2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

DJI TelloでOMPLを用いた自律飛行ドローンのナビゲーション - 7.1. 状態空間環境のセットアップ

Last updated at Posted at 2020-02-09

DJI Tello等ドローンの自律飛行を実現するには、3D環境でナビゲーション経路を計画としてOMPL(Open Motion Planning Library)を試してみます。

目次

  1. OMPLのインストール
  2. OMPLの基礎
  3. OMPL.appの入門
  4. OMPLの使用
  5. DJI Telloの使用
    1. DJI Telloのフロントカメラのcamera_calibration
    2. Visual SLAM ORB_SLAM2 用のカメラキャリブレーションYamlファイルの作成
    3. DJI Telloのカメラ でVisual-SLAMのORB-SLAM2 を動かしてみた
  6. navigationスタックの使い方
    1. Turtlebot3 NavigationをGazebo Simulationで動かしてみた
    2. Turtlebot3 Navigationでmap_fileの代わりにSLAMを使用
    3. ARdroneのシミュレーターをGazeboで動かす
    4. AirSimのシミュレーターを動かす
    5. octomapのインストール
    6. 単眼カメラでORB_SLAM2から3D point clouodの生成
    7. point_cloud2から3D octomapの生成
  7. OMPLで3D 経路計画
    1. 状態空間環境のセットアップ ← いまココ

動作環境

  • Ubuntu 18.04
  • ROS Melodic
  • Tello EDU

状態空間環境のセットアップ

#include "ros/ros.h"
#include "visualization_msgs/Marker.h"
#include <geometry_msgs/Pose.h>
#include <geometry_msgs/PoseStamped.h>
#include <message_filters/subscriber.h>
#include <nav_msgs/Odometry.h>
#include <nav_msgs/Path.h>
#include <octomap/octomap.h>
#include <octomap_msgs/Octomap.h>
#include <octomap_msgs/conversions.h>
#include <octomap_ros/conversions.h>
#include <trajectory_msgs/MultiDOFJointTrajectory.h>

#include <ompl/base/OptimizationObjective.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/spaces/SE3StateSpace.h>
// #include <ompl/geometric/planners/rrt/RRTstar.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/geometric/planners/rrt/InformedRRTstar.h>

#include <iostream>
#include <ompl/config.h>

#include "fcl/broadphase/broadphase.h"
#include "fcl/collision.h"
#include "fcl/config.h"
#include "fcl/math/transform.h"
#include "fcl/octree.h"
#include "fcl/traversal/traversal_node_octree.h"

namespace ob = ompl::base;
namespace og = ompl::geometric;

class planner
{
public:
  // Constructor
  planner(void)
  {
    //ドローンの衝突幾何形状
    Quadcopter =
        std::shared_ptr<fcl::CollisionGeometry>(new fcl::Box(0.5, 0.5, 0.3));
    //解像度パラメータ
    fcl::OcTree* tree = new fcl::OcTree(
        std::shared_ptr<const octomap::OcTree>(new octomap::OcTree(0.15)));
    tree_obj = std::shared_ptr<fcl::CollisionGeometry>(tree);

    //経路計画の状態空間
    space = ob::StateSpacePtr(new ob::SE3StateSpace());

    // create a start state
    ob::ScopedState<ob::SE3StateSpace> start(space);

    // create a goal state
    ob::ScopedState<ob::SE3StateSpace> goal(space);

    // set the bounds for the R^3 part of SE(3)
    ob::RealVectorBounds bounds(3);
    bounds.setLow(0, -5);
    bounds.setHigh(0, 5);
    bounds.setLow(1, -5);
    bounds.setHigh(1, 5);
    bounds.setLow(2, -3);
    bounds.setHigh(2, 2);
    space->as<ob::SE3StateSpace>()->setBounds(bounds);

    // construct an instance of  space information from this state space
    si = ob::SpaceInformationPtr(new ob::SpaceInformation(space));

    start->setXYZ(0, 0, 0);
    start->as<ob::SO3StateSpace::StateType>(1)->setIdentity();

    goal->setXYZ(0, 0, 0);
    goal->as<ob::SO3StateSpace::StateType>(1)->setIdentity();

    // set state validity checking for this space
    si->setStateValidityChecker(
        std::bind(&planner::isStateValid, this, std::placeholders::_1));

    // create a problem instance
    pdef = ob::ProblemDefinitionPtr(new ob::ProblemDefinition(si));

    // set the start and goal states
    pdef->setStartAndGoalStates(start, goal);

    // set Optimizattion objective
    pdef->setOptimizationObjective(planner::getPathLengthObjWithCostToGo(si));
  } // end of Constructor

}; // end of planner

OMPLで経路計画を実行

OMPLで経路計画を実行のYouTube動画

OMPLで経路計画を実行

Prev: 6.7. point_cloud2から3D octomapの生成

2
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?