1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

AUTOSAR CountdownAdvent Calendar 2022

Day 23

dockerで機械学習(35) with anaconda(35)「scikit-learn Cookbook」 2nd Edition By Trent Hauck, Julian Avila

Last updated at Posted at 2018-10-23

1.すぐに利用したい方へ(as soon as)

「scikit-learn Cookbook」 2nd Edition By Trent Hauck, Julian Avila
cat35.gif
http://shop.oreilly.com/product/9781787286382.do

docker

dockerを導入し、Windows, Macではdockerを起動しておいてください。
Windowsでは、BiosでIntel Virtualizationをenableにしないとdockerが起動しない場合があります。
また、セキュリティの警告などが出ることがあります。

docker run

$  docker run -it -p 8888:8888 kaizenjapan/anaconda-indra /bin/bash

以下のshell sessionでは
(base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。
それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。
それぞれの章のフォルダに移動します。

dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。

ファイル共有または複写

dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。

複写の場合は、dockerを起動したOS側コマンドを実行しました。お使いのdockerの番号で置き換えてください。複写したファイルをブラウザで表示し内容確認しました。

setup.py

(base) root@a221771835f7:/scikit-learn# python setup.py
Partial import of sklearn during the build process.
usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
   or: setup.py --help [cmd1 cmd2 ...]
   or: setup.py --help-commands
   or: setup.py cmd --help

error: no commands supplied

(base) root@a221771835f7:/scikit-learn# python setup.py --help
Partial import of sklearn during the build process.
Common commands: (see '--help-commands' for more)

  setup.py build      will build the package underneath 'build/'
  setup.py install    will install the package

Global options:
  --verbose (-v)      run verbosely (default)
  --quiet (-q)        run quietly (turns verbosity off)
  --dry-run (-n)      don't actually do anything
  --help (-h)         show detailed help message
  --no-user-cfg       ignore pydistutils.cfg in your home directory
  --command-packages  list of packages that provide distutils commands

Information display options (just display information, ignore any commands)
  --help-commands     list all available commands
  --name              print package name
  --version (-V)      print package version
  --fullname          print <package name>-<version>
  --author            print the author's name
  --author-email      print the author's email address
  --maintainer        print the maintainer's name
  --maintainer-email  print the maintainer's email address
  --contact           print the maintainer's name if known, else the author's
  --contact-email     print the maintainer's email address if known, else the
                      author's
  --url               print the URL for this package
  --license           print the license of the package
  --licence           alias for --license
  --description       print the package description
  --long-description  print the long package description
  --platforms         print the list of platforms
  --classifiers       print the list of classifiers
  --keywords          print the list of keywords
  --provides          print the list of packages/modules provided
  --requires          print the list of packages/modules required
  --obsoletes         print the list of packages/modules made obsolete

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
   or: setup.py --help [cmd1 cmd2 ...]
   or: setup.py --help-commands
   or: setup.py cmd --help


sklearn/base.py

(base) root@a221771835f7:/scikit-learn/sklearn# python base.py
Traceback (most recent call last):
  File "base.py", line 11, in <module>
    from .externals import six
ModuleNotFoundError: No module named '__main__.externals'; '__main__' is not a package

sklearn/setup.py

(base) root@a221771835f7:/scikit-learn/sklearn# python setup.py
non-existing path in '__check_build': '_check_build.c'
Appending sklearn.__check_build configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.__check_build')
Appending sklearn._build_utils configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn._build_utils')
Appending sklearn.svm.tests configuration to sklearn.svm
Ignoring attempt to set 'name' (from 'sklearn.svm' to 'sklearn.svm.tests')
non-existing path in 'svm': 'libsvm.c'
non-existing path in 'svm': 'liblinear.c'
non-existing path in 'svm': 'libsvm_sparse.c'
Appending sklearn.svm configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.svm')
non-existing path in 'datasets': '_svmlight_format.c'
Appending sklearn.datasets configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.datasets')
Appending sklearn.datasets/tests configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.datasets/tests')
non-existing path in 'feature_extraction': '_hashing.c'
Appending sklearn.feature_extraction configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.feature_extraction')
Appending sklearn.feature_extraction/tests configuration to sklearn
Ignoring attempt to set 'name' (from 'sklearn' to 'sklearn.feature_extraction/tests')
non-existing path in 'cluster': '_dbscan_inner.cpp'
non-existing path in 'cluster': '_hierarchical.cpp'
non-existing path in 'cluster': '_k_means.c'
Appending sklearn.cluster configuration to sklearn
...

examples/feature_stacker.py

(base) root@a221771835f7:/scikit-learn/examples# python feature_stacker.py 
Fitting 3 folds for each of 18 candidates, totalling 54 fits
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9607843137254902, total=   0.0s
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9019607843137255, total=   0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total=   0.0s
[Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:    0.1s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9215686274509803, total=   0.0s
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    0.1s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total=   0.0s
[Parallel(n_jobs=1)]: Done   6 out of   6 | elapsed:    0.1s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9607843137254902, total=   0.0s
[Parallel(n_jobs=1)]: Done   7 out of   7 | elapsed:    0.1s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9215686274509803, total=   0.0s
[Parallel(n_jobs=1)]: Done   8 out of   8 | elapsed:    0.1s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.9791666666666666, total=   0.0s
[Parallel(n_jobs=1)]: Done   9 out of   9 | elapsed:    0.1s remaining:    0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=1.0, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.9019607843137255, total=   0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9019607843137255, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=1.0, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10 
[CV]  features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9803921568627451, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9411764705882353, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.9607843137254902, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.9791666666666666, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.0, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=0.9215686274509803, total=   0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10 
[CV]  features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.0, total=   0.0s
[Parallel(n_jobs=1)]: Done  54 out of  54 | elapsed:    0.4s finished
Pipeline(memory=None,
     steps=[('features', FeatureUnion(n_jobs=1,
       transformer_list=[('pca', PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)), ('univ_select', SelectKBest(k=2, score_func=<function f_classif at 0x7f08e0594268>))],
       transformer...,
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False))])

##examples/missing_values.py

(base) root@a221771835f7:/scikit-learn/examples# python missing_values.py 
/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
  from numpy.core.umath_tests import inner1d
Score with the entire dataset = 0.56
Traceback (most recent call last):
  File "missing_values.py", line 49, in <module>
    dtype=np.bool),
TypeError: 'numpy.float64' object cannot be interpreted as an integer

##plot_cv_predict.py

(base) root@a221771835f7:/scikit-learn/examples# python plot_cv_predict.py 
/opt/conda/lib/python3.6/site-packages/matplotlib/figure.py:448: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  % get_backend())

4行追加
import matplotlib as mpl
mpl.use('Agg')
fig = plt.figure()
fig.savefig('img.png')

1行plt.show()を注釈に。

##benchmark/bench_20newsgroups.py

(base) root@a221771835f7:/scikit-learn/benchmarks# python bench_20newsgroups.py 
/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
  from numpy.core.umath_tests import inner1d
usage: bench_20newsgroups.py [-h] -e
                             {dummy,random_forest,extra_trees,logistic_regression,naive_bayes,adaboost}
                             [{dummy,random_forest,extra_trees,logistic_regression,naive_bayes,adaboost} ...]
bench_20newsgroups.py: error: the following arguments are required: -e/--estimators

-e dummyを引数に。

(base) root@a221771835f7:/scikit-learn/benchmarks# python bench_20newsgroups.py -e dummy
/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
  from numpy.core.umath_tests import inner1d
Downloading 20news dataset. This may take a few minutes.
Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)

#2. dockerを自力で構築する方へ

ここから下は、上記のpullしていただいたdockerをどういう方針で、どういう手順で作ったかを記録します。
上記のdockerを利用する上での参考資料です。本の続きを実行する上では必要ありません。
自力でdocker/anacondaを構築する場合の手順になります。
dockerfileを作る方法ではありません。ごめんなさい。
##docker

ubuntu, debianなどのLinuxを、linux, windows, mac osから共通に利用できる仕組み。
利用するOSの設定を変更せずに利用できるのがよい。
同じ仕様で、大量の人が利用することができる。
ソフトウェアの開発元が公式に対応しているものと、利用者が便利に仕立てたものの両方が利用可能である。今回は、公式に配布しているものを、自分で仕立てて、他の人にも利用できるようにする。
##python

DeepLearningの実習をPhthonで行って来た。
pythonを使う理由は、多くの機械学習の仕組みがpythonで利用できることと、Rなどの統計解析の仕組みもpythonから容易に利用できることがある。
###anaconda

pythonには、2と3という版の違いと、配布方法の違いなどがある。
Anacondaでpython3をこの1年半利用してきた。
Anacondaを利用した理由は、統計解析のライブラリと、JupyterNotebookが初めから入っているからである。
##docker公式配布

ubuntu, debianなどのOSの公式配布,gcc, anacondaなどの言語の公式配布などがある。
これらを利用し、docker-hubに登録することにより、公式配布の質の確認と、変更権を含む幅広い情報の共有ができる。dockerが公式配布するものではなく、それぞれのソフト提供者の公式配布という意味。
###docker pull

docker公式配布の利用は、URLからpullすることで実現する。
###docker Anaconda

anacondaが公式配布しているものを利用。

$  docker pull kaizenjapan/anaconda-keras
Using default tag: latest
latest: Pulling from continuumio/anaconda3
Digest: sha256:e07b9ca98ac1eeb1179dbf0e0bbcebd87701f8654878d6d8ce164d71746964d1
Status: Image is up to date for continuumio/anaconda3:latest

$ docker run -it -p 8888:8888 continuumio/anaconda3 /bin/bash

実際にはkeras, tensorflow を利用していた他のpushをpull

##apt-get

(base) root@d8857ae56e69:/# apt-get update

(base) root@d8857ae56e69:/# apt-get install -y procps

(base) root@d8857ae56e69:/# apt-get install -y vim

(base) root@d8857ae56e69:/# apt-get install -y apt-utils

(base) root@d8857ae56e69:/# apt-get install sudo

##ソース git

(base) root@f19e2f06eabb:/# git clone https://github.com/tshauck/scikit-learn

conda

(base) root@f19e2f06eabb:/d# conda update --prefix /opt/conda anaconda

pip

(base) root@f19e2f06eabb:/d# pip install --upgrade pip

#docker hubへの登録

$ docker ps
CONTAINER ID        IMAGE                   COMMAND                  CREATED             STATUS              PORTS                    NAMES
caef766a99ff        continuumio/anaconda3   "/usr/bin/tini -- /b…"   10 hours ago        Up 10 hours         0.0.0.0:8888->8888/tcp   sleepy_bassi

$ docker commit caef766a99ff kaizenjapan/anaconda-indra

$ docker push kaizenjapan/anaconda-indra 

参考資料(reference)

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

dockerで機械学習(1) with anaconda(1)「ゼロから作るDeep Learning - Pythonで学ぶディープラーニングの理論と実装」斎藤 康毅 著
https://qiita.com/kaizen_nagoya/items/a7e94ef6dca128d035ab

dockerで機械学習(2)with anaconda(2)「ゼロから作るDeep Learning2自然言語処理編」斎藤 康毅 著
https://qiita.com/kaizen_nagoya/items/3b80dfc76933cea522c6

dockerで機械学習(3)with anaconda(3)「直感Deep Learning」Antonio Gulli、Sujit Pal 第1章,第2章
https://qiita.com/kaizen_nagoya/items/483ae708c71c88419c32

dockerで機械学習(71) 環境構築(1) docker どっかーら、どーやってもエラーばっかり。
https://qiita.com/kaizen_nagoya/items/690d806a4760d9b9e040

dockerで機械学習(72) 環境構築(2) Docker for Windows
https://qiita.com/kaizen_nagoya/items/c4daa5cf52e9f0c2c002

dockerで機械学習(73) 環境構築(3) docker/linux/macos bash スクリプト, ms-dos batchファイル
https://qiita.com/kaizen_nagoya/items/3f7b39110b7f303a5558

dockerで機械学習(74) 環境構築(4) R 難関いくつ?
https://qiita.com/kaizen_nagoya/items/5fb44773bc38574bcf1c

dockerで機械学習(75)環境構築(5)docker関連ファイルの管理
https://qiita.com/kaizen_nagoya/items/4f03df9a42c923087b5d

OpenCVをPythonで動かそうとしてlibGL.soが無いって言われたけど解決した。
https://qiita.com/toshitanian/items/5da24c0c0bd473d514c8

サーバサイドにおけるmatplotlibによる作図Tips
https://qiita.com/TomokIshii/items/3a26ee4453f535a69e9e

Dockerでホストとコンテナ間でのファイルコピー
https://qiita.com/gologo13/items/7e4e404af80377b48fd5

Docker for Mac でファイル共有を利用する
https://qiita.com/seijimomoto/items/1992d68de8baa7e29bb5

「名古屋のIoTは名古屋のOSで」Dockerをどっかーらどうやって使えばいいんでしょう。TOPPERS/FMP on RaspberryPi with Macintosh編 5つの関門
https://qiita.com/kaizen_nagoya/items/9c46c6da8ceb64d2d7af

64bitCPUへの道 and/or 64歳の決意
https://qiita.com/kaizen_nagoya/items/cfb5ffa24ded23ab3f60

ゼロから作るDeepLearning2自然言語処理編 読書会の進め方(例)
https://qiita.com/kaizen_nagoya/items/025eb3f701b36209302e

Ubuntu 16.04 LTS で NVIDIA Docker を使ってみる
https://blog.amedama.jp/entry/2017/04/03/235901

Ethernet 記事一覧 Ethernet(0)
https://qiita.com/kaizen_nagoya/items/88d35e99f74aefc98794

Wireshark 一覧 wireshark(0)、Ethernet(48)
https://qiita.com/kaizen_nagoya/items/fbed841f61875c4731d0

線網(Wi-Fi)空中線(antenna)(0) 記事一覧(118/300目標)
https://qiita.com/kaizen_nagoya/items/5e5464ac2b24bd4cd001

C++ Support(0) 
https://qiita.com/kaizen_nagoya/items/8720d26f762369a80514

Coding Rules(0) C Secure , MISRA and so on
https://qiita.com/kaizen_nagoya/items/400725644a8a0e90fbb0

Autosar Guidelines C++14 example code compile list(1-169)
https://qiita.com/kaizen_nagoya/items/8ccbf6675c3494d57a76

Error一覧(C/C++, python, bash...) Error(0)
https://qiita.com/kaizen_nagoya/items/48b6cbc8d68eae2c42b8

なぜdockerで機械学習するか 書籍・ソース一覧作成中 (目標100)
https://qiita.com/kaizen_nagoya/items/ddd12477544bf5ba85e2

言語処理100本ノックをdockerで。python覚えるのに最適。:10+12
https://qiita.com/kaizen_nagoya/items/7e7eb7c543e0c18438c4

プログラムちょい替え(0)一覧:4件
https://qiita.com/kaizen_nagoya/items/296d87ef4bfd516bc394

一覧の一覧( The directory of directories of mine.) Qiita(100)
https://qiita.com/kaizen_nagoya/items/7eb0e006543886138f39

官公庁・学校・公的団体(NPOを含む)システムの課題、官(0)
https://qiita.com/kaizen_nagoya/items/04ee6eaf7ec13d3af4c3

プログラマが知っていると良い「公序良俗」
https://qiita.com/kaizen_nagoya/items/9fe7c0dfac2fbd77a945

LaTeX(0) 一覧 
https://qiita.com/kaizen_nagoya/items/e3f7dafacab58c499792

自動制御、制御工学一覧(0)
https://qiita.com/kaizen_nagoya/items/7767a4e19a6ae1479e6b

Rust(0) 一覧 
https://qiita.com/kaizen_nagoya/items/5e8bb080ba6ca0281927

小川清最終講義、最終講義(再)計画, Ethernet(100) 英語(100) 安全(100)
https://qiita.com/kaizen_nagoya/items/e2df642e3951e35e6a53

文書履歴(document history)

ver. 0.10 初稿 20181023
ver. 0.02 URL追記 20230308

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?