5
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

機械学習のモデルの評価 - 交差検証、バイアスとバリアンス、学習曲線、適合率と再現率

Last updated at Posted at 2019-06-25

最近数学をやり直していてふと機械学習がどういう仕組みなのか知りたくなって、Courseraでスタンフォード大学が提供している機械学習講座を受けている。第6週まで終わったので思い出しながら軽くまとめる。講座はこちら Coursera Machine Learning

week1 機械学習とは何か、単線形回帰、仮説関数、コスト関数、最急降下法
week2 重線形回帰、スケーリング、多項式回帰、正規方程式
week3 ロジスティック回帰、共役勾配法・BFGS・L-BFGS、多クラス分類 、過学習と正則化
week4 ニューラルネットワークの基礎
week5 ニューラルネットワークのコスト関数とバックプロパゲーション
week6 機械学習のモデルの評価 - 交差検証、バイアスとバリアンス、学習曲線、適合率と再現率

Week 6 機械学習のモデルの評価 - 交差検証、バイアスとバリアンス、学習曲線、適合率と再現率

交差検証 - Cross Validation

あるデータセットに学習アルゴリズムがよく適合しているからと言って、それがいいモデルであるとは言えない。なぜならそのモデルに新しいデータセットを与えた時、同じようによく適合するとは言えないからである。

この問題を改善するために、以下のように3つにデータセットを分ける。

  • トレーニングセット 60%
  • 交差検証セット 20%
  • テストセット 20%

そして、以下のようなステップで誤差を計算していく。

  1. トレーニングセットを使って、$\Theta$を最適化する。
  2. 交差検証セットを使って、誤差が最も小さい多項式の次数$d$を探す。
  3. テストセットを使って、$J_{test}(\Theta^{(d)})$の誤差を見積もる。

バイアスとバリアンス - Bias and Variance

多項式の次数

Screen Shot 2019-06-20 at 23.41.52.png
中央
高バイアス - High Bias 高バリアンス - High Variance
未学習 - Underfit Justfit 過学習 - Overfit
$y=\theta_0+\theta_1x$ $y=\theta_0+\theta_1x+\theta_2x^2$ $y=\sum_{j=0}^5\theta_jx^j$

上の図から分かるように、次数が大きくなるほどトレーニングセットの誤差は小さくなる。
同時に、交差検証の誤差は、ある点までは次数が大きくなるにつれて減少し、さらに次数が大きくなると増加する。つまり、以下のように次数$d$と$J(\Theta)$の関係をグラフにした場合、下に凸曲線を形成する。
Screen Shot 2019-06-23 at 1.15.07.png

正則化項λ

次に正則化項$\lambda$との関係について考える。
$\lambda$は大きくなればなるほどunderfitし、小さくなればなるほどoverfitする。
Image-1.jpg

$\lambda$と$J(\Theta)$の関係をグラフにすると以下のようになる。
Screen Shot 2019-06-23 at 14.45.28.png

学習曲線 - Learning Curves

ごく少数のデータセットでアルゴリズムをトレーニングすると誤差が0になりやすくなる。なぜなら、例えばデータセットが2つや3つの場合、そのデータセットには二次関数がぴったりフィットするから。一般に、トレーニングセットが大きくなるほど誤差が大きくなる。そして一定まで達すると安定する。

高バイアスの場合、

  • トレーニングセットが小さい時: $J_{train}(\Theta)$は低く、$J_{cv}(\Theta)$は高くなる
  • トレーニングセットが大きい時: $J_{train}(\Theta)$と$J_{cv}(\Theta)$の両方が高くなり、同じような値になる

グラフにすると以下のようになる。

Screen Shot 2019-06-23 at 16.37.03.png

つまり、高バイアスの場合トレーニングセットを増やすのはあまり効果的ではない。

高バリアンスの場合、

  • トレーニングセットが小さい時: $J_{train}(\Theta)$は低く、$J_{cv}(\Theta)$は高くなる
  • トレーニングセットが大きい時: $J_{train}(\Theta)$は大きくなり、$J_{cv}(\Theta)$は小さくなり続ける

グラフにすると以下のようになる。

Screen Shot 2019-06-23 at 16.44.38.png

つまり、高バリアンスの場合トレーニングセットを増やすことは効果的である。

適合率と再現率- Precision and Recall

歪んだクラス - Skewed Classes

例えば、腫瘍を良性か悪性か分類する時、実際には悪性である患者が100人中2人いる場合に全ての人を良性に分類する予測を立てたとする。その予測は結果として98%の的中率を持つことになる。さて、これはいい予測と言えるだろうか。

適合率と再現率

予測の精度を図るために用いられる指標が適合率と再現率である。
予測した結果と実際の値を以下のような表にする。

予測されたクラス \ 実際のクラス 1 0
1 True Positive(TP) False Positive(FP)
0 False Negative(TN) True Nagative(TN)

適合率と再現率は以下のように表される。

$Precision(適合率)=\frac{TP}{TP+FP}$

$Recall(再現率)=\frac{TP}{TP+FN}$

0-1の値をとり、高くなるほど精度が高いと言える。
上にあげた全ての腫瘍を良性と予測する場合は再現率が0になる。

F値 - F Score

適合率と再現率はトレードオフの関係にある。どちらもいい具合に高くないと良いアルゴリズムとは言えない。それを判断するためにF値を使用する。

$F=2\frac{PR}{P+R}$

5
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?