目次
- 第1章 はじめに
- 第2章 パーセプトロン
- 第3章 ニューラルネットワーク
- 第4章 ニューラルネットワークの学習
- 第5章 誤差逆伝播法
- 第6章 学習に関するテクニック
- 第7章 畳み込みニューラルネットワーク
- 第8章 ディープラーニング
- 最後に
#3.2 活性化関数
##3.2.3 ステップ関数の実装
ステップ関数は以下のように実装できます。ここでは単純な関数(DoubleFunction)でINDArrayをマップできるようにしてみました。
public static double step_function(double x) {
if (x > 0)
return 1.0;
else
return 0.0;
}
public static <T extends Number> INDArray map(INDArray x, DoubleFunction<T> func) {
int size = x.length();
INDArray result = Nd4j.create(size);
for (int i = 0; i < size; ++i)
result.put(0, i, func.apply(x.getDouble(i)));
return result;
}
public static INDArray step_function(INDArray x) {
return map(x, d -> d > 0.0 ? 1 : 0);
}
INDArray x = Nd4j.create(new double[] {-1.0, 1.0, 2.0});
assertEquals("[-1.00,1.00,2.00]", Util.string(x));
assertEquals("[0.00,1.00,1.00]", Util.string(step_function(x)));
##3.2.4 シグモイド関数の実装
シグモイド関数は以下のように実装できます。ND4JにはTransformsクラスにsigmoid関数が用意されているので、これを利用することもできます。
public static double sigmoid(double x) {
return (double)(1.0 / (1.0 + Math.exp(-x)));
}
public static INDArray sigmoid(INDArray x) {
// Javaでは演算子のオーバーロードができないので
// メソッド呼び出しで記述します。
return Transforms.exp(x.neg()).add(1.0).rdiv(1.0);
// あるいは前述のmapを使って以下のように実装することもできます。
// return map(x, d -> sigmoid(d));
}
INDArray x = Nd4j.create(new double[] {-1.0, 1.0, 2.0});
assertEquals("[0.27,0.73,0.88]", Util.string(sigmoid(x)));
assertEquals("[0.27,0.73,0.88]", Util.string(Transforms.sigmoid(x)));
INDArray t = Nd4j.create(new double[] {1.0, 2.0, 3.0});
// A.rdiv(k)はkをAの各要素で割ったものになります。
assertEquals("[1.00,0.50,0.33]", Util.string(t.rdiv(1.0)));
}
##3.2.7 ReLU関数
ReLU関数は以下のように実装できます。ND4JにはTransformsクラスにrelu関数が用意されているのでこれを使うこともできます。
public static INDArray relu(INDArray x) {
return map(x, d -> Math.max(0.0, d));
}
INDArray x = Nd4j.create(new double[] {-4, -2, 0, 2, 4});
assertEquals("[0.00,0.00,0.00,2.00,4.00]", Util.string(relu(x)));
assertEquals("[0.00,0.00,0.00,2.00,4.00]", Util.string(Transforms.relu(x)));
#3.3 多次元配列の計算
##3.3.1 多次元配列
// 1次元の配列
INDArray A = Nd4j.create(new double[] {1, 2, 3, 4});
assertEquals("[1.00,2.00,3.00,4.00]", Util.string(A));
// ND4Jでは1次元配列は1×Nの2次元配列となります。
assertArrayEquals(new int[] {1, 4}, A.shape());
// ND4Jでは次元数はrank()メソッドで求めます。
assertEquals(2, A.rank());
assertEquals(1, A.size(0)); // 行数
assertEquals(4, A.size(1)); // 列数
// 2次元の配列
INDArray B = Nd4j.create(new double[][] {{1, 2}, {3, 4}, {5, 6}});
assertEquals("[[1.00,2.00],[3.00,4.00],[5.00,6.00]]", Util.string(B));
assertEquals(2, B.rank());
assertArrayEquals(new int[] {3, 2}, B.shape());
##3.3.2 行列の積
ND4Jでは内積をINDArray.mmul(INDArray)で求めます。
INDArray A = Nd4j.create(new double[][] {{1, 2}, {3, 4}});
assertArrayEquals(new int[] {2, 2}, A.shape());
INDArray B = Nd4j.create(new double[][] {{5, 6}, {7, 8}});
assertArrayEquals(new int[] {2, 2}, B.shape());
assertEquals("[[19.00,22.00],[43.00,50.00]]", Util.string(A.mmul(B)));
A = Nd4j.create(new double[][] {{1, 2, 3}, {4, 5, 6}});
assertArrayEquals(new int[] {2, 3}, A.shape());
B = Nd4j.create(new double[][] {{1, 2}, {3, 4}, {5, 6}});
assertArrayEquals(new int[] {3, 2}, B.shape());
assertEquals("[[22.00,28.00],[49.00,64.00]]", Util.string(A.mmul(B)));
INDArray C = Nd4j.create(new double[][] {{1, 2}, {3, 4}});
assertArrayEquals(new int[] {2, 2}, C.shape());
assertArrayEquals(new int[] {2, 3}, A.shape());
try {
// ND4Jでは内積をとる行列の要素数に誤りがある場合、
// ND4JIllegalStateExceptionをスローします。
A.mmul(C);
fail();
} catch (ND4JIllegalStateException e) {
assertEquals(
"Cannot execute matrix multiplication: [2, 3]x[2, 2]: "
+ "Column of left array 3 != rows of right 2"
, e.getMessage());
}
A = Nd4j.create(new double[][] {{1, 2}, {3, 4}, {5, 6}});
assertArrayEquals(new int[] {3, 2}, A.shape());
B = Nd4j.create(new double[] {7, 8});
assertArrayEquals(new int[] {1, 2}, B.shape());
// ND4Jでは1次元配列は1×N行の行列となるため
// 積を求める場合はtranspose()メソッドで転置する必要があります。
assertArrayEquals(new int[] {2, 1}, B.transpose().shape());
assertEquals("[23.00,53.00,83.00]", Util.string(A.mmul(B.transpose())));
##3.3.3 ニューラルネットワークの行列の積
INDArray X = Nd4j.create(new double[] {1, 2});
assertArrayEquals(new int[] {1, 2}, X.shape());
INDArray W = Nd4j.create(new double[][] {{1, 3, 5}, {2, 4, 6}});
assertEquals("[[1.00,3.00,5.00],[2.00,4.00,6.00]]", Util.string(W));
assertArrayEquals(new int[] {2, 3}, W.shape());
INDArray Y = X.mmul(W);
assertEquals("[5.00,11.00,17.00]", Util.string(Y));
#3.4 3層ニューラルネットワークの実装
##3.4.2 各層における信号伝達の実装
INDArray X = Nd4j.create(new double[] {1.0, 0.5});
INDArray W1 = Nd4j.create(new double[][] {{0.1, 0.3, 0.5}, {0.2, 0.4, 0.6}});
INDArray B1 = Nd4j.create(new double[] {0.1, 0.2, 0.3});
assertArrayEquals(new int[] {2, 3}, W1.shape());
assertArrayEquals(new int[] {1, 2}, X.shape());
assertArrayEquals(new int[] {1, 3}, B1.shape());
INDArray A1 = X.mmul(W1).add(B1);
INDArray Z1 = Transforms.sigmoid(A1);
assertEquals("[0.30,0.70,1.10]", Util.string(A1));
assertEquals("[0.57,0.67,0.75]", Util.string(Z1));
INDArray W2 = Nd4j.create(new double[][] {{0.1, 0.4}, {0.2, 0.5}, {0.3, 0.6}});
INDArray B2 = Nd4j.create(new double[] {0.1, 0.2});
assertArrayEquals(new int[] {1, 3}, Z1.shape());
assertArrayEquals(new int[] {3, 2}, W2.shape());
assertArrayEquals(new int[] {1, 2}, B2.shape());
INDArray A2 = Z1.mmul(W2).add(B2);
INDArray Z2 = Transforms.sigmoid(A2);
assertEquals("[0.52,1.21]", Util.string(A2));
assertEquals("[0.63,0.77]", Util.string(Z2));
INDArray W3 = Nd4j.create(new double[][] {{0.1, 0.3}, {0.2, 0.4}});
INDArray B3 = Nd4j.create(new double[] {0.1, 0.2});
INDArray A3 = Z2.mmul(W3).add(B3);
// ND4JにはTransformsクラスにidentity(INDArray)メソッドが用意されています。
INDArray Y = Transforms.identity(A3);
assertEquals("[0.32,0.70]", Util.string(A3));
assertEquals("[0.32,0.70]", Util.string(Y));
// Y.equals(A3)は真となります。
assertEquals(A3, Y);
##3.4.3 実装のまとめ
public static Map<String, INDArray> init_network() {
Map<String, INDArray> network = new HashMap<>();
network.put("W1", Nd4j.create(new double[][] {{0.1, 0.3, 0.5}, {0.2, 0.4, 0.6}}));
network.put("b1", Nd4j.create(new double[] {0.1, 0.2, 0.3}));
network.put("W2", Nd4j.create(new double[][] {{0.1, 0.4}, {0.2, 0.5}, {0.3, 0.6}}));
network.put("b2", Nd4j.create(new double[] {0.1, 0.2}));
network.put("W3", Nd4j.create(new double[][] {{0.1, 0.3}, {0.2, 0.4}}));
network.put("b3", Nd4j.create(new double[] {0.1, 0.2}));
return network;
}
public static INDArray forward(Map<String, INDArray> network, INDArray x) {
INDArray W1 = network.get("W1");
INDArray W2 = network.get("W2");
INDArray W3 = network.get("W3");
INDArray b1 = network.get("b1");
INDArray b2 = network.get("b2");
INDArray b3 = network.get("b3");
INDArray a1 = x.mmul(W1).add(b1);
INDArray z1 = Transforms.sigmoid(a1);
INDArray a2 = z1.mmul(W2).add(b2);
INDArray z2 = Transforms.sigmoid(a2);
INDArray a3 = z2.mmul(W3).add(b3);
INDArray y = Transforms.identity(a3);
return y;
}
Map<String, INDArray> network = init_network();
INDArray x = Nd4j.create(new double[] {1.0, 0.5});
INDArray y = forward(network, x);
assertEquals("[0.32,0.70]", Util.string(y));
#3.5 出力層の設計
##3.5.1 恒等関数とソフトマックス関数
INDArray a = Nd4j.create(new double[] {0.3, 2.9, 4.0});
// 指数関数
INDArray exp_a = Transforms.exp(a);
assertEquals("[1.35,18.17,54.60]", Util.string(exp_a));
// 指数関数の和
Number sum_exp_a = exp_a.sumNumber();
assertEquals(74.1221542102, sum_exp_a.doubleValue(), 5e-6);
// ソフトマックス関数
INDArray y = exp_a.div(sum_exp_a);
assertEquals("[0.02,0.25,0.74]", Util.string(y));
##3.5.2 ソフトマックス関数実装上の注意
public static INDArray softmax_wrong(INDArray a) {
INDArray exp_a = Transforms.exp(a);
Number sum_exp_a = exp_a.sumNumber();
INDArray y = exp_a.div(sum_exp_a);
return y;
}
public static INDArray softmax_right(INDArray a) {
Number c = a.maxNumber();
INDArray exp_a = Transforms.exp(a.sub(c));
Number sum_exp_a = exp_a.sumNumber();
INDArray y = exp_a.div(sum_exp_a);
return y;
}
INDArray a = Nd4j.create(new double[] {1010, 1000, 990});
// 正しく計算されない
assertEquals("[NaN,NaN,NaN]", Util.string(Transforms.exp(a).div(Transforms.exp(a).sumNumber())));
Number c = a.maxNumber();
assertEquals("[0.00,-10.00,-20.00]", Util.string(a.sub(c)));
assertEquals("[1.00,0.00,0.00]", Util.string(Transforms.exp(a.sub(c)).div(Transforms.exp(a.sub(c)).sumNumber())));
// 間違い
assertEquals("[NaN,NaN,NaN]", Util.string(softmax_wrong(a)));
// 正しい
assertEquals("[1.00,0.00,0.00]", Util.string(softmax_right(a)));
// ND4Jには正しいsoftmax(INDArray)が用意されています。
assertEquals("[1.00,0.00,0.00]", Util.string(Transforms.softmax(a)));
##3.5.3 ソフトマックス関数の特徴
INDArray a = Nd4j.create(new double[] {0.3, 2.9, 4.0});
INDArray y = Transforms.softmax(a);
assertEquals("[0.02,0.25,0.74]", Util.string(y));
// 総和は1になります。
assertEquals(1.0, y.sumNumber().doubleValue(), 5e-6);
#3.6 手書き数字認識
##3.6.1 MNISTデータセット
MNISTのデータの読み込みはMNISTImagesクラスを使って行います。このクラスはTHE MNIST DATABASE of handwritten digitsにあるデータをダウンロードして解凍した後のファイルを読み込みます。
// MNISTデータセットはMNISTImagesクラスに読み込みます。
MNISTImages train = new MNISTImages(Constants.TrainImages, Constants.TrainLabels);
MNISTImages test = new MNISTImages(Constants.TestImages, Constants.TestLabels);
assertEquals(60000, train.size);
assertEquals(784, train.imageSize);
assertEquals(10000, test.size);
assertEquals(784, test.imageSize);
// 訓練データの先頭の100イメージをPNGとして出力します。
if (!Constants.TrainImagesOutput.exists())
Constants.TrainImagesOutput.mkdirs();
for (int i = 0; i < 100; ++i) {
File image = new File(Constants.TrainImagesOutput,
String.format("%05d-%d.png", i, train.label(i)));
train.writePngFile(i, image);
}
実際に出力したイメージは以下の通りです。ファイル名は"[連番5桁]-[ラベル].png"です。
00000-5.png
00001-0.png
00002-4.png
00003-1.png
00004-9.png
00005-2.png
00006-1.png
00007-3.png
00008-1.png
00009-4.png
.....
##3.6.2 ニューラルネットワークの推論処理
サンプルウェイトデータ(sample_weight.pkl)はSampleWeightクラスを使って読み込みます。ただしsample_weight.pklはPythonでシリアライズしたデータなので直接Javaで読み込むことはできません。そこでsample_weight.pklを以下のPythonプログラムを使って一度テキスト化しています。テキスト化後のデータはSampleWeight.txtです。SampleWeightクラスはこのテキストファイルを読み込みます。
import pickle
import numpy
pkl = "sample_weight.pkl"
with open(pkl, "rb") as f:
network = pickle.load(f)
for k, v in network.items():
print(k, end="")
dim = v.ndim
for d in v.shape:
print("", d, end="")
print()
for e in v.flatten():
print(e)
実際に読み込んで推論を行うコードは以下の通りです。認識精度は[ゼロから作るDeep Learning]
(https://www.oreilly.co.jp/books/9784873117584/)と同じく93.52%となります。
static INDArray normalize(byte[][] images) {
int imageCount = images.length;
int imageSize = images[0].length;
INDArray norm = Nd4j.create(imageCount, imageSize);
for (int i = 0; i < imageCount; ++i)
for (int j = 0; j < imageSize; ++j)
norm.putScalar(i, j, (images[i][j] & 0xff) / 255.0);
return norm;
}
static INDArray predict(Map<String, INDArray> network, INDArray x) {
INDArray W1 = network.get("W1");
INDArray W2 = network.get("W2");
INDArray W3 = network.get("W3");
INDArray b1 = network.get("b1");
INDArray b2 = network.get("b2");
INDArray b3 = network.get("b3");
// 以下のようにするとバッチ処理でエラーとなります。
// INDArray a1 = x.mmul(W1).add(b1);
// x.mmul(W1)の結果が2次元配列なのにb1が1次元であるためです。
// add(INDArray)は自動的にブロードキャストしません。
// 以下のように明示的にブロードキャストすることもできます。
// INDArray a1 = x.mmul(W1).add(b1.broadcast(x.size(0), b1.size(1)));
INDArray a1 = x.mmul(W1).addRowVector(b1);
INDArray z1 = Transforms.sigmoid(a1);
INDArray a2 = z1.mmul(W2).addRowVector(b2);
INDArray z2 = Transforms.sigmoid(a2);
INDArray a3 = z2.mmul(W3).addRowVector(b3);
INDArray y = Transforms.softmax(a3);
return y;
}
// テスト用のイメージを読み込ます。
MNISTImages test = new MNISTImages(Constants.TestImages, Constants.TestLabels);
// サンプルウェイトデータを読み込みます。
Map<String, INDArray> network = SampleWeight.read(Constants.SampleWeights);
// イメージを正規化します(0-255 -> 0.0-1.0)
INDArray x = test.normalizedImages();
int size = x.size(0);
int accuracy_cnt = 0;
for (int i = 0; i < size; ++i) {
INDArray y = predict(network, x.getRow(i));
// 最後の引数1は次元を表します。
INDArray max = Nd4j.getExecutioner().exec(new IAMax(y), 1);
if (max.getInt(0) == test.label(i))
++accuracy_cnt;
}
// System.out.printf("Accuracy:%f%n", (double) accuracy_cnt / size);
assertEquals(10000, size);
assertEquals(9352, accuracy_cnt);
##3.6.3 バッチ処理
INDArrayからバッチサイズ分のデータを取り出すためにNDArrayIndexを使用します。NDArrayIndex.interval(int start, int end)でstart番目からend番目までの要素を取り出すことができます(start ≦ i < end)。またIAMaxクラスを使ってNumPyのargmax関数と同じことができます。
int batch_size = 100;
// テスト用のイメージを読み込ます。
MNISTImages test = new MNISTImages(Constants.TestImages, Constants.TestLabels);
// サンプルウェイトデータを読み込みます。
Map<String, INDArray> network = SampleWeight.read(Constants.SampleWeights);
// イメージを正規化します(0-255 -> 0.0-1.0)
INDArray x = test.normalizedImages();
int size = x.size(0);
int accuracy_cnt = 0;
for (int i = 0; i < size; i += batch_size) {
// バッチサイズ分のイメージを取り出してpredict()を呼びます。
INDArray y = predict(network, x.get(NDArrayIndex.interval(i, i + batch_size)));
// 最後の引数1は次元を表します。
INDArray max = Nd4j.getExecutioner().exec(new IAMax(y), 1);
for (int j = 0; j < batch_size; ++j)
if (max.getInt(j) == test.label(i + j))
++accuracy_cnt;
}
// System.out.printf("Accuracy:%f%n", (double) accuracy_cnt / size);
assertEquals(10000, size);
assertEquals(9352, accuracy_cnt);
私の環境ではバッチ処理化によって2.7秒から0.5秒に高速化できました。GPUは使っていません。