4
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

2017/02/13に作成した
「ゼロから作るDeep Learning」参考文献一覧等
https://researchmap.jp/joxn1ul6v-2078500/#_2078500
をQiitaに移転作業中です。参考文献の参考文献を作成予定です。

<この項は書きかけです。順次追記します。>

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
斎藤 康毅
オライリージャパン(2016/09/24)
https://www.oreilly.co.jp/books/9784873117584/

参考文献一覧


Introducing Python
Bill Lubanovic
Oreilly & Associates Inc(2014/12/04)

入門 Python 3
Bill Lubanovic
オライリージャパン(2015/12/01)

2

Python for Data Analysis
Wes Mckinney
Oreilly & Associates Inc(2012/10/29)

Python for Data Analysis: Data Wrangling With Pandas, Numpy, and Ipython
Wes Mckinney
Oreilly & Associates Inc(2017/07/25)

Pythonによるデータ分析入門 ―NumPy、pandasを使ったデータ処理
Wes McKinney
オライリージャパン(2013/12/26)

3
Scipy Lecture Notes
http://www.scipy-lectures.org

4
Andrej Karpathys blog, Hacker's guide to Neural Networks
http://karpathy.github.io/neuralnets/

5
CS231n: Convolutional Neural Networks for Visual Recognition
http://cs231n.github.io
http://cs231n.stanford.edu

6
John Duchi
Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization, Journal of Machine Learning Research 12 (2011) 2121-2159

7 Lecture 6.5 — Rmsprop: normalize the gradient

8
Adam: A Method for Stochastic Optimization

9
understanding the difficulty of training deep feedforward neural networks

10
delving deep into rectifiers surpassing human-level performance on imagenet

11
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

12
all you need is a good init

13
Understanding the backward pass through Batch Normalization Layer
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

14
dropout a simple way to prevent neural networks from overfitting

15
Random search for hyper parameter optimization , F, P

16
practical bayesian optimization of machine learning algorithms , F, P

17
visualizing and understanding convolutional networks , F, P

18
understanding deep image representations by inverting them F,P

19
a matlab plugin to visualize neurons from deep models
http://vision03.csail.mit.edu/cnn_art/

20
gradient based learning applied to document recognition

21
imagenet classification with deep convolutional neural networks

22
very deep convolutional networks for large-scale image recognition

23
going deeper with convolutions

24
deep residual learning for image recognition

25
imagenet a large-scale hierarchical image database

26
learning schematic image representation at a large scale, F
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html

27
NVIDIA Propels Deep Learning with TITAN X, New Digits training system and DevBox
https://blogs.nvidia.com/blog/2015/03/17/digits-devbox/

28
Announcing TensorFlow 0.8 – now with distributed computing support!
https://research.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html

29
Tensor flow: large scale machine learning on heterogeneous distributed system

30
deep learning with limited numerical precision

31
binarized neural networks training deep neural networks with weights and activations constrained to +1 or -1.
https://github.com/MatthieuCourbariaux/BinaryNet

32
classification datasets results, Rodrigo benenson
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

33
regularization of neural networks using dropconnect ICML2013

34
Visual Object classes challenge 2012
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

35
https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf

36
faster r-cnn towards real-time object detection

37
fully convolutional networks for semantic segmentation

38
Show and Tell: A Neural Image Caption Generator

A neural algorithm of artistic style

40
jcjohnson/neural-style

41
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

42
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
https://arxiv.org/pdf/1511.00561.pdf

43
segnet demo page

44
Human-level control through deep reinforcement learning
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

45
Mastering the game of Go with deep neural networks and tree search
https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf

一覧

物理記事 上位100
https://qiita.com/kaizen_nagoya/items/66e90fe31fbe3facc6ff

量子(0) 計算機, 量子力学
https://qiita.com/kaizen_nagoya/items/1cd954cb0eed92879fd4

数学関連記事100
https://qiita.com/kaizen_nagoya/items/d8dadb49a6397e854c6d

言語・文学記事 100
https://qiita.com/kaizen_nagoya/items/42d58d5ef7fb53c407d6

医工連携関連記事一覧
https://qiita.com/kaizen_nagoya/items/6ab51c12ba51bc260a82

自動車 記事 100
https://qiita.com/kaizen_nagoya/items/f7f0b9ab36569ad409c5

通信記事100
https://qiita.com/kaizen_nagoya/items/1d67de5e1cd207b05ef7

日本語(0)一欄
https://qiita.com/kaizen_nagoya/items/7498dcfa3a9ba7fd1e68

英語(0) 一覧
https://qiita.com/kaizen_nagoya/items/680e3f5cbf9430486c7d

転職(0)一覧
https://qiita.com/kaizen_nagoya/items/f77520d378d33451d6fe

仮説(0)一覧(目標100現在40)
https://qiita.com/kaizen_nagoya/items/f000506fe1837b3590df

Qiita(0)Qiita関連記事一覧(自分)
https://qiita.com/kaizen_nagoya/items/58db5fbf036b28e9dfa6

鉄道(0)鉄道のシステム考察はてっちゃんがてつだってくれる
https://qiita.com/kaizen_nagoya/items/26bda595f341a27901a0

安全(0)安全工学シンポジウムに向けて: 21
https://qiita.com/kaizen_nagoya/items/c5d78f3def8195cb2409

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

OSEK OS設計の基礎 OSEK(100)
https://qiita.com/kaizen_nagoya/items/7528a22a14242d2d58a3

Error一覧 error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding(0) Rules, C, Secure, MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

プログラマによる、プログラマのための、統計(0)と確率のプログラミングとその後
https://qiita.com/kaizen_nagoya/items/6e9897eb641268766909

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

「はじめての」シリーズ  ベクタージャパン 
https://qiita.com/kaizen_nagoya/items/2e41634f6e21a3cf74eb

AUTOSAR(0)Qiita記事一覧, OSEK(75)
https://qiita.com/kaizen_nagoya/items/89c07961b59a8754c869

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

LaTeX(0) 一覧 
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

Rust(0) 一覧 
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927

小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
This article is an individual impression based on the individual's experience. It has nothing to do with the organization or business to which I currently belong.

文書履歴

ver. 0.10 初稿 20170213
ver. 0.11 追記 20180805
ver. 0.12 45URL変更, 42,44追記 20181008
ver. 0.13 ありがとう追記   20230527

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

4
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?