Help us understand the problem. What is going on with this article?

Donkey Carの作り方(Windows側)

More than 1 year has passed since last update.

関連Qiita

必要なソフト

  • Anaconda
  • git

注意事項

PowerShellではうまくいきません。
Anaconda Consoleを実行し、実施してください。

作業フォルダの作成

$ mkdir ~/Documents/workspace_donkey
$ cd ~/Documents/workspace_donkey

DonkeyをClone

$ git clone https://github.com/autorope/donkeycar/
$ cd donkey
$ git checkout master

Condaで環境設定

$ conda env create -f install/envs/mac.yml
$ source activate donkey

conda入っていない人は、
https://conda.io/miniconda.html
よりインストール

TensorFlowのインストール

$ pip install tensorflow==1.8.0

プロジェクトの作成

$ pip install -e .
$ donkey createcar ~/mycar

manage.pyの修正

$ cd ~/mycar
$ vim manager.py

188行目

#from controller import LocalWebController, JoystickController

Keras.pyの修正。場所は、環境に合わせてフォルダの場所を変える

$ vim /Users/akira/Documents/workspace_donkey/donkey/donkeycar/parts/keras.py

keras.py

from keras.layers import Input
from keras.models import Model, load_model
from keras.layers import Convolution2D
from keras.layers import Dropout, Flatten, Dense
from keras.callbacks import ModelCheckpoint, EarlyStopping

環境

donkeycar              2.5.1
Keras                  2.2.2       
Keras-Applications     1.0.4       
Keras-Preprocessing    1.0.2  
tensorboard            1.8.0       
tensorflow             1.8.0       
tensorflow-tensorboard 0.1.8     
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした