1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ゼロから作るDeep Learning Java編 6.3 Batch Normalization

Last updated at Posted at 2018-03-26

目次

6.3 Batch Normalizationの評価

Layerインタフェースに対してtrain_flgを渡せるように拡張したBatchNormLayerを作成しました。

Layer.java
public interface Layer {

    INDArray forward(INDArray x);
    INDArray backward(INDArray x);

}
BatchNormLayer.java
public interface BatchNormLayer extends Layer {

    public default INDArray forward(INDArray x) {
        throw new IllegalAccessError();
    }

    INDArray forward(INDArray x, boolean train_flg);

}

あとはこのインターフェースの実装であるDropoutクラスとBatchNormalizationクラスを実装しました。
さらにMultiLayerNetExtendクラスを実装し、以下のテストコードを実行します。

INDArray x_train;
INDArray t_train;
int max_epochs = 20;
int train_size;
int batch_size = 100;
double learning_rate = 0.01;
DataSet trainDataSet;

List<List<Double>> __train(String weight_init_std) {
    MultiLayerNetExtend bn_network = new MultiLayerNetExtend(
        784, new int[] {100, 100, 100, 100, 100}, 10,
        /*activation=*/"relu",
        /*weight_init_std=*/ weight_init_std,
        /*weight_decay_lambda=*/ 0,
        /*use_dropout=*/ false,
        /*dropout_ration=*/ 0.5,
        /*use_batchNorm=*/ true);
    MultiLayerNetExtend network = new MultiLayerNetExtend(
        784, new int[] {100, 100, 100, 100, 100}, 10,
        /*activation=*/"relu",
        /*weight_init_std=*/ weight_init_std,
        /*weight_decay_lambda=*/ 0,
        /*use_dropout=*/ false,
        /*dropout_ration=*/ 0.5,
        /*use_batchNorm=*/ false);
    List<MultiLayerNetExtend> networks = Arrays.asList(bn_network, network);
    Optimizer optimizer = new SGD(learning_rate);
    List<Double> train_acc_list = new ArrayList<>();
    List<Double> bn_train_acc_lsit = new ArrayList<>();
    int iter_per_epoch = Math.max(train_size / batch_size, 1);
    int epoch_cnt = 0;
    for (int i = 0; i < 1000000000; ++i) {
        DataSet sample = trainDataSet.sample(batch_size);
        INDArray x_batch = sample.getFeatureMatrix();
        INDArray t_batch = sample.getLabels();
        for (MultiLayerNetExtend _network : networks) {
            Params grads = _network.gradient(x_batch, t_batch);
            optimizer.update(_network.params, grads);
        }
        if (i % iter_per_epoch == 0) {
            double train_acc = network.accuracy(x_train, t_train);
            double bn_train_acc = bn_network.accuracy(x_train, t_train);
            train_acc_list.add(train_acc);
            bn_train_acc_lsit.add(bn_train_acc);
            System.out.println("epoch:" + epoch_cnt + " | " + train_acc + " - " + bn_train_acc);
            ++epoch_cnt;
            if (epoch_cnt >= max_epochs)
                break;
        }
    }
    return Arrays.asList(train_acc_list, bn_train_acc_lsit);
}

@Test
public void C6_3_2_Batch_Normalizationの評価() throws IOException {
    // ch06/batch_norm_test.pyのJava版です。
    MNISTImages train = new MNISTImages(Constants.TrainImages, Constants.TrainLabels);
    x_train = train.normalizedImages();
    t_train = train.oneHotLabels();
    trainDataSet = new DataSet(x_train, t_train);
    train_size = x_train.size(0);

    // グラフの描画
    File dir = Constants.WeightImages;
    if (!dir.exists()) dir.mkdirs();
    String[] names = {"BatchNormalization", "Normal"};
    Color[] colors = {Color.BLUE, Color.RED};
    INDArray weight_scale_list = Functions.logspace(0, -4, 16);
    INDArray x = Functions.arrange(max_epochs);
    for (int i = 0; i < weight_scale_list.length(); ++i) {
        System.out.println( "============== " + (i+1) + "/16" + " ==============");
        double w = weight_scale_list.getDouble(i);
        List<List<Double>> acc_list = __train(String.valueOf(w));
        GraphImage graph = new GraphImage(640, 480, -1, -0.1, 20, 1.0);
        for (int j = 0; j < names.length; ++j) {
            graph.color(colors[j]);
            graph.textInt(names[j] + " : " + w, 20, 20 * j + 20);
            graph.plot(0, acc_list.get(j).get(0));
            for (int k = 1; k < acc_list.get(j).size(); ++k) {
                graph.line(k - 1, acc_list.get(j).get(k - 1), k, acc_list.get(j).get(k));
                graph.plot(k, acc_list.get(j).get(k));
            }
        }
        File file = new File(dir, "BatchNormalization#" + w + ".png");
        graph.writeTo(file);
    }
}

結果のグラフは以下のようになりました。

W=1.0

BatchNormalization#1.0.png

W=0.29286444187164307

BatchNormalization#0.29286444187164307.png

W=0.00009999999747378752

BatchNormalization#9.999999747378752E-5.png

本書とは違って、W(重みの初期値の標準偏差)が小さい程、学習の進み方が速いという結果になりました。

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?