0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

数学-三角関数

Last updated at Posted at 2018-08-22

三角関数の公式

トップページ

数学に戻る

三角関数の性質

kakudo21.gif

\\
\begin{array}{l}

(1) 第1象限(x:+, y:+) \\
\begin{array}{ll}
 x&: \cos \theta \\
 y&: \sin \theta \\
 傾き(\frac{y}{x})&: \tan \theta (= \frac{\sin \theta}{\cos \theta}) \\
\end{array}
 \\
 \\
(2) 第1象限(x:+, y:+) \\
\begin{array}{lll}
 x&: \cos(\frac{\pi}{2} - \theta) &= \sin \theta \\
 y&: \sin(\frac{\pi}{2} - \theta) &= \cos \theta \\
 傾き(\frac{y}{x})&: \tan(\frac{\pi}{2} - \theta) &= \frac{1}{\tan \theta} (= \frac{\cos\theta}{\sin\theta}) 
  \\
\end{array}
  \\
  \\
(2)' 第4象限(x:+, y:-) ※(7)と同じ \\
\begin{array}{lll}
 x&: \cos(\theta - \frac{\pi}{2}) &= \sin \theta \\
 y&: \sin(\theta - \frac{\pi}{2}) &= - \cos \theta \\
 傾き(\frac{y}{x})&: \tan(\theta - \frac{\pi}{2}) &= - \frac{1}{\tan \theta} (= - \frac{\cos\theta}{\sin\theta}) 
\\
\end{array}
 \\
 \\
(3) 第2象限(x:-, y:+) \\
\begin{array}{lll}
 x&: \cos(\frac{\pi}{2} + \theta) &= -\sin \theta \\
 y&: \sin(\frac{\pi}{2} + \theta) &= \cos \theta \\
 傾き(\frac{y}{x})&: \tan(\frac{\pi}{2} + \theta) &= -\frac{1}{\tan \theta} (= - \frac{\cos \theta}{\sin \theta}) \\
\end{array}
 \\
 \\
(4) 第2象限(x:-, y:+) \\
\begin{array}{ll}
 x&: \cos({\pi} - \theta) &= -\cos \theta \\
 y&: \sin({\pi} - \theta) &= \sin \theta \\
 傾き(\frac{y}{x})&: \tan({\pi} - \theta) &= -\tan \theta (= - \frac{\sin\theta}{\cos \theta}) \\
\end{array}
  \\
  \\
(4)' 第3象限(x:-, y:-) ※(5)と同じ \\
\begin{array}{ll}
 x&: \cos(\theta - {\pi}) &= - \cos \theta \\
 y&: \sin(\theta - {\pi}) &= - \sin \theta \\
 傾き(\frac{y}{x})&: \tan(\theta - {\pi}) &= \tan \theta (=  \frac{\sin\theta}{\cos \theta}) \\
\end{array}

\end{array}

kakudo21.gif

\\
\begin{array}{l}

(5) 第3象限(x:-, y:-) \\
\begin{array}{ll}
 x: \cos({\pi} + \theta) = - \cos \theta \\
 y: \sin({\pi} + \theta) = - \sin \theta \\
 傾き(\frac{y}{x}): \tan({\pi} + \theta) = \tan \theta (= \frac{\sin \theta}{\cos \theta}) \\
\end{array}

 \\
 \\
(6) 第3象限(x:-, y:-) \\
\begin{array}{ll}
 x&: \cos(\frac{3}{2}\pi - \theta) &= - \sin \theta \\
 y&: \sin(\frac{3}{2}\pi - \theta) &= - \cos \theta \\
 傾き(\frac{y}{x})&: \tan(\frac{3}{2}\pi - \theta) &= \frac{1}{\tan \theta} (= \frac{\cos \theta}{\sin \theta}) \\
\end{array}
  \\
  \\
(6)' 第2象限(x:-, y:+) ※(3)と同じ \\
\begin{array}{ll}
 x&: \cos(\theta - \frac{3}{2}\pi) &= - \sin \theta \\
 y&: \sin(\theta - \frac{3}{2}\pi) &= \cos \theta \\
 傾き(\frac{y}{x})&: \tan(\theta - \frac{3}{2}\pi) &= - \frac{1}{\tan \theta} (= - \frac{\cos \theta}{\sin \theta}) \\
\end{array}

 \\
 \\
(7) 第4象限(x:+, y:-) \\
\begin{array}{ll}
 x&: \cos(\frac{3}{2}\pi + \theta) &= \sin \theta \\
 y&: \sin(\frac{3}{2}\pi + \theta) &= -\cos \theta \\
 傾き(\frac{y}{x})&: \tan(\frac{3}{2}\pi + \theta) &= - \frac{1}{\tan \theta} (= - \frac{\cos \theta}{\sin \theta}) \\
\end{array}

 \\
 \\
(8) 第4象限(x:+, y:-) \\
\begin{array}{ll}
 x&: \cos(-\theta) &= \cos \theta \\
 y&: \sin(-\theta) &= -\sin \theta \\
 傾き(\frac{y}{x})&: \tan(-\theta) &= -\tan \theta (= - \frac{\sin \theta}{\cos \theta}) \\
\end{array}
 \\
 \\
電気関係で使うので、(3)(7)より、\\
-\cos(\theta + \frac{\pi}{2}) = \cos(\theta - \frac{\pi}{2}) = \sin \theta ※符号は \cos の位置で考える。\\
\sin(\theta + \frac{\pi}{2}) = -\sin(\theta - \frac{\pi}{2}) = \cos \theta ※符号は \sin の位置で考える。\\
\theta が第一象限にあるとすると、 \theta + \frac{\pi}{2}=第2象限、\theta - \frac{\pi}{2}=第4象限\\

\end{array}

正弦定理・余弦定理

ar071picture.png

\\
正弦定理 \\
\begin{array}{l}
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \\
\end{array}
 \\
 \\
余弦定理 \\
\begin{array}{l}
a^2 &= b^2 + c^2 -2bc \cos A \\
b^2 &= c^2 + a^2 -2ca \cos B \\
c^2 &= a^2 + b^2 -2ab \cos C \\
\end{array}

正弦定理証明はこちら

余弦定理証明はこちら

加法定理

\\
\begin{array}{l}
\sin(x + y) &= \sin x \cos y + \cos x \sin y \\
\sin(x - y) &= \sin x \cos y - \cos x \sin y \\
\cos(x + y) &= \cos x \cos y - \sin x \sin y \\
\cos(x - y) &= \cos x \cos y + \sin x \sin y \\
\tan(x + y) &= \frac{\tan x + \tan y}{1 - \tan x \tan y} \\
\tan(x - y) &= \frac{\tan x - \tan y}{1 + \tan x \tan y} \\
\end{array}

加法定理証明はこちら

和積の公式

\begin{array}{rl}
\sin x + \sin y &= 2 \sin(\frac{x + y}{2}) \cos(\frac{x - y}{2}) \\
\sin x - \sin y &= 2 \cos(\frac{x + y}{2}) \sin(\frac{x - y}{2}) \\
\cos x + \cos y &= 2 \cos(\frac{x + y}{2}) \cos(\frac{x - y}{2}) \\
\cos x - \cos y &= -2 \sin(\frac{x + y}{2}) \sin(\frac{x - y}{2}) \\
\end{array}

和積の公式の導出はこちら

合成公式

\begin{array}{rl}
a \sin x + b \cos x &= \sqrt{a^2 + b^2} \sin(x + \alpha) \\
\\
\alpha は以下を満たす角度 \\
\cos \alpha &= \frac{a}{\sqrt{a^2 + b^2}} \\
\sin \alpha &= \frac{b}{\sqrt{a^2 + b^2}} \\
\end{array}

合成公式の導出はこちら

倍角・3倍角・半角の公式

\\
\begin{array}{l}
\sin 2x &= 2 \sin x \ cos x \\
\cos 2x &= \cos^2 x - \sin^2 x = 2 \cos^2 - 1 = 1- 2 \sin^2 x \\
\tan 2x &= \frac{2 \tan x}{1 - \tan^2 x} \\
\sin 3x &= -4 \sin^3 x + 3 \sin x \\
\cos 3x &= 4 \cos^3 x - 3 \cos x \\
\sin^2 x &= \frac{1 - \cos 2x}{2} \\
\cos^2 x &= \frac{1 + \cos 2x}{2} \\
\tan^2 x &= \frac{1 - \cos 2x}{1 + \cos 2x} \\
\end{array}

倍角・3倍角・半角の公式の導出はこちら

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?