Roformer: Enhanced transformer with rotary position embedding,
[31] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.
References
Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence to sequence learning. In International Conference on Machine Learning, pages 1243–1252. PMLR, 2017.
Md. Amirul Islam, Sen Jia, and Neil D. B. Bruce. How much position information do convolutional neural networks encode? ArXiv, abs/2001.08248, 2020.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.
A. Radford, Jeffrey Wu, R. Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.
Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are transformers universal approximators of sequence-to-sequence functions? In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=ByxRM0Ntvr.
Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of language representations. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=H1eA7AEtvS.
Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: Pre-training text encoders as discriminators rather than generators. In ICLR, 2020. URL https://openreview.net/pdf?id=r1xMH1BtvB.
A. Radford and Karthik Narasimhan. Improving language understanding by generative pre-training. 2018.
Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention model for natural language inference. In EMNLP, 2016.
Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. In NAACL-HLT, 2018.
Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, I. Simon, C. Hawthorne, Andrew M. Dai, M. Hoffman, M. Dinculescu, and D. Eck. Music transformer. arXiv: Learning, 2018.
Zihang Dai, Z. Yang, Yiming Yang, J. Carbonell, Quoc V. Le, and R. Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. In ACL, 2019.
Z. Yang, Zihang Dai, Yiming Yang, J. Carbonell, R. Salakhutdinov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS, 2019.
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, W. Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21: 140:1–140:67, 2020.
Guolin Ke, Di He, and T. Liu. Rethinking positional encoding in language pre-training. ArXiv, abs/2006.15595, 2020.
Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with disentangled attention. ArXiv, abs/2006.03654, 2020.
Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Improve transformer models with better relative position embeddings. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3327–3335, Online, November 2020. Association for Computational Linguistics. doi:10.18653/v1/2020.findings-emnlp.298. URL https://www.aclweb.org/anthology/2020.findings-emnlp.298.
Xuanqing Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, and Cho-Jui Hsieh. Learning to encode position for transformer with continuous dynamical model. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 6327–6335. PMLR, 2020. URL http://proceedings.mlr.press/v119/liu20n.html.
Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential equations. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 6572–6583, 2018a. URL https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html.
Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi Li, Peng Zhang, and Jakob Grue Simonsen. Encoding word order in complex embeddings. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=Hke-WTVtwr.
Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In International Conference on Machine Learning, pages 5156–5165. PMLR, 2020.
Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention: Attention with linear complexities. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3531–3539, 2021.
Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding. 04 2018.
Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, A. Gane, Tamás Sarlós, Peter Hawkins, J. Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. ArXiv, abs/2009.14794, 2020.
Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia, and Alevs Tamchyna. Findings of the 2014 workshop on statistical machine translation. pages 12–58, 06 2014. doi:10.3115/v1/W14-3302.
Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. 08 2015.
Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. pages 48–53, 01 2019. doi:10.18653/v1/N19-4009.
Kishore Papineni, Salim Roukos, Todd Ward, and Wei Jing Zhu. Bleu: a method for automatic evaluation of machine translation. 10 2002. doi:10.3115/1073083.1073135.
Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In arXiv preprint arXiv:1506.06724, 2015.
Wikimedia Foundation. Wikimedia downloads, https://dumps.wikimedia.org, 2021.
Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. arXiv e-prints, art. arXiv:1711.05101,November 2017.
William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https://www.aclweb.org/anthology/I05-5002.
Richard Socher, A. Perelygin, J.Y. Wu, J. Chuang, C.D. Manning, A.Y. Ng, and C. Potts. Recursive deep models for semantic compositionality over a sentiment treebank. EMNLP, 1631:1631–1642, 01 2013.
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine comprehension of text. pages 2383–2392, 01 2016. doi:10.18653/v1/D16-1264.
Hussein Al-Natsheh. Udl at semeval-2017 task 1: Semantic textual similarity estimation of english sentence pairs using regression model over pairwise features. 08 2017.
Z. Chen, H. Zhang, and L. Zhang, X.and Zhao. Quora question pairs., 2018b. URL https://www.kaggle.com/c/quora-question-pairs.
Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence understanding through inference. pages 1112–1122, 01 2018. doi:10.18653/v1/N18-1101.
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.
Matt Mahoney. Large text compression benchmark, http://www.mattmahoney.net/dc/text.html, 2006.
Jianlin Su. Wobert: Word-based chinese bert model - zhuiyiai. Technical report, 2020. URL https://github.com/ZhuiyiTechnology/WoBERT.
Victor Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen, and Qun Liu. Nezha: Neural contextualized representation for chinese language understanding. 08 2019.
Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Zhiyuan Liu, Maosong Sun, Tianyang Zhang, Xianpei Han, Zhen hu, Heng Wang, and Jianfeng Xu. Cail2019-scm: A dataset of similar case matching in legal domain. 11 2019.
Related document on the Qiita
making reference list on biorxiv pdf file
https://qiita.com/kaizen_nagoya/items/75f6f93ce9872a5d622d
Genome modeling and design across all domains of life with evo 2
https://qiita.com/kaizen_nagoya/items/eecda74f758008633ee2
BIOREASON: DNA-LLMモデルによるマルチモーダル生物学的推論の動機付け
https://qiita.com/kaizen_nagoya/items/0718b214043a614deee0
Mckusick’s online mendelian inheritance in man (omim®)
https://qiita.com/kaizen_nagoya/items/c599d867201d1ffb1f4d
Anthropic. Claude 3.7 sonnet
https://qiita.com/kaizen_nagoya/items/4364d9c475114353cf2a
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
A dna language model based on multispecies alignment predicts the effects of genome-wide variants
https://qiita.com/kaizen_nagoya/items/6e8858c2395dcc98804a
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
Genomic language models: Opportunities and challenges
https://qiita.com/kaizen_nagoya/items/f797330e64e0c7d05f39
Nucleotide transformer: building and evaluating robust foundation models for human genomics
https://qiita.com/kaizen_nagoya/items/1c147c2b095364f04ef7
A genomic mutational constraint map using variation in 76,156 human genomes
https://qiita.com/kaizen_nagoya/items/e799ad85ee98bb2a8cf6
DeepSeek-AI
https://qiita.com/kaizen_nagoya/items/bb5ee9f17c03e07659d8
Codontransformer: A multispecies codon optimizer using context-aware neural networks.
https://qiita.com/kaizen_nagoya/items/d4be1d4dd9eb307f09cc
Medrax: Medical reasoning agent for chest x-ray
https://qiita.com/kaizen_nagoya/items/94c7835b2f461452b2e7
Benchmarking dna foundation models for genomic sequence classification running title: Dna foundation models benchmarking.
https://qiita.com/kaizen_nagoya/items/01e3dde0d8274fee0fd8
Lora: Low-rank adaptation of large language models,
https://qiita.com/kaizen_nagoya/items/877058f681d77808b44c
kegg pull: a software package for the restful access and pulling from the kyoto encyclopedia of gene and genomes.
https://qiita.com/kaizen_nagoya/items/05be40565793f2b4f7f3
Genegpt: augmenting large language models with domain tools for improved access to biomedical information.
https://qiita.com/kaizen_nagoya/items/8897792ff52fb5e68a46
Kegg: biological systems database as a model of the real world.
https://qiita.com/kaizen_nagoya/items/f63573043eaf8f9c6a2c
Entrez direct: E-utilities on the unix command line
https://qiita.com/kaizen_nagoya/items/cc4bbde566e67abc93d9
Clinvar: Public archive of relationships among sequence variation and human phenotype.
https://qiita.com/kaizen_nagoya/items/8149b7a5a4f930490fad
Biobert: a pre-trained biomedical language representation model for biomedical text mining.
https://qiita.com/kaizen_nagoya/items/63781eb6db1fc2ded80a
Progress and opportunities of foundation models in bioinformatics. Briefings in Bioinformatics
https://qiita.com/kaizen_nagoya/items/6ef20eaf796532fed6f8
Bend: Benchmarking dna language models on biologically meaningful tasks.
https://qiita.com/kaizen_nagoya/items/8417e72454d2107a9d06
Hyenadna: Long-range genomic sequence modeling at single nucleotide resolution.
https://qiita.com/kaizen_nagoya/items/07e1ba1138b0825c8a73
Gpt-4o system card.
https://qiita.com/kaizen_nagoya/items/06e4c54af663456b49f9
wen2.5 technical report.
https://qiita.com/kaizen_nagoya/items/f87fac7f9a83f54328fe
Deepseekmath: Pushing the limits of mathematical reasoning in open language models
https://qiita.com/kaizen_nagoya/items/2add7a80056850b9ce87
dbsnp: the ncbi database of genetic variation.
https://qiita.com/kaizen_nagoya/items/756da32e4c0868d84da0
Cosmic: a curated database of somatic variants and clinical data for cancer.
https://qiita.com/kaizen_nagoya/items/2b0960d4e1ff26a9b01f
Roformer: Enhanced transformer with rotary position embedding,
https://qiita.com/kaizen_nagoya/items/a12a45518f28a5133af2