28
13

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

CPU単体で無理やり tiny-YoloV3 OpenVINO [60 FPS / CPU only] 今度こそ絶対速いと感じるに違いない、というか、速すぎです 【その4】

Last updated at Posted at 2018-12-24

OpenVINO-YoloV3 GitHub stars1

I wrote an English article, here

#◆ 前回記事
CPU単体で無理やり YoloV3 OpenVINO [4-5 FPS / CPU only] 【その3】

RaspberryPi3をNeural Compute Stick 2(NCS2 1本)で猛烈ブーストしMobileNet-SSDの爆速パフォーマンスを体感する (Core i7なら21 FPS)

#◆ はじめに
ようやく tiny-YoloV3 の OpenVINO実装が完了しました。

GPU も Neural Compute Stick も使わない、 CPU単体で男気実装シリーズ の第4弾。
今回は心して見てください。

17.7MB のモデルをCPU単体で実行したときのスピードは下図。
今度は。。。速すぎ!!!!
目を凝らしてみると、推論時間が「14ms 〜 16ms」前後の数字で表示されています。

<tiny-YoloV3 (tiny), Intel Core i7-8750H, CPU Only, 60 FPS>
ezgif.com-gif-maker.gif
予想どおり、これぞ爆速の名にふさわしい速さです。
動画ファイルのフレームレートが低すぎ かつ CPUでの推論が早すぎて、早送り(2倍速) になってしまいますw
60FPSの動画ファイルなら等倍速でスムーズに描画できます。
動画 = 30FPS
推論 = 60FPS
みなさんの感想を伺いたいところです。
もう一度言いますが、 GPU も Neural Compute Stick も使用せず、CPU単体でこのスピードです。
無駄なスピード、とも言う。

是非試したい、という奇特な方は、ページトップの OpenVINO-YoloV3 という文字のリンクからどうぞ。
OpenVINOが導入済みであれば、コンパイル済みのバイナリ object_detection_demo_yolov3_async をキックするだけです。
環境キッティングの手順は LattePanda Alpha 864 (OS付属無し) にUbuntu16.04+OpenVINOを導入してNeural Compute Stick(NCS1) と Neural Compute Stick 2(NCS2) で爆速Semantic Segmentationを楽しむ をご覧ください。
IntelのCPUなら、LattePanda でなくても動作します。

#◆ 環境

  • Ubuntu 16.04 x86_64
  • OpenVINO toolkit 2018 R5 (2018.5.445)
  • Python 3.5
  • OpenCV 4.0.1-openvino
  • tiny-YoloV3 (MS-COCO)

#◆ 実装
前回と同じく、USBカメラを3台まで切り替え可能にし、 anchor を tiny-YoloV3 に対応させました。

TensorflowのモデルからOpenVINOのモデルへ変換する作業にとても時間を要しました。
下記に書き下す内容 および OpenVINO本体を除く全てのリソースはGithubにコミット済みです。
.pb と コンバート済みの lrモデル は私のGoogleドライブからダウンロードできるようにしてあります。

.pbファイル生成スクリプト
$ python3 convert_weights_pb.py \
--class_names coco.names \
--weights_file weights/yolov3-tiny.weights \
--data_format NHWC \
--tiny \
--output_graph pbmodels/frozen_tiny_yolo_v3.pb
Tensorflow--->OpenVINOへのコンバージョンスクリプト
$ sudo python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py \
--input_model pbmodels/frozen_tiny_yolo_v3.pb \
--output_dir lrmodels/tiny-YoloV3/FP32 \
--data_type FP32 \
--batch 1 \
--tensorflow_use_custom_operations_config yolo_v3_tiny_changed.json

次回はやっと、 tiny-YoloV3 + Python + RaspberryPi3 へ焼き直ししたいと考えています。

tiny-YoloV3ロジック
// Copyright (C) 2018 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

/**
* \brief The entry point for the Inference Engine object_detection demo application
* \file object_detection_demo_yolov3_async/main.cpp
* \example object_detection_demo_yolov3_async/main.cpp
*/
#include <gflags/gflags.h>
#include <functional>
#include <iostream>
#include <fstream>
#include <random>
#include <memory>
#include <chrono>
#include <vector>
#include <string>
#include <algorithm>
#include <iterator>

#include <inference_engine.hpp>

#include <samples/ocv_common.hpp>
#include <samples/slog.hpp>

#include "object_detection_demo_yolov3_async.hpp"

#include <ext_list.hpp>

using namespace InferenceEngine;

#define yolo_scale_13 13
#define yolo_scale_26 26
#define yolo_scale_52 52

bool ParseAndCheckCommandLine(int argc, char *argv[]) {
    // ---------------------------Parsing and validating the input arguments--------------------------------------
    gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true);
    if (FLAGS_h) {
        showUsage();
        return false;
    }
    slog::info << "Parsing input parameters" << slog::endl;

    if (FLAGS_i.empty()) {
        throw std::logic_error("Parameter -i is not set");
    }

    if (FLAGS_m.empty()) {
        throw std::logic_error("Parameter -m is not set");
    }
    return true;
}

void FrameToBlob(const cv::Mat &frame, InferRequest::Ptr &inferRequest, const std::string &inputName) {
    if (FLAGS_auto_resize) {
        /* Just set input blob containing read image. Resize and layout conversion will be done automatically */
        inferRequest->SetBlob(inputName, wrapMat2Blob(frame));
    } else {
        /* Resize and copy data from the image to the input blob */
        Blob::Ptr frameBlob = inferRequest->GetBlob(inputName);
        matU8ToBlob<uint8_t>(frame, frameBlob);
    }
}

static int EntryIndex(int side, int lcoords, int lclasses, int location, int entry) {
    int n = location / (side * side);
    int loc = location % (side * side);
    return n * side * side * (lcoords + lclasses + 1) + entry * side * side + loc;
}

struct DetectionObject {
    int xmin, ymin, xmax, ymax, class_id;
    float confidence;

    DetectionObject(double x, double y, double h, double w, int class_id, float confidence, float h_scale, float w_scale) {
        this->xmin = static_cast<int>((x - w / 2) * w_scale);
        this->ymin = static_cast<int>((y - h / 2) * h_scale);
        this->xmax = static_cast<int>(this->xmin + w * w_scale);
        this->ymax = static_cast<int>(this->ymin + h * h_scale);
        this->class_id = class_id;
        this->confidence = confidence;
    }

    bool operator<(const DetectionObject &s2) const {
        return this->confidence < s2.confidence;
    }
};

double IntersectionOverUnion(const DetectionObject &box_1, const DetectionObject &box_2) {
    double width_of_overlap_area = fmin(box_1.xmax, box_2.xmax) - fmax(box_1.xmin, box_2.xmin);
    double height_of_overlap_area = fmin(box_1.ymax, box_2.ymax) - fmax(box_1.ymin, box_2.ymin);
    double area_of_overlap;
    if (width_of_overlap_area < 0 || height_of_overlap_area < 0)
        area_of_overlap = 0;
    else
        area_of_overlap = width_of_overlap_area * height_of_overlap_area;
    double box_1_area = (box_1.ymax - box_1.ymin)  * (box_1.xmax - box_1.xmin);
    double box_2_area = (box_2.ymax - box_2.ymin)  * (box_2.xmax - box_2.xmin);
    double area_of_union = box_1_area + box_2_area - area_of_overlap;
    return area_of_overlap / area_of_union;
}

void ParseYOLOV3Output(const CNNLayerPtr &layer, const Blob::Ptr &blob, const unsigned long resized_im_h,
                       const unsigned long resized_im_w, const unsigned long original_im_h,
                       const unsigned long original_im_w,
                       const double threshold, std::vector<DetectionObject> &objects) {
    // --------------------------- Validating output parameters -------------------------------------
    if (layer->type != "RegionYolo")
        throw std::runtime_error("Invalid output type: " + layer->type + ". RegionYolo expected");
    const int out_blob_h = static_cast<int>(blob->getTensorDesc().getDims()[2]);
    const int out_blob_w = static_cast<int>(blob->getTensorDesc().getDims()[3]);
    if (out_blob_h != out_blob_w)
        throw std::runtime_error("Invalid size of output " + layer->name +
        " It should be in NCHW layout and H should be equal to W. Current H = " + std::to_string(out_blob_h) +
        ", current W = " + std::to_string(out_blob_h));
    // --------------------------- Extracting layer parameters -------------------------------------
    auto num = layer->GetParamAsInt("num");
    try { num = layer->GetParamAsInts("mask").size(); } catch (...) {}
    auto coords = layer->GetParamAsInt("coords");
    auto classes = layer->GetParamAsInt("classes");
    std::vector<float> anchors = {10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0, 198.0, 373.0, 326.0};
    try { anchors = layer->GetParamAsFloats("anchors"); } catch (...) {}
    auto side = out_blob_h;
    int anchor_offset = 0;

    //throw std::runtime_error("anchors.size() ==" + std::to_string(anchors.size()));

    if (anchors.size() == 18) {        // YoloV3
        switch (side) {
            case yolo_scale_13:
                anchor_offset = 2 * 6;
                break;
            case yolo_scale_26:
                anchor_offset = 2 * 3;
                break;
            case yolo_scale_52:
                anchor_offset = 2 * 0;
                break;
            default:
                throw std::runtime_error("Invalid output size");
        }
    } else if (anchors.size() == 12) { // tiny-YoloV3
        switch (side) {
            case yolo_scale_13:
                anchor_offset = 2 * 3;
                break;
            case yolo_scale_26:
                anchor_offset = 2 * 0;
                break;
            default:
                throw std::runtime_error("Invalid output size");
        }
    } else {                           // ???
        switch (side) {
            case yolo_scale_13:
                anchor_offset = 2 * 6;
                break;
            case yolo_scale_26:
                anchor_offset = 2 * 3;
                break;
            case yolo_scale_52:
                anchor_offset = 2 * 0;
                break;
            default:
                throw std::runtime_error("Invalid output size");
        }
    }
    auto side_square = side * side;
    const float *output_blob = blob->buffer().as<PrecisionTrait<Precision::FP32>::value_type *>();
    // --------------------------- Parsing YOLO Region output -------------------------------------
    for (int i = 0; i < side_square; ++i) {
        int row = i / side;
        int col = i % side;
        for (int n = 0; n < num; ++n) {
            int obj_index = EntryIndex(side, coords, classes, n * side * side + i, coords);
            int box_index = EntryIndex(side, coords, classes, n * side * side + i, 0);
            float scale = output_blob[obj_index];
            if (scale < threshold)
                continue;
            double x = (col + output_blob[box_index + 0 * side_square]) / side * resized_im_w;
            double y = (row + output_blob[box_index + 1 * side_square]) / side * resized_im_h;
            double height = std::exp(output_blob[box_index + 3 * side_square]) * anchors[anchor_offset + 2 * n + 1];
            double width = std::exp(output_blob[box_index + 2 * side_square]) * anchors[anchor_offset + 2 * n];
            for (int j = 0; j < classes; ++j) {
                int class_index = EntryIndex(side, coords, classes, n * side_square + i, coords + 1 + j);
                float prob = scale * output_blob[class_index];
                if (prob < threshold)
                    continue;
                DetectionObject obj(x, y, height, width, j, prob,
                        static_cast<float>(original_im_h) / static_cast<float>(resized_im_h),
                        static_cast<float>(original_im_w) / static_cast<float>(resized_im_w));
                objects.push_back(obj);
            }
        }
    }
}


int main(int argc, char *argv[]) {
    try {
        /** This demo covers a certain topology and cannot be generalized for any object detection **/
        std::cout << "InferenceEngine: " << GetInferenceEngineVersion() << std::endl;

        // ------------------------------ Parsing and validating the input arguments ---------------------------------
        if (!ParseAndCheckCommandLine(argc, argv)) {
            return 0;
        }

        slog::info << "Reading input" << slog::endl;
        cv::VideoCapture cap;
        if (FLAGS_i == "cam0") {
            cap.open(0);
        } else if (FLAGS_i == "cam1") {
            cap.open(1);
        } else if (FLAGS_i == "cam2") {
            cap.open(2);
        } else if (!(cap.open(FLAGS_i.c_str()))) {
            throw std::logic_error("Cannot open input file or camera: " + FLAGS_i);
        }

        // read input (video) frame
        cv::Mat frame;  cap >> frame;
        cv::Mat next_frame;

        const size_t width  = (size_t) cap.get(cv::CAP_PROP_FRAME_WIDTH);
        const size_t height = (size_t) cap.get(cv::CAP_PROP_FRAME_HEIGHT);

        if (!cap.grab()) {
            throw std::logic_error("This demo supports only video (or camera) inputs !!! "
                                   "Failed to get next frame from the " + FLAGS_i);
        }
        // -----------------------------------------------------------------------------------------------------

        // --------------------------- 1. Load Plugin for inference engine -------------------------------------
        slog::info << "Loading plugin" << slog::endl;
        InferencePlugin plugin = PluginDispatcher({"../../../lib/intel64", ""}).getPluginByDevice(FLAGS_d);
        printPluginVersion(plugin, std::cout);

        /**Loading extensions to the plugin **/

        /** Loading default extensions **/
        if (FLAGS_d.find("CPU") != std::string::npos) {
            /**
             * cpu_extensions library is compiled from the "extension" folder containing
             * custom CPU layer implementations.
            **/
            plugin.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>());
        }

        if (!FLAGS_l.empty()) {
            // CPU extensions are loaded as a shared library and passed as a pointer to the base extension
            IExtensionPtr extension_ptr = make_so_pointer<IExtension>(FLAGS_l.c_str());
            plugin.AddExtension(extension_ptr);
        }
        if (!FLAGS_c.empty()) {
            // GPU extensions are loaded from an .xml description and OpenCL kernel files
            plugin.SetConfig({{PluginConfigParams::KEY_CONFIG_FILE, FLAGS_c}});
        }

        /** Per-layer metrics **/
        if (FLAGS_pc) {
            plugin.SetConfig({ { PluginConfigParams::KEY_PERF_COUNT, PluginConfigParams::YES } });
        }
        // -----------------------------------------------------------------------------------------------------

        // --------------- 2. Reading the IR generated by the Model Optimizer (.xml and .bin files) ------------
        slog::info << "Loading network files" << slog::endl;
        CNNNetReader netReader;
        /** Reading network model **/
        netReader.ReadNetwork(FLAGS_m);
        /** Setting batch size to 1 **/
        slog::info << "Batch size is forced to  1." << slog::endl;
        netReader.getNetwork().setBatchSize(1);
        /** Extracting the model name and loading its weights **/
        std::string binFileName = fileNameNoExt(FLAGS_m) + ".bin";
        netReader.ReadWeights(binFileName);
        /** Reading labels (if specified) **/
        std::string labelFileName = fileNameNoExt(FLAGS_m) + ".labels";
        std::vector<std::string> labels;
        std::ifstream inputFile(labelFileName);
        std::copy(std::istream_iterator<std::string>(inputFile),
                  std::istream_iterator<std::string>(),
                  std::back_inserter(labels));
        // -----------------------------------------------------------------------------------------------------

        /** YOLOV3-based network should have one input and three output **/
        // --------------------------- 3. Configuring input and output -----------------------------------------
        // --------------------------------- Preparing input blobs ---------------------------------------------
        slog::info << "Checking that the inputs are as the demo expects" << slog::endl;
        InputsDataMap inputInfo(netReader.getNetwork().getInputsInfo());
        if (inputInfo.size() != 1) {
            throw std::logic_error("This demo accepts networks that have only one input");
        }
        InputInfo::Ptr& input = inputInfo.begin()->second;
        auto inputName = inputInfo.begin()->first;
        input->setPrecision(Precision::U8);
        if (FLAGS_auto_resize) {
            input->getPreProcess().setResizeAlgorithm(ResizeAlgorithm::RESIZE_BILINEAR);
            input->getInputData()->setLayout(Layout::NHWC);
        } else {
            input->getInputData()->setLayout(Layout::NCHW);
        }
        // --------------------------------- Preparing output blobs -------------------------------------------
        slog::info << "Checking that the outputs are as the demo expects" << slog::endl;
        OutputsDataMap outputInfo(netReader.getNetwork().getOutputsInfo());
        //if (outputInfo.size() != 3) {
        //    throw std::logic_error("This demo only accepts networks with three layers");
        //}
        for (auto &output : outputInfo) {
            output.second->setPrecision(Precision::FP32);
            output.second->setLayout(Layout::NCHW);
        }
        // -----------------------------------------------------------------------------------------------------

        // --------------------------- 4. Loading model to the plugin ------------------------------------------
        slog::info << "Loading model to the plugin" << slog::endl;
        ExecutableNetwork network = plugin.LoadNetwork(netReader.getNetwork(), {});

        // -----------------------------------------------------------------------------------------------------

        // --------------------------- 5. Creating infer request -----------------------------------------------
        InferRequest::Ptr async_infer_request_next = network.CreateInferRequestPtr();
        InferRequest::Ptr async_infer_request_curr = network.CreateInferRequestPtr();
        // -----------------------------------------------------------------------------------------------------

        // --------------------------- 6. Doing inference ------------------------------------------------------
        slog::info << "Start inference " << slog::endl;

        bool isLastFrame = false;
        bool isAsyncMode = false;  // execution is always started using SYNC mode
        bool isModeChanged = false;  // set to TRUE when execution mode is changed (SYNC<->ASYNC)

        typedef std::chrono::duration<double, std::ratio<1, 1000>> ms;
        auto total_t0 = std::chrono::high_resolution_clock::now();
        auto wallclock = std::chrono::high_resolution_clock::now();
        double ocv_decode_time = 0, ocv_render_time = 0;

        while (true) {
            auto t0 = std::chrono::high_resolution_clock::now();
            // Here is the first asynchronous point:
            // in the Async mode, we capture frame to populate the NEXT infer request
            // in the regular mode, we capture frame to the CURRENT infer request
            if (!cap.read(next_frame)) {
                if (next_frame.empty()) {
                    isLastFrame = true;  // end of video file
                } else {
                    throw std::logic_error("Failed to get frame from cv::VideoCapture");
                }
            }
            if (isAsyncMode) {
                if (isModeChanged) {
                    FrameToBlob(frame, async_infer_request_curr, inputName);
                }
                if (!isLastFrame) {
                    FrameToBlob(next_frame, async_infer_request_next, inputName);
                }
            } else if (!isModeChanged) {
                FrameToBlob(frame, async_infer_request_curr, inputName);
            }
            auto t1 = std::chrono::high_resolution_clock::now();
            ocv_decode_time = std::chrono::duration_cast<ms>(t1 - t0).count();

            t0 = std::chrono::high_resolution_clock::now();
            // Main sync point:
            // in the true Async mode, we start the NEXT infer request while waiting for the CURRENT to complete
            // in the regular mode, we start the CURRENT request and wait for its completion
            if (isAsyncMode) {
                if (isModeChanged) {
                    async_infer_request_curr->StartAsync();
                }
                if (!isLastFrame) {
                    async_infer_request_next->StartAsync();
                }
            } else if (!isModeChanged) {
                async_infer_request_curr->StartAsync();
            }

            if (OK == async_infer_request_curr->Wait(IInferRequest::WaitMode::RESULT_READY)) {
                t1 = std::chrono::high_resolution_clock::now();
                ms detection = std::chrono::duration_cast<ms>(t1 - t0);

                t0 = std::chrono::high_resolution_clock::now();
                ms wall = std::chrono::duration_cast<ms>(t0 - wallclock);
                wallclock = t0;

                t0 = std::chrono::high_resolution_clock::now();
                std::ostringstream out;
                out << "OpenCV cap/render time: " << std::fixed << std::setprecision(2)
                    << (ocv_decode_time + ocv_render_time) << " ms";
                cv::putText(frame, out.str(), cv::Point2f(0, 25), cv::FONT_HERSHEY_TRIPLEX, 0.6, cv::Scalar(0, 255, 0), 1, cv::LINE_AA);
                out.str("");
                out << "Wallclock time " << (isAsyncMode ? "(TRUE ASYNC):      " : "(SYNC, press Tab): ");
                out << std::fixed << std::setprecision(2) << wall.count() << " ms (" << 1000.f / wall.count() << " fps)";
                cv::putText(frame, out.str(), cv::Point2f(0, 50), cv::FONT_HERSHEY_TRIPLEX, 0.6, cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
                if (!isAsyncMode) {  // In the true async mode, there is no way to measure detection time directly
                    out.str("");
                    out << "Detection time  : " << std::fixed << std::setprecision(2) << detection.count()
                        << " ms ("
                        << 1000.f / detection.count() << " fps)";
                    cv::putText(frame, out.str(), cv::Point2f(0, 75), cv::FONT_HERSHEY_TRIPLEX, 0.6, cv::Scalar(255, 0, 0), 1, cv::LINE_AA);
                }

                // ---------------------------Processing output blobs--------------------------------------------------
                // Processing results of the CURRENT request
                unsigned long resized_im_h = inputInfo.begin()->second.get()->getDims()[0];
                unsigned long resized_im_w = inputInfo.begin()->second.get()->getDims()[1];
                std::vector<DetectionObject> objects;
                // Parsing outputs
                for (auto &output : outputInfo) {
                    auto output_name = output.first;
                    //slog::info << "output_name = " + output_name << slog::endl;
                    CNNLayerPtr layer = netReader.getNetwork().getLayerByName(output_name.c_str());
                    Blob::Ptr blob = async_infer_request_curr->GetBlob(output_name);
                    ParseYOLOV3Output(layer, blob, resized_im_h, resized_im_w, height, width, FLAGS_t, objects);
                }
                // Filtering overlapping boxes
                std::sort(objects.begin(), objects.end());
                for (int i = 0; i < objects.size(); ++i) {
                    if (objects[i].confidence == 0)
                        continue;
                    for (int j = i + 1; j < objects.size(); ++j) {
                        if (IntersectionOverUnion(objects[i], objects[j]) >= FLAGS_iou_t) {
                            objects[j].confidence = 0;
                        }
                        //if (objects[j].confidence == 1) {
                        //    objects[j].confidence = 0;
                        //}
                    }
                }
                // Drawing boxes
                for (auto &object : objects) {
                    if (object.confidence < FLAGS_t)
                        continue;
                    auto label = object.class_id;
                    float confidence = object.confidence;
                    if (FLAGS_r) {
                        std::cout << "[" << label << "] element, prob = " << confidence <<
                                  "    (" << object.xmin << "," << object.ymin << ")-(" << object.xmax << "," << object.ymax << ")"
                                  << ((confidence > FLAGS_t) ? " WILL BE RENDERED!" : "") << std::endl;
                    }
                    //slog::info << "confidence = " + std::to_string(confidence) << slog::endl;
                    if (confidence > FLAGS_t) {
                        /** Drawing only objects when >confidence_threshold probability **/
                        std::ostringstream conf;
                        conf << ":" << std::fixed << std::setprecision(3) << confidence;
                        cv::putText(frame,
                                (label < labels.size() ? labels[label] : std::string("label #") + std::to_string(label))
                                    + conf.str(),
                                    cv::Point2f(object.xmin, object.ymin - 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 1, cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
                        cv::rectangle(frame, cv::Point2f(object.xmin, object.ymin), cv::Point2f(object.xmax, object.ymax), cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
                    }
                }
            }
            cv::imshow("Detection results", frame);

            t1 = std::chrono::high_resolution_clock::now();
            ocv_render_time = std::chrono::duration_cast<ms>(t1 - t0).count();

            if (isLastFrame) {
                break;
            }

            if (isModeChanged) {
                isModeChanged = false;
            }


            // Final point:
            // in the truly Async mode, we swap the NEXT and CURRENT requests for the next iteration
            frame = next_frame;
            next_frame = cv::Mat();
            if (isAsyncMode) {
                async_infer_request_curr.swap(async_infer_request_next);
            }

            const int key = cv::waitKey(1);
            if (27 == key)  // Esc
                break;
            if (9 == key) {  // Tab
                isAsyncMode ^= true;
                isModeChanged = true;
            }
        }
        // -----------------------------------------------------------------------------------------------------
        auto total_t1 = std::chrono::high_resolution_clock::now();
        ms total = std::chrono::duration_cast<ms>(total_t1 - total_t0);
        std::cout << "Total Inference time: " << total.count() << std::endl;

        /** Showing performace results **/
        if (FLAGS_pc) {
            printPerformanceCounts(*async_infer_request_curr, std::cout);
        }
    }
    catch (const std::exception& error) {
        std::cerr << "[ ERROR ] " << error.what() << std::endl;
        return 1;
    }
    catch (...) {
        std::cerr << "[ ERROR ] Unknown/internal exception happened." << std::endl;
        return 1;
    }

    slog::info << "Execution successful" << slog::endl;
    return 0;
}

#◆ 最後に
tiny-YoloV3、鬼畜な速さです。
OpenVINOのCPUブースト具合が尋常ではないです。

なにっ!? 遅い、だと?
貴様の血は何色だ!!

#◆ 次回予告
tiny-YoloV3 + Python + RaspberryPi3 + NCS2 へ焼き直しします。
RaspberryPi3 + NCS2 でどれほどのパフォーマンスが出るのか。
乞うご期待。

28
13
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
28
13

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?