0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

数学-三角関数-倍角・3倍角・半角の公式の導出

Last updated at Posted at 2018-08-22

倍角・3倍角・半角の公式の導出

戻る

倍角

加法定理より

\\\
\begin{array}{ll}

\sin 2x &= \sin(x+x)\\
&= \sin x \cos x + \cos x \sin x\\
&= 2 \sin x \cos x\\
\\
\cos 2x &= \cos(x + x)\\
&= \cos x \cos x - \sin x \sin x\\
&= \cos^2 x - \sin^2 x\\
\\
&= \cos^2 x - (1 - \cos^2 x) = 2 \cos^2 x - 1\\
&= (1 - \sin^2 x) - \sin^2 x = 1- 2 \sin^2 x\\
\\
\tan 2x &= \tan(x + x)\\
&= \frac{\tan x + \tan x}{1 - \tan x \tan x}\\
&= \frac{2 \tan x}{1 - \tan^2 x}\\
\end{array}

3倍角

加法定理倍角の公式より

\\
\begin{array}{ll}

\sin 3x &= \sin(2x + x)\\
&= \sin 2x \cos x + \cos 2x \sin x\\
&= (2 \sin x \cos x) \cdot \cos x + (1 - 2 \sin^2 x) \cdot \sin x\\
&= 2 \sin x \cos^2 x + \sin x - 2 \sin^3 x\\
&= 2 \sin x (1 - \sin^2 x) + \sin x - 2 \sin^3 x\\
&= -4 \sin^3 x + 3 \sin x\\
\\
\cos 3x &= \cos(2x + x)\\
&= \cos 2x \cos x - \sin 2x \sin x\\
&= (2 \cos^2 - 1) \cdot \cos x - (2 \sin x \cos x) \cdot \sin x\\
&= 2 \cos^3 x - \cos x - 2 \sin^2 x \cos x\\
&= 2 \cos^3 x - \cos x - 2 (1 - \cos^2 x) \cos x\\
&= 4 \cos^3 x - 3 \cos x\\
\end{array}

半角

倍角の公式より

\\
\begin{array}{ll}
\sin 2x &= 1 - 2 \sin^2 x\\
2 \sin^2 x &= 1 - \sin 2x\\
\sin^2 x &= \frac{1 - \sin 2x}{2}\\
\\
\cos 2x &= 2 \cos^2 x - 1\\
2 \cos^2 x &= 1 + \cos 2x\\
\cos^2 x &= \frac{1 + \cos 2x}{2}\\
\\
\tan^2 x &= \frac{\sin^2 x}{\cos^2 x}\\
&= \frac{\frac{1 - \sin 2x}{2}}{\frac{1 + \cos 2x}{2}}\\
&= \frac{1 - \sin 2x}{1 + \cos 2x}\\
\end{array}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?