8
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

クライアントサイドでの機械学習の実行について

Last updated at Posted at 2021-03-31

TL;DR

フロントエンドエンジニアである自分が、とあるきっかけで、クライアントサイドで機械学習を実行する際に留意すべきことを調べてみたものになります。

きっかけ

以下の記事においてクライアントサイドでの機械学習に興味を持ったため
なぜGoogle Meetの背景ぼかしが最強なのか(一般公開版)
(元記事:Background Features in Google Meet, Powered by Web ML

記事の内容

  • ブラウザなのにネイティブアプリと同程度の性能を実現しているのがすごい
  • 体感で4倍ぐらい早い機械学習高速化について
  • ライブストリーミングに特化した機械学習・画像処理のフレームワーク
  • 400kBと超軽量な機械学習モデル
  • その他画像処理技術
    • Refinement(輪郭の処理)
    • 背景ぼかし処理(背景と対象を分離して、背景のみぼかす)

クライアントサイドで機械学習を高速で実行すにはどうすればいいのだろう?

機械学習モデル自体の軽量化

[ディープラーニングを軽量化する「モデル圧縮」3手法|エンジニアコラム]
(https://laboro.ai/column/%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%82%92%E8%BB%BD%E9%87%8F%E5%8C%96%E3%81%99%E3%82%8B%E3%83%A2%E3%83%87%E3%83%AB%E5%9C%A7%E7%B8%AE/)より

  • 主な3手法
    • [Pruning(枝刈り)](#### Pruning(枝刈り) )
    • [Quantize(量子化)](#### Quantize(量子化))
    • [Distillation(蒸留)](#### Distillation(蒸留))

それぞれの手法について

Pruning(枝刈り)

計算するニューロンと重みの削減
unnamed (7).png

Quantize(量子化)

数値の桁数の削減
unnamed (1).png

Distillation(蒸留)

大きいモデルの出力を活用して小さいモデルを学習
unnamed (2).png

様々な研究

実行環境の高速化(TensorFlow.jsについて)

  • 実行するbackendの選択
    • CPU
    • WebGL
    • WebAssembly
    • WebGPU
    • React Native

Fast client-side ML with TensorFlow.js, by Ann Yuan (Google)Platform and environmentTensorFlow.jsの新たな目玉機能|Kai Sasaki|note

WebAssemblyを使うべきタイミング

TensorFlow.js の WebAssemblyバックエンド の紹介|npaka|note ←おすすめ
(元記事:Introducing the WebAssembly backend for TensorFlow.js
unnamed (5).png

unnamed (6).png

基本的にWebGLよりも遅い。なぜなら、WebGLはGPUによる計算が行われるため。一方でwasmは、CPUで計算を行う。ただし、wasmの並列計算機能であるSIMDを活用すると、3倍程度早くなる。また以下の場合には、wasmの方が有利になる。

1. モデルが小さい場合
計算処理をGPUに転送するオーバーヘッドよりも、計算量が小さい時
2. 幅広いデバイスをサポートしたい場合
GPUはデバイスごとに大きな性能差があるため
3. 数値誤差が重要な場合
GPUではデバイスによって16ビットの浮動小数点にしか対応していないため
以上の点から、WebGL一強というわけではない。

その他の参考
SIMD およびマルチスレッド処理で TensorFlow.js WebAssembly バックエンドを高速化する

8
6
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
8
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?