8858c2395dcc98804a
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
Nucleotide transformer: building and evaluating robust foundation models for human genomics
https://qiita.com/kaizen_nagoya/items/1c147c2b095364f04ef7
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
DeepSeek-AI
https://qiita.com/kaizen_nagoya/items/bb5ee9f17c03e07659d8
Codontransformer: A multispecies codon optimizer using context-aware neural networks.
https://qiita.com/kaizen_nagoya/items/d4be1d4dd9eb307f09cc
Medrax: Medical reasoning agent for chest x-ray
https://qiita.com/kaizen_nagoya/items/94c7835b2f461452b2e7
Benchmarking dna foundation models for genomic sequence classification running title: Dna foundation models benchmarking.
https://qiita.com/kaizen_nagoya/items/01e3dde0d8274fee0fd8
Lora: Low-rank adaptation of large language models,
https://qiita.com/kaizen_nagoya/items/877058f681d77808b44c
kegg pull: a software package for the restful access and pulling from the kyoto encyclopedia of gene and genomes.
https://qiita.com/kaizen_nagoya/items/05be40565793f2b4f7f3
Genegpt: augmenting large language models with domain tools for improved access to biomedical information.
https://qiita.com/kaizen_nagoya/items/8897792ff52fb5e68a46
Kegg: biological systems database as a model of the real world.
https://qiita.com/kaizen_nagoya/items/f63573043eaf8f9c6a2c
Entrez direct: E-utilities on the unix command line
https://qiita.com/kaizen_nagoya/items/cc4bbde566e67abc93d9
Clinvar: Public archive of relationships among sequence variation and human phenotype.
https://qiita.com/kaizen_nagoya/items/8149b7a5a4f930490fad
Biobert: a pre-trained biomedical language representation model for biomedical text mining.
https://qiita.com/kaizen_nagoya/items/63781eb6db1fc2ded80a
Progress and opportunities of foundation models in bioinformatics. Briefings in Bioinformatics
https://qiita.com/kaizen_nagoya/items/6ef20eaf796532fed6f8