1.すぐに利用したい方へ(as soon as)
「scikit-learn Cookbook」 2nd Edition By Trent Hauck, Julian Avila
http://shop.oreilly.com/product/9781787286382.do
docker
dockerを導入し、Windows, Macではdockerを起動しておいてください。
Windowsでは、BiosでIntel Virtualizationをenableにしないとdockerが起動しない場合があります。
また、セキュリティの警告などが出ることがあります。
docker run
$ docker run -it -p 8888:8888 kaizenjapan/anaconda-indra /bin/bash
以下のshell sessionでは
(base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。
それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。
それぞれの章のフォルダに移動します。
dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。
ファイル共有または複写
dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。
複写の場合は、dockerを起動したOS側コマンドを実行しました。お使いのdockerの番号で置き換えてください。複写したファイルをブラウザで表示し内容確認しました。
setup.py
(base) root@a221771835f7:/scikit-learn# python setup.py
Partial import of sklearn during the build process.
usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
or: setup.py --help [cmd1 cmd2 ...]
or: setup.py --help-commands
or: setup.py cmd --help
error: no commands supplied
(base) root@a221771835f7:/scikit-learn# python setup.py --help
Partial import of sklearn during the build process.
Common commands: (see '--help-commands' for more)
setup.py build will build the package underneath 'build/'
setup.py install will install the package
Global options:
--verbose (-v) run verbosely (default)
--quiet (-q) run quietly (turns verbosity off)
--dry-run (-n) don't actually do anything
--help (-h) show detailed help message
--no-user-cfg ignore pydistutils.cfg in your home directory
--command-packages list of packages that provide distutils commands
Information display options (just display information, ignore any commands)
--help-commands list all available commands
--name print package name
--version (-V) print package version
--fullname print <package name>-<version>
--author print the author's name
--author-email print the author's email address
--maintainer print the maintainer's name
--maintainer-email print the maintainer's email address
--contact print the maintainer's name if known, else the author's
--contact-email print the maintainer's email address if known, else the
author's
--url print the URL for this package
--license print the license of the package
--licence alias for --license
--description print the package description
--long-description print the long package description
--platforms print the list of platforms
--classifiers print the list of classifiers
--keywords print the list of keywords
--provides print the list of packages/modules provided
--requires print the list of packages/modules required
--obsoletes print the list of packages/modules made obsolete
usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
or: setup.py --help [cmd1 cmd2 ...]
or: setup.py --help-commands
or: setup.py cmd --help
sklearn/base.py
(base) root@a221771835f7:/scikit-learn/sklearn# python base.py
Traceback (most recent call last):
File "base.py", line 11, in <module>
from .externals import six
ModuleNotFoundError: No module named '__main__.externals'; '__main__' is not a package
sklearn/setup.py
(base) root@a221771835f7:/scikit-learn/sklearn# python setup.py
non-existing path in '__check_build': '_check_build.c'
Appending sklearn.__check_build configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.__check_build')
Appending sklearn._build_utils configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn._build_utils')
Appending sklearn.svm.tests configuration to sklearn.svm
Ignoring attempt to set 'name' (from 'sklearn.svm' to 'sklearn.svm.tests')
non-existing path in 'svm': 'libsvm.c'
non-existing path in 'svm': 'liblinear.c'
non-existing path in 'svm': 'libsvm_sparse.c'
Appending sklearn.svm configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.svm')
non-existing path in 'datasets': '_svmlight_format.c'
Appending sklearn.datasets configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.datasets')
Appending sklearn.datasets/tests configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.datasets/tests')
non-existing path in 'feature_extraction': '_hashing.c'
Appending sklearn.feature_extraction configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.feature_extraction')
Appending sklearn.feature_extraction/tests configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.feature_extraction/tests')
non-existing path in 'cluster': '_dbscan_inner.cpp'
non-existing path in 'cluster': '_hierarchical.cpp'
non-existing path in 'cluster': '_k_means.c'
Appending sklearn.cluster configuration to sklearn
...
examples/feature_stacker.py
(base) root@a221771835f7:/scikit-learn/examples# python feature_stacker.py
Fitting 3 folds for each of 18 candidates, totalling 54 fits
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9607843137254902, total= 0.0s
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9019607843137255, total= 0.0s
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total= 0.0s
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total= 0.0s
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.1s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9215686274509803, total= 0.0s
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.1s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total= 0.0s
[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.1s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9607843137254902, total= 0.0s
[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.1s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9215686274509803, total= 0.0s
[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.1s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9791666666666666, total= 0.0s
[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.1s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9607843137254902, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9215686274509803, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.9215686274509803, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=1.0, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.9803921568627451, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.9019607843137255, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=1.0, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9607843137254902, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9019607843137255, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9803921568627451, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9803921568627451, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9411764705882353, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9803921568627451, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9411764705882353, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=1.0, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.9803921568627451, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.9215686274509803, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=1.0, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9803921568627451, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9411764705882353, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=1.0, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.0, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=0.9215686274509803, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.0, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9803921568627451, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9411764705882353, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=1.0, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.9791666666666666, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.0, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=0.9215686274509803, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.0, total= 0.0s
[Parallel(n_jobs=1)]: Done 54 out of 54 | elapsed: 0.4s finished
Pipeline(memory=None,
steps=[('features', FeatureUnion(n_jobs=1,
transformer_list=[('pca', PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)), ('univ_select', SelectKBest(k=2, score_func=<function f_classif at 0x7f08e0594268>))],
transformer...,
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))])
##examples/missing_values.py
(base) root@a221771835f7:/scikit-learn/examples# python missing_values.py
/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
from numpy.core.umath_tests import inner1d
Score with the entire dataset = 0.56
Traceback (most recent call last):
File "missing_values.py", line 49, in <module>
dtype=np.bool),
TypeError: 'numpy.float64' object cannot be interpreted as an integer
##plot_cv_predict.py
(base) root@a221771835f7:/scikit-learn/examples# python plot_cv_predict.py
/opt/conda/lib/python3.6/site-packages/matplotlib/figure.py:448: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
% get_backend())
4行追加
import matplotlib as mpl
mpl.use('Agg')
fig = plt.figure()
fig.savefig('img.png')
1行plt.show()を注釈に。
##benchmark/bench_20newsgroups.py
(base) root@a221771835f7:/scikit-learn/benchmarks# python bench_20newsgroups.py
/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
from numpy.core.umath_tests import inner1d
usage: bench_20newsgroups.py [-h] -e
{dummy,random_forest,extra_trees,logistic_regression,naive_bayes,adaboost}
[{dummy,random_forest,extra_trees,logistic_regression,naive_bayes,adaboost} ...]
bench_20newsgroups.py: error: the following arguments are required: -e/--estimators
-e dummyを引数に。
(base) root@a221771835f7:/scikit-learn/benchmarks# python bench_20newsgroups.py -e dummy
/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
from numpy.core.umath_tests import inner1d
Downloading 20news dataset. This may take a few minutes.
Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)
#2. dockerを自力で構築する方へ
ここから下は、上記のpullしていただいたdockerをどういう方針で、どういう手順で作ったかを記録します。
上記のdockerを利用する上での参考資料です。本の続きを実行する上では必要ありません。
自力でdocker/anacondaを構築する場合の手順になります。
dockerfileを作る方法ではありません。ごめんなさい。
##docker
ubuntu, debianなどのLinuxを、linux, windows, mac osから共通に利用できる仕組み。
利用するOSの設定を変更せずに利用できるのがよい。
同じ仕様で、大量の人が利用することができる。
ソフトウェアの開発元が公式に対応しているものと、利用者が便利に仕立てたものの両方が利用可能である。今回は、公式に配布しているものを、自分で仕立てて、他の人にも利用できるようにする。
##python
DeepLearningの実習をPhthonで行って来た。
pythonを使う理由は、多くの機械学習の仕組みがpythonで利用できることと、Rなどの統計解析の仕組みもpythonから容易に利用できることがある。
###anaconda
pythonには、2と3という版の違いと、配布方法の違いなどがある。
Anacondaでpython3をこの1年半利用してきた。
Anacondaを利用した理由は、統計解析のライブラリと、JupyterNotebookが初めから入っているからである。
##docker公式配布
ubuntu, debianなどのOSの公式配布,gcc, anacondaなどの言語の公式配布などがある。
これらを利用し、docker-hubに登録することにより、公式配布の質の確認と、変更権を含む幅広い情報の共有ができる。dockerが公式配布するものではなく、それぞれのソフト提供者の公式配布という意味。
###docker pull
docker公式配布の利用は、URLからpullすることで実現する。
###docker Anaconda
anacondaが公式配布しているものを利用。
$ docker pull kaizenjapan/anaconda-keras
Using default tag: latest
latest: Pulling from continuumio/anaconda3
Digest: sha256:e07b9ca98ac1eeb1179dbf0e0bbcebd87701f8654878d6d8ce164d71746964d1
Status: Image is up to date for continuumio/anaconda3:latest
$ docker run -it -p 8888:8888 continuumio/anaconda3 /bin/bash
実際にはkeras, tensorflow を利用していた他のpushをpull
##apt-get
(base) root@d8857ae56e69:/# apt-get update
(base) root@d8857ae56e69:/# apt-get install -y procps
(base) root@d8857ae56e69:/# apt-get install -y vim
(base) root@d8857ae56e69:/# apt-get install -y apt-utils
(base) root@d8857ae56e69:/# apt-get install sudo
##ソース git
(base) root@f19e2f06eabb:/# git clone https://github.com/tshauck/scikit-learn
conda
(base) root@f19e2f06eabb:/d# conda update --prefix /opt/conda anaconda
pip
(base) root@f19e2f06eabb:/d# pip install --upgrade pip
#docker hubへの登録
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
caef766a99ff continuumio/anaconda3 "/usr/bin/tini -- /b…" 10 hours ago Up 10 hours 0.0.0.0:8888->8888/tcp sleepy_bassi
$ docker commit caef766a99ff kaizenjapan/anaconda-indra
$ docker push kaizenjapan/anaconda-indra
参考資料(reference)
なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2
dockerで機械学習(1) with anaconda(1)「ゼロから作るDeep Learning - Pythonで学ぶディープラーニングの理論と実装」斎藤 康毅 著
https://qiita.com/kaizen_nagoya/items/a7e94ef6dca128d035ab
dockerで機械学習(2)with anaconda(2)「ゼロから作るDeep Learning2自然言語処理編」斎藤 康毅 著
https://qiita.com/kaizen_nagoya/items/3b80dfc76933cea522c6
dockerで機械学習(3)with anaconda(3)「直感Deep Learning」Antonio Gulli、Sujit Pal 第1章,第2章
https://qiita.com/kaizen_nagoya/items/483ae708c71c88419c32
dockerで機械学習(71) 環境構築(1) docker どっかーら、どーやってもエラーばっかり。
https://qiita.com/kaizen_nagoya/items/690d806a4760d9b9e040
dockerで機械学習(72) 環境構築(2) Docker for Windows
https://qiita.com/kaizen_nagoya/items/c4daa5cf52e9f0c2c002
dockerで機械学習(73) 環境構築(3) docker/linux/macos bash スクリプト, ms-dos batchファイル
https://qiita.com/kaizen_nagoya/items/3f7b39110b7f303a5558
dockerで機械学習(74) 環境構築(4) R 難関いくつ?
https://qiita.com/kaizen_nagoya/items/5fb44773bc38574bcf1c
dockerで機械学習(75)環境構築(5)docker関連ファイルの管理
https://qiita.com/kaizen_nagoya/items/4f03df9a42c923087b5d
OpenCVをPythonで動かそうとしてlibGL.soが無いって言われたけど解決した。
https://qiita.com/toshitanian/items/5da24c0c0bd473d514c8
サーバサイドにおけるmatplotlibによる作図Tips
https://qiita.com/TomokIshii/items/3a26ee4453f535a69e9e
Dockerでホストとコンテナ間でのファイルコピー
https://qiita.com/gologo13/items/7e4e404af80377b48fd5
Docker for Mac でファイル共有を利用する
https://qiita.com/seijimomoto/items/1992d68de8baa7e29bb5
「名古屋のIoTは名古屋のOSで」Dockerをどっかーらどうやって使えばいいんでしょう。TOPPERS/FMP on RaspberryPi with Macintosh編 5つの関門
https://qiita.com/kaizen_nagoya/items/9c46c6da8ceb64d2d7af
64bitCPUへの道 and/or 64歳の決意
https://qiita.com/kaizen_nagoya/items/cfb5ffa24ded23ab3f60
ゼロから作るDeepLearning2自然言語処理編 読書会の進め方(例)
https://qiita.com/kaizen_nagoya/items/025eb3f701b36209302e
Ubuntu 16.04 LTS で NVIDIA Docker を使ってみる
https://blog.amedama.jp/entry/2017/04/03/235901
Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794
Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0
線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001
C++ Support(0)
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514
Coding Rules(0) C Secure , MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0
Autosar Guidelines C++14 example code compile list(1-169)
https://qiita.com/kaizen_nagoya/items/8ccbf6675c3494d57a76
Error一覧(C/C++, python, bash...) Error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8
なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2
言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4
プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394
一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39
官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3
プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945
LaTeX(0) 一覧
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792
自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b
Rust(0) 一覧
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927
小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53
文書履歴(document history)
ver. 0.10 初稿 20181023
ver. 0.02 URL追記 20230308
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.