2
1

More than 3 years have passed since last update.

「ゼロから作るDeep Learning」自習メモ(その17)DeepConvNet を Keras で構築してみた

Last updated at Posted at 2020-11-13

「ゼロから作るDeep Learning」(斎藤 康毅 著 オライリー・ジャパン刊)を読んでいる時に、参照したサイト等をメモしていきます。 その16 ← →その18

DeepConvNet

本のP241から説明されている DeepConvNet を Keras で構築してみます。

g8-1.jpg

レイヤがやたら多くなって、そこんとこがディープなんだろうとは思いますが、これでどうして認識精度が上がるのか、まったくわかっていません。

見本のスクリプトをまねて動かすことはできるわけで、

やってみました。

from google.colab import drive
drive.mount('/content/drive')

import sys, os
sys.path.append('/content/drive/My Drive/Colab Notebooks/deep_learning/common')
sys.path.append('/content/drive/My Drive/Colab Notebooks/deep_learning/dataset')

# TensorFlow と tf.keras のインポート
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D, Dropout

# ヘルパーライブラリのインポート
import numpy as np
import matplotlib.pyplot as plt

from mnist import load_mnist
# データの読み込み
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)
X_train = x_train.transpose(0,2,3,1)
X_test = x_test.transpose(0,2,3,1)
input_shape=(28,28,1)
filter_num = 16
filter_size = 3
filter_stride = 1
filter_num2 = 32
filter_num3 = 64
pool_size_h=2
pool_size_w=2
pool_stride=2
d_rate = 0.5
hidden_size=100
output_size=10

model = keras.Sequential(name="DeepConvNet")
model.add(keras.Input(shape=input_shape))
model.add(Conv2D(filter_num, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
model.add(Conv2D(filter_num, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
model.add(MaxPooling2D(pool_size=(pool_size_h, pool_size_w),strides=pool_stride))

model.add(Conv2D(filter_num2, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
model.add(Conv2D(filter_num2, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
model.add(MaxPooling2D(pool_size=(pool_size_h, pool_size_w),strides=pool_stride))

model.add(Conv2D(filter_num3, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
model.add(Conv2D(filter_num3, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
model.add(MaxPooling2D(pool_size=(pool_size_h, pool_size_w),strides=pool_stride))

model.add(keras.layers.Flatten())
model.add(Dense(hidden_size, activation="relu", kernel_initializer='he_normal')) 
model.add(Dropout(d_rate))
model.add(Dense(output_size))
model.add(Dropout(d_rate))
model.add(Activation("softmax")) 

#モデルのコンパイル
model.compile(loss="sparse_categorical_crossentropy", 
              optimizer="adam", 
              metrics=["accuracy"])

padding="same" という指定を入れることで、入力画像のサイズと同じサイズの出力画像になります。

model.summary()

Model: "DeepConvNet"
Layer (type)          Output Shape      Param #


conv2d (Conv2D)        (None, 28, 28, 16)    160

conv2d_1 (Conv2D)       (None, 28, 28, 16)    2320

max_pooling2d (MaxPooling2D) (None, 14, 14, 16)    0

conv2d_2 (Conv2D)       (None, 14, 14, 32)    4640

conv2d_3 (Conv2D)       (None, 14, 14, 32)    9248

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 32)     0

conv2d_4 (Conv2D)       (None, 7, 7, 64)     18496

conv2d_5 (Conv2D)       (None, 7, 7, 64)     36928

max_pooling2d_2 (MaxPooling2 (None, 3, 3, 64)     0

flatten (Flatten)       (None, 576)        0

dense (Dense)         (None, 100)        57700

dropout (Dropout)       (None, 100)        0

dense_1 (Dense)        (None, 10)         1010

dropout_1 (Dropout)      (None, 10)        0

activation (Activation)    (None, 10)        0


Total params: 130,502
Trainable params: 130,502
Non-trainable params: 0

model.fit(X_train, t_train,  epochs=5, batch_size=128)
test_loss, test_acc = model.evaluate(X_test,  t_test, verbose=2)
print('\nTest accuracy:', test_acc)

313/313 - 6s - loss: 0.0313 - accuracy: 0.9902
Test accuracy: 0.9901999831199646

ちゃんと動いているようです。

モデルの保存

save_file = '/content/drive/My Drive/Colab Notebooks/deep_learning/dataset/DeepConvNet_weight'  
model.save_weights(save_file)

保存したモデルの復元

# TensorFlow と tf.keras のインポート
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D, Dropout

# ヘルパーライブラリのインポート
import numpy as np
import matplotlib.pyplot as plt

def create_model():
  import numpy as np
  import matplotlib.pyplot as plt

  input_shape=(28,28,1)
  filter_num = 16
  filter_size = 3
  filter_stride = 1
  filter_num2 = 32
  filter_num3 = 64
  pool_size_h=2
  pool_size_w=2
  pool_stride=2
  hidden_size=100
  output_size=10

  model = keras.Sequential(name="DeepConvNet")
  model.add(keras.Input(shape=input_shape))
  model.add(Conv2D(filter_num, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
  model.add(Conv2D(filter_num, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
  model.add(MaxPooling2D(pool_size=(pool_size_h, pool_size_w),strides=pool_stride))

  model.add(Conv2D(filter_num2, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
  model.add(Conv2D(filter_num2, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
  model.add(MaxPooling2D(pool_size=(pool_size_h, pool_size_w),strides=pool_stride))

  model.add(Conv2D(filter_num3, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
  model.add(Conv2D(filter_num3, filter_size, strides=filter_stride, padding="same", activation="relu", kernel_initializer='he_normal'))
  model.add(MaxPooling2D(pool_size=(pool_size_h, pool_size_w),strides=pool_stride))

  model.add(keras.layers.Flatten())
  model.add(Dense(hidden_size, activation="relu", kernel_initializer='he_normal')) 
  model.add(Dropout(0.5))
  model.add(Dense(output_size))
  model.add(Dropout(0.5))
  model.add(Activation("softmax")) 

  #モデルのコンパイル
  model.compile(loss="sparse_categorical_crossentropy", 
                optimizer="adam", 
                metrics=["accuracy"])

  return model

model = create_model()
save_file = '/content/drive/My Drive/Colab Notebooks/deep_learning/dataset/DeepConvNet_weight'  
model.load_weights(save_file)
model.summary()

 その16 ← →その18
メモの目次等はこちらから 読めない用語集

2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1