1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

AUTOSAR CountdownAdvent Calendar 2022

Day 23

dockerで機械学習(24) with anaconda(24)「Machine Learning with Python Cookbook」 Chris Albon著

Last updated at Posted at 2018-10-20

1.すぐに利用したい方へ(as soon as)

「Machine Learning with Python Cookbook」 By Chris Albon
cat24.gif
http://shop.oreilly.com/product/0636920085423.do

docker

dockerを導入し、Windows, Macではdockerを起動しておいてください。
Windowsでは、BiosでIntel Virtualizationをenableにしないとdockerが起動しない場合があります。
また、セキュリティの警告などが出ることがあります。

docker pull and run

$ docker pull kaizenjapan/anaconda-chris

$ docker run -it -p 8888:8888 kaizenjapan/anaconda-chris /bin/bash

以下のshell sessionでは
(base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。
それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。
それぞれの章のフォルダに移動します。

dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。

ファイル共有または複写

dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。

複写の場合は、dockerを起動したOS側コマンドを実行しました。お使いのdockerの番号で置き換えてください。複写したファイルをブラウザで表示し内容確認しました。

(base) root@19b116a46da8:/# ls
bin   deep-learning-with-keras-ja	   dev	home  lib64  mnt  proc	run   srv  tmp	var
boot  deep-learning-with-python-notebooks  etc	lib   media  opt  root	sbin  sys  usr
(base) root@19b116a46da8:/# cd deep-learning-with-python-notebooks/
(base) root@19b116a46da8:/deep-learning-with-python-notebooks# ls
2.1-a-first-look-at-a-neural-network.ipynb    5.3-using-a-pretrained-convnet.ipynb		     8.1-text-generation-with-lstm.ipynb
3.5-classifying-movie-reviews.ipynb	      5.4-visualizing-what-convnets-learn.ipynb		     8.2-deep-dream.ipynb
3.6-classifying-newswires.ipynb		      6.1-one-hot-encoding-of-words-or-characters.ipynb      8.3-neural-style-transfer.ipynb
3.7-predicting-house-prices.ipynb	      6.1-using-word-embeddings.ipynb			     8.4-generating-images-with-vaes.ipynb
4.4-overfitting-and-underfitting.ipynb	      6.2-understanding-recurrent-neural-networks.ipynb      8.5-introduction-to-gans.ipynb
5.1-introduction-to-convnets.ipynb	      6.3-advanced-usage-of-recurrent-neural-networks.ipynb  LICENSE
5.2-using-convnets-with-small-datasets.ipynb  6.4-sequence-processing-with-convnets.ipynb	     README.md

jupyternotebook

(base) root@19b116a46da8:/deep-learning-with-python-notebooks#  jupyter notebook --ip=0.0.0.0 --allow-root
[I 04:47:52.531 NotebookApp] Writing notebook server cookie secret to /root/.local/share/jupyter/runtime/notebook_cookie_secret
[I 04:47:52.776 NotebookApp] JupyterLab beta preview extension loaded from /opt/conda/lib/python3.6/site-packages/jupyterlab
[I 04:47:52.776 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
[I 04:47:52.785 NotebookApp] Serving notebooks from local directory: /deep-learning-with-python-notebooks
[I 04:47:52.786 NotebookApp] 0 active kernels
[I 04:47:52.786 NotebookApp] The Jupyter Notebook is running at:
[I 04:47:52.786 NotebookApp] http://19b116a46da8:8888/?token=5ca23859604dcac80e266f93ec2194c802e98f432729aa5d
[I 04:47:52.786 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[W 04:47:52.787 NotebookApp] No web browser found: could not locate runnable browser.
[C 04:47:52.787 NotebookApp] 
    
    Copy/paste this URL into your browser when you connect for the first time,
    to login with a token:
        http://19b116a46da8:8888/?token=5ca23859604dcac80e266f93ec2194c802e98f432729aa5d&token=5ca23859604dcac80e266f93ec2194c802e98f432729aa5d
[I 04:48:11.426 NotebookApp] 302 GET / (172.17.0.1) 0.64ms
[W 04:48:11.433 NotebookApp] Clearing invalid/expired login cookie username-localhost-8888
[W 04:48:11.434 NotebookApp] Clearing invalid/expired login cookie username-localhost-8888
[I 04:48:11.435 NotebookApp] 302 GET /tree? (172.17.0.1) 2.66ms
[I 04:48:16.289 NotebookApp] 302 POST /login?next=%2Ftree%3F (172.17.0.1) 1.77ms
[I 04:48:21.752 NotebookApp] Writing notebook-signing key to /root/.local/share/jupyter/notebook_secret
[W 04:48:21.757 NotebookApp] Notebook 2.1-a-first-look-at-a-neural-network.ipynb is not trusted
[I 04:48:22.837 NotebookApp] Kernel started: fe0e9fe5-2acc-488a-b574-315edf559da0
[I 04:48:23.453 NotebookApp] Adapting to protocol v5.1 for kernel fe0e9fe5-2acc-488a-b574-315edf559da0
[I 04:50:22.814 NotebookApp] Saving file at /2.1-a-first-look-at-a-neural-network.ipynb
[W 04:50:22.818 NotebookApp] Notebook 2.1-a-first-look-at-a-neural-network.ipynb is not trusted
[W 04:50:27.598 NotebookApp] Notebook 2.1-a-first-look-at-a-neural-network.ipynb is not trusted
[I 04:50:28.635 NotebookApp] Adapting to protocol v5.1 for kernel fe0e9fe5-2acc-488a-b574-315edf559da0

ブラウザで
localhost:8888
を開く

68747470733a2f2f71696974612d696d6167652d73746f72652e73332e616d617a6f6e6177732e636f6d2f302f35313432332f34643333383165622d653832302d336437372d316635352d6665303161396231353731342e706e67.png

上記の場合は、token に
5ca23859604dcac80e266f93ec2194c802e98f432729aa5d
を入れる。

py17-1.png

py17-2.png

##6.1 Cleaning Text

OSError: No such file or directory: '/Users/f00/nltk_data/corpora/stopwords/english'

###ju24-6.py

ソースを切りはりして一つのファイルにして実行してみた。

ju24-6.py
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer

text_data = np.array(['I love Brazil. Brazil!', 'Sweden is best', 'Germany beats both'])

# create the tf-idf feature matrix
tfidf = TfidfVectorizer()
feature_matrix = tfidf.fit_transform(text_data)

feature_matrix

text_data = ["  Interrobang. By aishwarya Henriette    ",
            "Parking And Going. By Karl Gautier",
            "    Today Is The night. By Jarek Prakash"]

# strip whitespaces
strip_whitespace = [string.strip() for string in text_data]
strip_whitespace

remove_periods = [string.replace(".", "") for string in strip_whitespace]
remove_periods

def capitalizer(string: str) -> str:
    return string.upper()

[capitalizer(string) for string in remove_periods]

import re

def replace_letters_with_X(string: str) -> str:
    return re.sub(r"[a-zA-Z]", "X", string)

[replace_letters_with_X(string) for string in remove_periods]

from bs4 import BeautifulSoup

html = """
    <div class='full_name'><span style='font-weight:bold'>Yan</span> Chin</div>
"""

soup = BeautifulSoup(html)

soup.find("div", {"class": "full_name"}).text

import unicodedata
import sys

text_data = ['Hi!!! I. Love. This. Song.....', '10000% Agree!!!! #LoveIT', 'Right?!?!']

# create a dictionary of punctuation characters
punctuation = dict.fromkeys(i for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith('P'))

# for each string, remove any punctuation characters
[string.translate(punctuation) for string in text_data]

from nltk.tokenize import word_tokenize
string = "The science of today is the technology of tommorrow"

# tokenize words
word_tokenize(string)

from nltk.tokenize import sent_tokenize
string = "The science of today is the technology of tommorw. Tommorrow is today"

# tokenize sentences
sent_tokenize(string)

from nltk.corpus import stopwords
import nltk
nltk.download('stopwords')

tokenized_words = ['i', 'am', 'going', 'to', 'go', 'to', 'the', 'store', 'and', 'park']

stop_words = stopwords.words('english')

# remove stop words
[word for word in tokenized_words if word not in stop_words]

from nltk.stem.porter import PorterStemmer

tokenized_words = ['i', 'am', 'humbled', 'by', 'this', 'traditional', 'meeting']

# create stemmer
porter = PorterStemmer()

# apply stemmer
[porter.stem(word) for word in tokenized_words]

from nltk import pos_tag
from nltk import word_tokenize
import nltk
nltk.download('averaged_perceptron_tagger')

text_data = "Chris loved outdoor running"

text_tagged = pos_tag(word_tokenize(text_data))

text_tagged

[word for word, tag in text_tagged if tag in ['NN', 'NNS', 'NNP', 'NNPS']]

from sklearn.preprocessing import MultiLabelBinarizer

tweets = ["I am eating a burrito for breakfast",
         "Political science is an amazing field",
         "San Francisco is an awesome city"]

tagged_tweets = []

# tag each word and each tweet
for tweet in tweets:
    tweet_tag = nltk.pos_tag(word_tokenize(tweet))
    tagged_tweets.append([tag for word, tag in tweet_tag])

# use one hot encoding to convert the tags into features
one_hot_multi = MultiLabelBinarizer()
one_hot_multi.fit_transform(tagged_tweets)

# show feature names
one_hot_multi.classes_

from nltk.corpus import brown
from nltk.tag import UnigramTagger
from nltk.tag import BigramTagger
from nltk.tag import TrigramTagger
import nltk
nltk.download('brown')
    
# get some text from the Brown
sentences = brown.tagged_sents(categories='news')

# split into 4000 stences for training and 623 for testing
train = sentences[:4000]
test = sentences[4000:]

# create backoff tagger
unigram = UnigramTagger(train)
bigram = BigramTagger(train, backoff=unigram)
trigram = TrigramTagger(train, backoff=bigram)

trigram.evaluate(test)

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer

text_data = np.array(['I love Brazil. Brazil!', 'Sweden is best', 'Germany beats both'])

count = CountVectorizer()
bag_of_words = count.fit_transform(text_data)

bag_of_words

bag_of_words.toarray()

count.get_feature_names()
count_2gram = CountVectorizer(ngram_range=(1,2), stop_words='english', vocabulary=['brazil'])
bag = count_2gram.fit_transform(text_data)
bag.toarray()

count_2gram.vocabulary_

feature_matrix.toarray()

tfidf.vocabulary_

###実行


(base) root@b350954ba6b4:/machine-learning-with-python-cookbook-notes# python ju24-6.py
ju24-6.py:41: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system ("lxml"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.

The code that caused this warning is on line 41 of the file ju24-6.py. To get rid of this warning, pass the additional argument 'features="lxml"' to the BeautifulSoup constructor.

  soup = BeautifulSoup(html)
Traceback (most recent call last):
  File "ju24-6.py", line 60, in <module>
    word_tokenize(string)
  File "/opt/conda/lib/python3.6/site-packages/nltk/tokenize/__init__.py", line 128, in word_tokenize
    sentences = [text] if preserve_line else sent_tokenize(text, language)
  File "/opt/conda/lib/python3.6/site-packages/nltk/tokenize/__init__.py", line 94, in sent_tokenize
    tokenizer = load('tokenizers/punkt/{0}.pickle'.format(language))
  File "/opt/conda/lib/python3.6/site-packages/nltk/data.py", line 836, in load
    opened_resource = _open(resource_url)
  File "/opt/conda/lib/python3.6/site-packages/nltk/data.py", line 954, in _open
    return find(path_, path + ['']).open()
  File "/opt/conda/lib/python3.6/site-packages/nltk/data.py", line 675, in find
    raise LookupError(resource_not_found)
LookupError: 
**********************************************************************
  Resource punkt not found.
  Please use the NLTK Downloader to obtain the resource:

  >>> import nltk
  >>> nltk.download('punkt')
  
  Searched in:
    - '/root/nltk_data'
    - '/usr/share/nltk_data'
    - '/usr/local/share/nltk_data'
    - '/usr/lib/nltk_data'
    - '/usr/local/lib/nltk_data'
    - '/opt/conda/nltk_data'
    - '/opt/conda/share/nltk_data'
    - '/opt/conda/lib/nltk_data'
    - ''
**********************************************************************

2行追加

import nltk
nltk.download('punkt')

###再実行ju24-6.py


(base) root@b350954ba6b4:/machine-learning-with-python-cookbook-notes# python ju24-6.py
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data]   Unzipping tokenizers/punkt.zip.
ju24-6.py:44: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system ("lxml"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.

The code that caused this warning is on line 44 of the file ju24-6.py. To get rid of this warning, pass the additional argument 'features="lxml"' to the BeautifulSoup constructor.

  soup = BeautifulSoup(html)
[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data]   Unzipping corpora/stopwords.zip.
[nltk_data] Downloading package averaged_perceptron_tagger to
[nltk_data]     /root/nltk_data...
[nltk_data]   Unzipping taggers/averaged_perceptron_tagger.zip.
[nltk_data] Downloading package brown to /root/nltk_data...
[nltk_data]   Unzipping corpora/brown.zip.

##Chapter 21 - Saving and Loading Trained Models

/Users/f00/anaconda/envs/machine_learning_cookbook/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
  from numpy.core.umath_tests import inner1d

###ファイル
切りはりして1つのファイルに

ju24-21.py
# load libraries
import numpy as np
from keras.datasets import imdb
from keras.preprocessing.text import Tokenizer
from keras import models
from keras import layers
from keras.models import load_model

# set random seed
np.random.seed(0)

# set the number of features we want
number_of_features = 1000

# load data and target vector from movie review data
(train_Data, train_target), (test_data, test_target) = imdb.load_data(num_words=number_of_features)

# convert movie review data to a one-hot encoded feature matrix
tokenizer = Tokenizer(num_words=number_of_features)
train_features = tokenizer.sequences_to_matrix(train_data, mode="binary")
test_features = tokenizer.sequences_to_matrix(test_data, mode="binary")

# start neural network
network = models.Sequential()

# add fully connected layer with ReLU activation function
network.add(layers.Dense(units=16, activation="relu", input_shape=(number_of_features,)))

# add fully connected layer with a sigmoid activation function
network.add(layers.Dense(units=1, activation="sigmoid"))

# compile neural network
network.compile(loss="binary_crossentropy", optimizer="rmsprop", metrics=["accuracy"])

# train neural network
history = network.fit(train_features, train_target, epochs=3, verbose=0, batch_size=100, validation_data=(test_features, test_target))

# save neural network
network.save("model.h5")

# load neural network
network = load_model("model.h5")


###実行

(base) root@b350954ba6b4:/machine-learning-with-python-cookbook-notes# python ju24-21.py
Using TensorFlow backend.
Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz
 9371648/17464789 [===============>..............] - ETA: 4:16 

資料がない章

8, 9, 10, 20

#2. dockerを自力で構築する方へ

ここから下は、上記のpullしていただいたdockerをどういう方針で、どういう手順で作ったかを記録します。
上記のdockerを利用する上での参考資料です。本の続きを実行する上では必要ありません。
自力でdocker/anacondaを構築する場合の手順になります。
dockerfileを作る方法ではありません。ごめんなさい。
##docker

ubuntu, debianなどのLinuxを、linux, windows, mac osから共通に利用できる仕組み。
利用するOSの設定を変更せずに利用できるのがよい。
同じ仕様で、大量の人が利用することができる。
ソフトウェアの開発元が公式に対応しているものと、利用者が便利に仕立てたものの両方が利用可能である。今回は、公式に配布しているものを、自分で仕立てて、他の人にも利用できるようにする。
##python

DeepLearningの実習をPhthonで行って来た。
pythonを使う理由は、多くの機械学習の仕組みがpythonで利用できることと、Rなどの統計解析の仕組みもpythonから容易に利用できることがある。
###anaconda

pythonには、2と3という版の違いと、配布方法の違いなどがある。
Anacondaでpython3をこの1年半利用してきた。
Anacondaを利用した理由は、統計解析のライブラリと、JupyterNotebookが初めから入っているからである。
##docker公式配布

ubuntu, debianなどのOSの公式配布,gcc, anacondaなどの言語の公式配布などがある。
これらを利用し、docker-hubに登録することにより、公式配布の質の確認と、変更権を含む幅広い情報の共有ができる。dockerが公式配布するものではなく、それぞれのソフト提供者の公式配布という意味。
###docker pull

docker公式配布の利用は、URLからpullすることで実現する。
###docker Anaconda

anacondaが公式配布しているものを利用。

$  docker pull kaizenjapan/anaconda-keras
Using default tag: latest
latest: Pulling from continuumio/anaconda3
Digest: sha256:e07b9ca98ac1eeb1179dbf0e0bbcebd87701f8654878d6d8ce164d71746964d1
Status: Image is up to date for continuumio/anaconda3:latest

$ docker run -it continuumio/anaconda3 /bin/bash

実際にはkeras, tensorflow を利用していた他のpushをpull

##apt-get

(base) root@d8857ae56e69:/# apt-get update

(base) root@d8857ae56e69:/# apt-get install -y procps

(base) root@d8857ae56e69:/# apt-get install -y vim

(base) root@d8857ae56e69:/# apt-get install -y apt-utils

(base) root@d8857ae56e69:/# apt-get install sudo

##ソース git

(base) root@f19e2f06eabb:/# git clone https://github.com/f00-/machine-learning-with-python-cookbook-notes/

conda

# conda update --prefix /opt/conda anaconda
Solving environment: done

## Package Plan ##

  environment location: /opt/conda

  added / updated specs: 
    - anaconda


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    qtawesome-0.4.4            |           py36_0         159 KB
    patchelf-0.9               |       hf484d3e_2          68 KB
    cryptography-2.3.1         |   py36hc365091_0         585 KB
    attrs-18.2.0               |   py36h28b3542_0          50 KB
    pygments-2.2.0             |           py36_0         1.3 MB
    mkl-2019.0                 |              118       204.4 MB
    singledispatch-3.4.0.3     |           py36_0          15 KB
    imagesize-1.1.0            |           py36_0           9 KB
    mkl_fft-1.0.4              |   py36h4414c95_1         150 KB
    blaze-0.11.3               |           py36_0         603 KB
    qt-5.9.6                   |       h8703b6f_2        87.1 MB
    pyparsing-2.2.0            |           py36_1          96 KB
    html5lib-1.0.1             |           py36_0         184 KB
    llvmlite-0.24.0            |   py36hdbcaa40_0        15.3 MB
    gevent-1.3.6               |   py36h7b6447c_0         1.9 MB
    prompt_toolkit-1.0.15      |           py36_0         339 KB
    sphinxcontrib-1.0          |           py36_1           3 KB
    typed-ast-1.1.0            |   py36h14c3975_0         196 KB
    fontconfig-2.13.0          |       h9420a91_0         291 KB
    pytest-3.8.0               |           py36_0         317 KB
    pycparser-2.18             |           py36_1         169 KB
    urllib3-1.23               |           py36_0         152 KB
    prometheus_client-0.3.1    |   py36h28b3542_0          52 KB
    rope-0.11.0                |           py36_0         282 KB
    locket-0.2.0               |           py36_1           8 KB
    pillow-5.2.0               |   py36heded4f4_0         586 KB
    dask-core-0.19.1           |           py36_0         1.1 MB
    babel-2.6.0                |           py36_0         5.7 MB
    cytoolz-0.9.0.1            |   py36h14c3975_1         419 KB
    sphinx-1.7.9               |           py36_0         1.6 MB
    cloudpickle-0.5.5          |           py36_0          26 KB
    sympy-1.2                  |           py36_0         8.8 MB
    pango-1.42.4               |       h049681c_0         528 KB
    pytest-remotedata-0.3.0    |           py36_0          12 KB
    pytz-2018.5                |           py36_0         232 KB
    ptyprocess-0.6.0           |           py36_0          23 KB
    scikit-learn-0.19.2        |   py36h4989274_0         5.2 MB
    parso-0.3.1                |           py36_0         114 KB
    xlrd-1.1.0                 |           py36_1         194 KB
    nbformat-4.4.0             |           py36_0         141 KB
    pandocfilters-1.4.2        |           py36_1          13 KB
    nbconvert-5.4.0            |           py36_1         416 KB
    pyodbc-4.0.24              |   py36he6710b0_0          66 KB
    spyder-3.3.1               |           py36_1         2.6 MB
    tqdm-4.26.0                |   py36h28b3542_0          59 KB
    wrapt-1.10.11              |   py36h14c3975_2          45 KB
    greenlet-0.4.15            |   py36h7b6447c_0          20 KB
    zeromq-4.2.5               |       hf484d3e_1         567 KB
    fribidi-1.0.5              |       h7b6447c_0         112 KB
    cffi-1.11.5                |   py36he75722e_1         212 KB
    zict-0.1.3                 |           py36_0          18 KB
    twisted-18.7.0             |   py36h14c3975_1         4.9 MB
    bottleneck-1.2.1           |   py36h035aef0_1         127 KB
    mpfr-4.0.1                 |       hdf1c602_3         575 KB
    appdirs-1.4.3              |   py36h28b3542_0          16 KB
    entrypoints-0.2.3          |           py36_2           9 KB
    jeepney-0.3.1              |           py36_0          36 KB
    tornado-5.1                |   py36h14c3975_0         666 KB
    qtconsole-4.4.1            |           py36_0         156 KB
    sqlalchemy-1.2.11          |   py36h7b6447c_0         1.6 MB
    alabaster-0.7.11           |           py36_0          17 KB
    click-6.7                  |           py36_0         105 KB
    constantly-15.1.0          |   py36h28b3542_0          13 KB
    xlwt-1.3.0                 |           py36_0         163 KB
    automat-0.7.0              |           py36_0          52 KB
    pexpect-4.6.0              |           py36_0          77 KB
    pytest-astropy-0.4.0       |           py36_0           5 KB
    olefile-0.46               |           py36_0          48 KB
    blosc-1.14.4               |       hdbcaa40_0         601 KB
    setuptools-40.2.0          |           py36_0         556 KB
    zope.interface-4.5.0       |   py36h14c3975_0         201 KB
    jupyter_console-5.2.0      |           py36_1          36 KB
    notebook-5.6.0             |           py36_0         7.4 MB
    boto-2.49.0                |           py36_0         1.5 MB
    ruamel_yaml-0.15.46        |   py36h14c3975_0         245 KB
    mccabe-0.6.1               |           py36_1          14 KB
    cython-0.28.5              |   py36hf484d3e_0         3.3 MB
    numexpr-2.6.8              |   py36hd89afb7_0         190 KB
    nose-1.3.7                 |           py36_2         214 KB
    requests-2.19.1            |           py36_0          96 KB
    kiwisolver-1.0.1           |   py36hf484d3e_0          83 KB
    bitarray-0.8.3             |   py36h14c3975_0          55 KB
    libgfortran-ng-7.3.0       |       hdf63c60_0         1.3 MB
    freetype-2.9.1             |       h8a8886c_1         822 KB
    numba-0.39.0               |   py36h04863e7_0         2.4 MB
    tk-8.6.8                   |       hbc83047_0         3.1 MB
    multipledispatch-0.6.0     |           py36_0          21 KB
    ipywidgets-7.4.1           |           py36_0         148 KB
    wcwidth-0.1.7              |           py36_0          25 KB
    zope-1.0                   |           py36_1           3 KB
    bkcharts-0.2               |           py36_0         127 KB
    jedi-0.12.1                |           py36_0         225 KB
    docutils-0.14              |           py36_0         689 KB
    pycrypto-2.6.1             |   py36h14c3975_9         465 KB
    jupyterlab_launcher-0.13.1 |           py36_0          36 KB
    bleach-2.1.4               |           py36_0          33 KB
    ipython_genutils-0.2.0     |           py36_0          39 KB
    service_identity-17.0.0    |   py36h28b3542_0          18 KB
    anaconda-client-1.7.2      |           py36_0         141 KB
    backports-1.0              |           py36_1           3 KB
    libuuid-1.0.3              |       h1bed415_2          16 KB
    astroid-2.0.4              |           py36_0         247 KB
    secretstorage-3.1.0        |           py36_0          23 KB
    libstdcxx-ng-8.2.0         |       hdf63c60_1         2.9 MB
    markupsafe-1.0             |   py36h14c3975_1          24 KB
    expat-2.2.6                |       he6710b0_0         187 KB
    curl-7.61.0                |       h84994c4_0         141 KB
    path.py-11.1.0             |           py36_0          53 KB
    et_xmlfile-1.0.1           |           py36_0          20 KB
    ipython-6.5.0              |           py36_0         1.0 MB
    cycler-0.10.0              |           py36_0          13 KB
    lxml-4.2.5                 |   py36hefd8a0e_0         1.6 MB
    distributed-1.23.1         |           py36_0         829 KB
    intel-openmp-2019.0        |              118         721 KB
    astropy-3.0.4              |   py36h14c3975_0         6.8 MB
    numpy-base-1.15.1          |   py36h81de0dd_0         4.2 MB
    msgpack-python-0.5.6       |   py36h6bb024c_1          99 KB
    sortedcontainers-2.0.5     |           py36_0          43 KB
    openssl-1.0.2p             |       h14c3975_0         3.5 MB
    chardet-3.0.4              |           py36_1         189 KB
    libgcc-ng-8.2.0            |       hdf63c60_1         7.6 MB
    ipykernel-4.9.0            |           py36_1         146 KB
    datashape-0.5.4            |           py36_1         100 KB
    h5py-2.8.0                 |   py36h989c5e5_3         1.1 MB
    pyzmq-17.1.2               |   py36h14c3975_0         454 KB
    pycosat-0.6.3              |   py36h14c3975_0         104 KB
    spyder-kernels-0.2.6       |           py36_0          69 KB
    six-1.11.0                 |           py36_1          21 KB
    lazy-object-proxy-1.3.1    |   py36h14c3975_2          30 KB
    imageio-2.4.1              |           py36_0         3.3 MB
    scikit-image-0.14.0        |   py36hf484d3e_1        24.1 MB
    pickleshare-0.7.4          |           py36_0          12 KB
    hyperlink-18.0.0           |           py36_0          62 KB
    snowballstemmer-1.2.1      |           py36_0          85 KB
    keyring-13.2.1             |           py36_0          46 KB
    matplotlib-2.2.3           |   py36hb69df0a_0         6.6 MB
    pyasn1-0.4.4               |   py36h28b3542_0         101 KB
    pyasn1-modules-0.2.2       |           py36_0          86 KB
    traitlets-4.3.2            |           py36_0         133 KB
    openpyxl-2.5.6             |           py36_0         330 KB
    glib-2.56.2                |       hd408876_0         5.0 MB
    beautifulsoup4-4.6.3       |           py36_0         138 KB
    colorama-0.3.9             |           py36_0          23 KB
    glob2-0.6                  |           py36_0          17 KB
    testpath-0.3.1             |           py36_0          90 KB
    contextlib2-0.5.5          |           py36_0          15 KB
    jinja2-2.10                |           py36_0         184 KB
    anaconda-5.3.0             |           py36_0          11 KB
    certifi-2018.8.24          |           py36_1         140 KB
    webencodings-0.5.1         |           py36_1          19 KB
    xlsxwriter-1.1.0           |           py36_0         210 KB
    pandas-0.23.4              |   py36h04863e7_0        10.1 MB
    incremental-17.5.0         |           py36_0          25 KB
    atomicwrites-1.2.1         |           py36_0          11 KB
    jupyterlab-0.34.9          |           py36_0        10.0 MB
    itsdangerous-0.24          |           py36_1          20 KB
    pywavelets-1.0.0           |   py36hdd07704_0         4.4 MB
    scipy-1.1.0                |   py36hfa4b5c9_1        18.0 MB
    mkl-service-1.1.2          |   py36h90e4bf4_5          11 KB
    widgetsnbextension-3.4.1   |           py36_0         1.7 MB
    defusedxml-0.5.0           |           py36_1          29 KB
    jupyter-1.0.0              |           py36_7           6 KB
    tblib-1.3.2                |           py36_0          16 KB
    graphite2-1.3.12           |       h23475e2_2         106 KB
    libcurl-7.61.0             |       h1ad7b7a_0         494 KB
    filelock-3.0.8             |           py36_0          13 KB
    pylint-2.1.1               |           py36_0         795 KB
    anaconda-project-0.8.2     |           py36_0         478 KB
    py-1.6.0                   |           py36_0         136 KB
    mkl_random-1.0.1           |   py36h4414c95_1         373 KB
    libtiff-4.0.9              |       he85c1e1_2         567 KB
    unixodbc-2.3.7             |       h14c3975_0         319 KB
    pytables-3.4.4             |   py36ha205bf6_0         1.5 MB
    more-itertools-4.3.0       |           py36_0          83 KB
    odo-0.5.1                  |           py36_0         193 KB
    cairo-1.14.12              |       h8948797_3         1.3 MB
    harfbuzz-1.8.8             |       hffaf4a1_0         863 KB
    unicodecsv-0.14.1          |           py36_0          24 KB
    sphinxcontrib-websupport-1.1.0|           py36_1          36 KB
    pycurl-7.43.0.2            |   py36hb7f436b_0          60 KB
    idna-2.7                   |           py36_0         132 KB
    bokeh-0.13.0               |           py36_0         5.0 MB
    backports.shutil_get_terminal_size-1.0.0|           py36_2           8 KB
    pyqt-5.9.2                 |   py36h05f1152_2         5.6 MB
    pytest-arraydiff-0.2       |   py36h39e3cac_0          14 KB
    pyflakes-2.0.0             |           py36_0          88 KB
    clyent-1.2.2               |           py36_1          18 KB
    numpy-1.15.1               |   py36h1d66e8a_0          37 KB
    mpc-1.1.0                  |       h10f8cd9_1          94 KB
    sqlite-3.24.0              |       h84994c4_0         1.8 MB
    mpmath-1.0.0               |           py36_2         892 KB
    qtpy-1.5.0                 |           py36_0          50 KB
    sortedcollections-1.0.1    |           py36_0          15 KB
    readline-7.0               |       h7b6447c_5         392 KB
    partd-0.3.8                |           py36_0          31 KB
    pluggy-0.7.1               |   py36h28b3542_0          25 KB
    pyyaml-3.13                |   py36h14c3975_0         178 KB
    seaborn-0.9.0              |           py36_0         379 KB
    flask-cors-3.0.6           |           py36_0          21 KB
    psutil-5.4.7               |   py36h14c3975_0         305 KB
    dask-0.19.1                |           py36_0           3 KB
    python-3.6.6               |       hc3d631a_0        29.4 MB
    gmpy2-2.0.8                |   py36h10f8cd9_2         165 KB
    jupyter_core-4.4.0         |           py36_0          63 KB
    jsonschema-2.6.0           |           py36_0          62 KB
    statsmodels-0.9.0          |   py36h035aef0_0         9.0 MB
    ------------------------------------------------------------
                                           Total:       552.9 MB

The following NEW packages will be INSTALLED:

    appdirs:                            1.4.3-py36h28b3542_0   
    atomicwrites:                       1.2.1-py36_0           
    automat:                            0.7.0-py36_0           
    constantly:                         15.1.0-py36h28b3542_0  
    defusedxml:                         0.5.0-py36_1           
    fribidi:                            1.0.5-h7b6447c_0       
    hyperlink:                          18.0.0-py36_0          
    incremental:                        17.5.0-py36_0          
    jeepney:                            0.3.1-py36_0           
    keyring:                            13.2.1-py36_0          
    libuuid:                            1.0.3-h1bed415_2       
    prometheus_client:                  0.3.1-py36h28b3542_0   
    pyasn1:                             0.4.4-py36h28b3542_0   
    pyasn1-modules:                     0.2.2-py36_0           
    secretstorage:                      3.1.0-py36_0           
    service_identity:                   17.0.0-py36h28b3542_0  
    spyder-kernels:                     0.2.6-py36_0           
    tqdm:                               4.26.0-py36h28b3542_0  
    twisted:                            18.7.0-py36h14c3975_1  
    typed-ast:                          1.1.0-py36h14c3975_0   
    zope:                               1.0-py36_1             
    zope.interface:                     4.5.0-py36h14c3975_0   

The following packages will be UPDATED:

    alabaster:                          0.7.10-py36h306e16b_0   --> 0.7.11-py36_0          
    anaconda:                           5.2.0-py36_3            --> 5.3.0-py36_0           
    anaconda-client:                    1.6.14-py36_0           --> 1.7.2-py36_0           
    anaconda-project:                   0.8.2-py36h44fb852_0    --> 0.8.2-py36_0           
    astroid:                            1.6.3-py36_0            --> 2.0.4-py36_0           
    astropy:                            3.0.2-py36h3010b51_1    --> 3.0.4-py36h14c3975_0   
    attrs:                              18.1.0-py36_0           --> 18.2.0-py36h28b3542_0  
    babel:                              2.5.3-py36_0            --> 2.6.0-py36_0           
    backports:                          1.0-py36hfa02d7e_1      --> 1.0-py36_1             
    backports.shutil_get_terminal_size: 1.0.0-py36hfea85ff_2    --> 1.0.0-py36_2           
    beautifulsoup4:                     4.6.0-py36h49b8c8c_1    --> 4.6.3-py36_0           
    bitarray:                           0.8.1-py36h14c3975_1    --> 0.8.3-py36h14c3975_0   
    bkcharts:                           0.2-py36h735825a_0      --> 0.2-py36_0             
    blaze:                              0.11.3-py36h4e06776_0   --> 0.11.3-py36_0          
    bleach:                             2.1.3-py36_0            --> 2.1.4-py36_0           
    blosc:                              1.14.3-hdbcaa40_0       --> 1.14.4-hdbcaa40_0      
    bokeh:                              0.12.16-py36_0          --> 0.13.0-py36_0          
    boto:                               2.48.0-py36h6e4cd66_1   --> 2.49.0-py36_0          
    bottleneck:                         1.2.1-py36haac1ea0_0    --> 1.2.1-py36h035aef0_1   
    cairo:                              1.14.12-h7636065_2      --> 1.14.12-h8948797_3     
    certifi:                            2018.4.16-py36_0        --> 2018.8.24-py36_1       
    cffi:                               1.11.5-py36h9745a5d_0   --> 1.11.5-py36he75722e_1  
    chardet:                            3.0.4-py36h0f667ec_1    --> 3.0.4-py36_1           
    click:                              6.7-py36h5253387_0      --> 6.7-py36_0             
    cloudpickle:                        0.5.3-py36_0            --> 0.5.5-py36_0           
    clyent:                             1.2.2-py36h7e57e65_1    --> 1.2.2-py36_1           
    colorama:                           0.3.9-py36h489cec4_0    --> 0.3.9-py36_0           
    contextlib2:                        0.5.5-py36h6c84a62_0    --> 0.5.5-py36_0           
    cryptography:                       2.2.2-py36h14c3975_0    --> 2.3.1-py36hc365091_0   
    curl:                               7.60.0-h84994c4_0       --> 7.61.0-h84994c4_0      
    cycler:                             0.10.0-py36h93f1223_0   --> 0.10.0-py36_0          
    cython:                             0.28.2-py36h14c3975_0   --> 0.28.5-py36hf484d3e_0  
    cytoolz:                            0.9.0.1-py36h14c3975_0  --> 0.9.0.1-py36h14c3975_1 
    dask:                               0.17.5-py36_0           --> 0.19.1-py36_0          
    dask-core:                          0.17.5-py36_0           --> 0.19.1-py36_0          
    datashape:                          0.5.4-py36h3ad6b5c_0    --> 0.5.4-py36_1           
    distributed:                        1.21.8-py36_0           --> 1.23.1-py36_0          
    docutils:                           0.14-py36hb0f60f5_0     --> 0.14-py36_0            
    entrypoints:                        0.2.3-py36h1aec115_2    --> 0.2.3-py36_2           
    et_xmlfile:                         1.0.1-py36hd6bccc3_0    --> 1.0.1-py36_0           
    expat:                              2.2.5-he0dffb1_0        --> 2.2.6-he6710b0_0       
    filelock:                           3.0.4-py36_0            --> 3.0.8-py36_0           
    flask-cors:                         3.0.4-py36_0            --> 3.0.6-py36_0           
    fontconfig:                         2.12.6-h49f89f6_0       --> 2.13.0-h9420a91_0      
    freetype:                           2.8-hab7d2ae_1          --> 2.9.1-h8a8886c_1       
    gevent:                             1.3.0-py36h14c3975_0    --> 1.3.6-py36h7b6447c_0   
    glib:                               2.56.1-h000015b_0       --> 2.56.2-hd408876_0      
    glob2:                              0.6-py36he249c77_0      --> 0.6-py36_0             
    gmpy2:                              2.0.8-py36hc8893dd_2    --> 2.0.8-py36h10f8cd9_2   
    graphite2:                          1.3.11-h16798f4_2       --> 1.3.12-h23475e2_2      
    greenlet:                           0.4.13-py36h14c3975_0   --> 0.4.15-py36h7b6447c_0  
    h5py:                               2.7.1-py36ha1f6525_2    --> 2.8.0-py36h989c5e5_3   
    harfbuzz:                           1.7.6-h5f0a787_1        --> 1.8.8-hffaf4a1_0       
    html5lib:                           1.0.1-py36h2f9c1c0_0    --> 1.0.1-py36_0           
    idna:                               2.6-py36h82fb2a8_1      --> 2.7-py36_0             
    imageio:                            2.3.0-py36_0            --> 2.4.1-py36_0           
    imagesize:                          1.0.0-py36_0            --> 1.1.0-py36_0           
    intel-openmp:                       2018.0.0-8              --> 2019.0-118             
    ipykernel:                          4.8.2-py36_0            --> 4.9.0-py36_1           
    ipython:                            6.4.0-py36_0            --> 6.5.0-py36_0           
    ipython_genutils:                   0.2.0-py36hb52b0d5_0    --> 0.2.0-py36_0           
    ipywidgets:                         7.2.1-py36_0            --> 7.4.1-py36_0           
    itsdangerous:                       0.24-py36h93cc618_1     --> 0.24-py36_1            
    jedi:                               0.12.0-py36_1           --> 0.12.1-py36_0          
    jinja2:                             2.10-py36ha16c418_0     --> 2.10-py36_0            
    jsonschema:                         2.6.0-py36h006f8b5_0    --> 2.6.0-py36_0           
    jupyter:                            1.0.0-py36_4            --> 1.0.0-py36_7           
    jupyter_console:                    5.2.0-py36he59e554_1    --> 5.2.0-py36_1           
    jupyter_core:                       4.4.0-py36h7c827e3_0    --> 4.4.0-py36_0           
    jupyterlab:                         0.32.1-py36_0           --> 0.34.9-py36_0          
    jupyterlab_launcher:                0.10.5-py36_0           --> 0.13.1-py36_0          
    kiwisolver:                         1.0.1-py36h764f252_0    --> 1.0.1-py36hf484d3e_0   
    lazy-object-proxy:                  1.3.1-py36h10fcdad_0    --> 1.3.1-py36h14c3975_2   
    libcurl:                            7.60.0-h1ad7b7a_0       --> 7.61.0-h1ad7b7a_0      
    libgcc-ng:                          7.2.0-hdf63c60_3        --> 8.2.0-hdf63c60_1       
    libgfortran-ng:                     7.2.0-hdf63c60_3        --> 7.3.0-hdf63c60_0       
    libstdcxx-ng:                       7.2.0-hdf63c60_3        --> 8.2.0-hdf63c60_1       
    libtiff:                            4.0.9-he85c1e1_1        --> 4.0.9-he85c1e1_2       
    llvmlite:                           0.23.1-py36hdbcaa40_0   --> 0.24.0-py36hdbcaa40_0  
    locket:                             0.2.0-py36h787c0ad_1    --> 0.2.0-py36_1           
    lxml:                               4.2.1-py36h23eabaa_0    --> 4.2.5-py36hefd8a0e_0   
    markupsafe:                         1.0-py36hd9260cd_1      --> 1.0-py36h14c3975_1     
    matplotlib:                         2.2.2-py36h0e671d2_1    --> 2.2.3-py36hb69df0a_0   
    mccabe:                             0.6.1-py36h5ad9710_1    --> 0.6.1-py36_1           
    mkl:                                2018.0.2-1              --> 2019.0-118             
    mkl-service:                        1.1.2-py36h17a0993_4    --> 1.1.2-py36h90e4bf4_5   
    mkl_fft:                            1.0.1-py36h3010b51_0    --> 1.0.4-py36h4414c95_1   
    mkl_random:                         1.0.1-py36h629b387_0    --> 1.0.1-py36h4414c95_1   
    more-itertools:                     4.1.0-py36_0            --> 4.3.0-py36_0           
    mpc:                                1.0.3-hec55b23_5        --> 1.1.0-h10f8cd9_1       
    mpfr:                               3.1.5-h11a74b3_2        --> 4.0.1-hdf1c602_3       
    mpmath:                             1.0.0-py36hfeacd6b_2    --> 1.0.0-py36_2           
    msgpack-python:                     0.5.6-py36h6bb024c_0    --> 0.5.6-py36h6bb024c_1   
    multipledispatch:                   0.5.0-py36_0            --> 0.6.0-py36_0           
    nbconvert:                          5.3.1-py36hb41ffb7_0    --> 5.4.0-py36_1           
    nbformat:                           4.4.0-py36h31c9010_0    --> 4.4.0-py36_0           
    nose:                               1.3.7-py36hcdf7029_2    --> 1.3.7-py36_2           
    notebook:                           5.5.0-py36_0            --> 5.6.0-py36_0           
    numba:                              0.38.0-py36h637b7d7_0   --> 0.39.0-py36h04863e7_0  
    numexpr:                            2.6.5-py36h7bf3b9c_0    --> 2.6.8-py36hd89afb7_0   
    numpy:                              1.14.3-py36hcd700cb_1   --> 1.15.1-py36h1d66e8a_0  
    numpy-base:                         1.14.3-py36h9be14a7_1   --> 1.15.1-py36h81de0dd_0  
    odo:                                0.5.1-py36h90ed295_0    --> 0.5.1-py36_0           
    olefile:                            0.45.1-py36_0           --> 0.46-py36_0            
    openpyxl:                           2.5.3-py36_0            --> 2.5.6-py36_0           
    openssl:                            1.0.2o-h20670df_0       --> 1.0.2p-h14c3975_0      
    pandas:                             0.23.0-py36h637b7d7_0   --> 0.23.4-py36h04863e7_0  
    pandocfilters:                      1.4.2-py36ha6701b7_1    --> 1.4.2-py36_1           
    pango:                              1.41.0-hd475d92_0       --> 1.42.4-h049681c_0      
    parso:                              0.2.0-py36_0            --> 0.3.1-py36_0           
    partd:                              0.3.8-py36h36fd896_0    --> 0.3.8-py36_0           
    patchelf:                           0.9-hf79760b_2          --> 0.9-hf484d3e_2         
    path.py:                            11.0.1-py36_0           --> 11.1.0-py36_0          
    pexpect:                            4.5.0-py36_0            --> 4.6.0-py36_0           
    pickleshare:                        0.7.4-py36h63277f8_0    --> 0.7.4-py36_0           
    pillow:                             5.1.0-py36h3deb7b8_0    --> 5.2.0-py36heded4f4_0   
    pluggy:                             0.6.0-py36hb689045_0    --> 0.7.1-py36h28b3542_0   
    prompt_toolkit:                     1.0.15-py36h17d85b1_0   --> 1.0.15-py36_0          
    psutil:                             5.4.5-py36h14c3975_0    --> 5.4.7-py36h14c3975_0   
    ptyprocess:                         0.5.2-py36h69acd42_0    --> 0.6.0-py36_0           
    py:                                 1.5.3-py36_0            --> 1.6.0-py36_0           
    pycosat:                            0.6.3-py36h0a5515d_0    --> 0.6.3-py36h14c3975_0   
    pycparser:                          2.18-py36hf9f622e_1     --> 2.18-py36_1            
    pycrypto:                           2.6.1-py36h14c3975_8    --> 2.6.1-py36h14c3975_9   
    pycurl:                             7.43.0.1-py36hb7f436b_0 --> 7.43.0.2-py36hb7f436b_0
    pyflakes:                           1.6.0-py36h7bd6a15_0    --> 2.0.0-py36_0           
    pygments:                           2.2.0-py36h0d3125c_0    --> 2.2.0-py36_0           
    pylint:                             1.8.4-py36_0            --> 2.1.1-py36_0           
    pyodbc:                             4.0.23-py36hf484d3e_0   --> 4.0.24-py36he6710b0_0  
    pyparsing:                          2.2.0-py36hee85983_1    --> 2.2.0-py36_1           
    pyqt:                               5.9.2-py36h751905a_0    --> 5.9.2-py36h05f1152_2   
    pytables:                           3.4.3-py36h02b9ad4_2    --> 3.4.4-py36ha205bf6_0   
    pytest:                             3.5.1-py36_0            --> 3.8.0-py36_0           
    pytest-arraydiff:                   0.2-py36_0              --> 0.2-py36h39e3cac_0     
    pytest-astropy:                     0.3.0-py36_0            --> 0.4.0-py36_0           
    pytest-remotedata:                  0.2.1-py36_0            --> 0.3.0-py36_0           
    python:                             3.6.5-hc3d631a_2        --> 3.6.6-hc3d631a_0       
    pytz:                               2018.4-py36_0           --> 2018.5-py36_0          
    pywavelets:                         0.5.2-py36he602eb0_0    --> 1.0.0-py36hdd07704_0   
    pyyaml:                             3.12-py36hafb9ca4_1     --> 3.13-py36h14c3975_0    
    pyzmq:                              17.0.0-py36h14c3975_0   --> 17.1.2-py36h14c3975_0  
    qt:                                 5.9.5-h7e424d6_0        --> 5.9.6-h8703b6f_2       
    qtawesome:                          0.4.4-py36h609ed8c_0    --> 0.4.4-py36_0           
    qtconsole:                          4.3.1-py36h8f73b5b_0    --> 4.4.1-py36_0           
    qtpy:                               1.4.1-py36_0            --> 1.5.0-py36_0           
    readline:                           7.0-ha6073c6_4          --> 7.0-h7b6447c_5         
    requests:                           2.18.4-py36he2e5f8d_1   --> 2.19.1-py36_0          
    rope:                               0.10.7-py36h147e2ec_0   --> 0.11.0-py36_0          
    ruamel_yaml:                        0.15.35-py36h14c3975_1  --> 0.15.46-py36h14c3975_0 
    scikit-image:                       0.13.1-py36h14c3975_1   --> 0.14.0-py36hf484d3e_1  
    scikit-learn:                       0.19.1-py36h7aa7ec6_0   --> 0.19.2-py36h4989274_0  
    scipy:                              1.1.0-py36hfc37229_0    --> 1.1.0-py36hfa4b5c9_1   
    seaborn:                            0.8.1-py36hfad7ec4_0    --> 0.9.0-py36_0           
    setuptools:                         39.1.0-py36_0           --> 40.2.0-py36_0          
    singledispatch:                     3.4.0.3-py36h7a266c3_0  --> 3.4.0.3-py36_0         
    six:                                1.11.0-py36h372c433_1   --> 1.11.0-py36_1          
    snowballstemmer:                    1.2.1-py36h6febd40_0    --> 1.2.1-py36_0           
    sortedcollections:                  0.6.1-py36_0            --> 1.0.1-py36_0           
    sortedcontainers:                   1.5.10-py36_0           --> 2.0.5-py36_0           
    sphinx:                             1.7.4-py36_0            --> 1.7.9-py36_0           
    sphinxcontrib:                      1.0-py36h6d0f590_1      --> 1.0-py36_1             
    sphinxcontrib-websupport:           1.0.1-py36hb5cb234_1    --> 1.1.0-py36_1           
    spyder:                             3.2.8-py36_0            --> 3.3.1-py36_1           
    sqlalchemy:                         1.2.7-py36h6b74fdf_0    --> 1.2.11-py36h7b6447c_0  
    sqlite:                             3.23.1-he433501_0       --> 3.24.0-h84994c4_0      
    statsmodels:                        0.9.0-py36h3010b51_0    --> 0.9.0-py36h035aef0_0   
    sympy:                              1.1.1-py36hc6d1c1c_0    --> 1.2-py36_0             
    tblib:                              1.3.2-py36h34cf8b6_0    --> 1.3.2-py36_0           
    testpath:                           0.3.1-py36h8cadb63_0    --> 0.3.1-py36_0           
    tk:                                 8.6.7-hc745277_3        --> 8.6.8-hbc83047_0       
    tornado:                            5.0.2-py36_0            --> 5.1-py36h14c3975_0     
    traitlets:                          4.3.2-py36h674d592_0    --> 4.3.2-py36_0           
    unicodecsv:                         0.14.1-py36ha668878_0   --> 0.14.1-py36_0          
    unixodbc:                           2.3.6-h1bed415_0        --> 2.3.7-h14c3975_0       
    urllib3:                            1.22-py36hbe7ace6_0     --> 1.23-py36_0            
    wcwidth:                            0.1.7-py36hdf4376a_0    --> 0.1.7-py36_0           
    webencodings:                       0.5.1-py36h800622e_1    --> 0.5.1-py36_1           
    widgetsnbextension:                 3.2.1-py36_0            --> 3.4.1-py36_0           
    wrapt:                              1.10.11-py36h28b7045_0  --> 1.10.11-py36h14c3975_2 
    xlrd:                               1.1.0-py36h1db9f0c_1    --> 1.1.0-py36_1           
    xlsxwriter:                         1.0.4-py36_0            --> 1.1.0-py36_0           
    xlwt:                               1.3.0-py36h7b00a1f_0    --> 1.3.0-py36_0           
    zeromq:                             4.2.5-h439df22_0        --> 4.2.5-hf484d3e_1       
    zict:                               0.1.3-py36h3a3bf81_0    --> 0.1.3-py36_0           

Proceed ([y]/n)? y


pip

(base) root@f19e2f06eabb:/deep-learning-from-scratch-2/ch01# pip install --upgrade pip
Collecting pip
  Downloading https://files.pythonhosted.org/packages/5f/25/e52d3f31441505a5f3af41213346e5b6c221c9e086a166f3703d2ddaf940/pip-18.0-py2.py3-none-any.whl (1.3MB)
    100% |████████████████████████████████| 1.3MB 2.0MB/s 
distributed 1.21.8 requires msgpack, which is not installed.
Installing collected packages: pip
  Found existing installation: pip 10.0.1
    Uninstalling pip-10.0.1:
      Successfully uninstalled pip-10.0.1
Successfully installed pip-18.0
(

docker hubへの登録

## $ docker ps
CONTAINER ID        IMAGE                   COMMAND                  CREATED             STATUS              PORTS                    NAMES
caef766a99ff        continuumio/anaconda3   "/usr/bin/tini -- /b…"   10 hours ago        Up 10 hours         0.0.0.0:8888->8888/tcp   sleepy_bassi

$ docker commit caef766a99ff kaizenjapan/anaconda-chiris

$ docker push kaizenjapan/anaconda-chiris

参考資料(reference)

dockerで機械学習(1) with anaconda(1)「ゼロから作るDeep Learning - Pythonで学ぶディープラーニングの理論と実装」斎藤 康毅 著
https://qiita.com/kaizen_nagoya/items/a7e94ef6dca128d035ab
dockerで機械学習(2)with anaconda(2)「ゼロから作るDeep Learning2自然言語処理編」斎藤 康毅 著
https://qiita.com/kaizen_nagoya/items/3b80dfc76933cea522c6
dockerで機械学習(3)with anaconda(3)「直感Deep Learning」Antonio Gulli、Sujit Pal 第1章,第2章
https://qiita.com/kaizen_nagoya/items/483ae708c71c88419c32

dockerで機械学習(71) 環境構築(1) docker どっかーら、どーやってもエラーばっかり。
https://qiita.com/kaizen_nagoya/items/690d806a4760d9b9e040
dockerで機械学習(72) 環境構築(2) Docker for Windows
https://qiita.com/kaizen_nagoya/items/c4daa5cf52e9f0c2c002
dockerで機械学習(73) 環境構築(3) docker/linux/macos bash スクリプト, ms-dos batchファイル
https://qiita.com/kaizen_nagoya/items/3f7b39110b7f303a5558
dockerで機械学習(74) 環境構築(4) R 難関いくつ?
https://qiita.com/kaizen_nagoya/items/5fb44773bc38574bcf1c
dockerで機械学習(75)環境構築(5)docker関連ファイルの管理
https://qiita.com/kaizen_nagoya/items/4f03df9a42c923087b5d

OpenCVをPythonで動かそうとしてlibGL.soが無いって言われたけど解決した。
https://qiita.com/toshitanian/items/5da24c0c0bd473d514c8

サーバサイドにおけるmatplotlibによる作図Tips
https://qiita.com/TomokIshii/items/3a26ee4453f535a69e9e

Dockerでホストとコンテナ間でのファイルコピー
https://qiita.com/gologo13/items/7e4e404af80377b48fd5

Docker for Mac でファイル共有を利用する
https://qiita.com/seijimomoto/items/1992d68de8baa7e29bb5

「名古屋のIoTは名古屋のOSで」Dockerをどっかーらどうやって使えばいいんでしょう。TOPPERS/FMP on RaspberryPi with Macintosh編 5つの関門
https://qiita.com/kaizen_nagoya/items/9c46c6da8ceb64d2d7af

64bitCPUへの道 and/or 64歳の決意
https://qiita.com/kaizen_nagoya/items/cfb5ffa24ded23ab3f60

ゼロから作るDeepLearning2自然言語処理編 読書会の進め方(例)
https://qiita.com/kaizen_nagoya/items/025eb3f701b36209302e

Ubuntu 16.04 LTS で NVIDIA Docker を使ってみる
https://blog.amedama.jp/entry/2017/04/03/235901

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

C++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding Rules(0) C Secure , MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

Autosar Guidelines C++14 example code compile list(1-169)
https://qiita.com/kaizen_nagoya/items/8ccbf6675c3494d57a76

Error一覧(C/C++, python, bash...) Error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

LaTeX(0) 一覧 
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

Rust(0) 一覧 
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927

小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53

文書履歴(document history)

ver. 0.10 初稿 20181020
ver. 0.11 参考文献等追記 20181021

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

1
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?