2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ロジスティック回帰 [TensorFlow2.0でDeep Learning 1]

Last updated at Posted at 2019-05-20

(目次はこちら)

#はじめに
ロジスティック回帰 [TensorFlowでDeep Learning 1]をtensorflow2.0で実現するためにはどうしたらいいのかを書く。

方法

  • tf_upgrade_v2
    • 1系からの暫定的な移行用としか思えない
  • tf.keras
    • 間違いない

コード

Python: 3.6.8, Tensorflow: 2.0.0a0で動作確認済み

ロジスティック回帰 [TensorFlowでDeep Learning 1] (mnist_logistic.py)を書き換えると、

v2/mnist_logistic.py

v2/mnist_logistic.py
from helper import *

IMAGE_SIZE = 28 * 28
CATEGORY_NUM = 1
LEARNING_RATE = 0.1
EPOCHS = 30
BATCH_SIZE = 100
LOG_DIR = 'log_logistic'
EPS = 1e-10

def loss_fn(y_true, y):
    y = tf.clip_by_value(y, EPS, 1.0 - EPS)
    return -tf.reduce_mean(y_true * tf.math.log(y) + (1 - y_true) * tf.math.log(1 - y))

class LR(tf.keras.layers.Layer):
    def __init__(self, units, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.units = units

    def build(self, input_shape):
        input_dim = int(input_shape[-1])
        self.W = self.add_weight(
            name='weight',
            shape=(input_dim, self.units),
            initializer=tf.keras.initializers.GlorotUniform()
        )
        self.b = self.add_weight(
            name='bias',
            shape=(self.units,),
            initializer=tf.keras.initializers.Zeros()
        )
        self.built = True

    def call(self, x):
        return tf.nn.sigmoid(tf.matmul(x, self.W) + self.b)

if __name__ == '__main__':
    (X_train, y_train), (X_test, y_test) = mnist_samples(flatten_image=True, binalize_label=True)

    model = tf.keras.models.Sequential()
    model.add(LR(CATEGORY_NUM, input_shape=(IMAGE_SIZE,)))
    model.compile(loss=loss_fn, optimizer=tf.keras.optimizers.SGD(LEARNING_RATE), metrics=['accuracy'])

    cb = [tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR)]
    model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=cb, validation_data=(X_test, y_test))
    print(model.evaluate(X_test, y_test))

v2/helper.py

v2/helper.py
import numpy as np
import tensorflow as tf


def mnist_samples(flatten_image=False, binalize_label=False):
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()

    def normalize(images):
        return images.astype(np.float32) / 255.0

    def flatten(images):
        d, w, h = images.shape
        return images.reshape(d, w * h)

    def binalize(labels):
        return list(map(lambda x: [1] if x == 1 else [0], labels))

    def one_hot_label(labels):
        return tf.keras.utils.to_categorical(labels, 10)

    X_train, X_test = normalize(X_train), normalize(X_test)
    if flatten_image:
        X_train, X_test = flatten(X_train), flatten(X_test)

    if binalize_label:
        y_train, y_test = binalize(y_train), binalize(y_test)
    else:
        y_train, y_test = one_hot_label(y_train), one_hot_label(y_test)

    return (X_train, y_train), (X_test, y_test)

と書け、ちゃんと動く。

$ python mnist_logistic.py
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
2019-05-20 15:50:09.369914: I tensorflow/core/profiler/lib/profiler_session.cc:164] Profile Session started.
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0633 - accuracy: 0.9820 - val_loss: 0.0387 - val_accuracy: 0.9899
Epoch 2/20
60000/60000 [==============================] - 1s 9us/sample - loss: 0.0413 - accuracy: 0.9879 - val_loss: 0.0329 - val_accuracy: 0.9915
...
Epoch 19/20
60000/60000 [==============================] - 1s 9us/sample - loss: 0.0294 - accuracy: 0.9915 - val_loss: 0.0240 - val_accuracy: 0.9936
Epoch 20/20
60000/60000 [==============================] - 1s 9us/sample - loss: 0.0292 - accuracy: 0.9916 - val_loss: 0.0239 - val_accuracy: 0.9937
10000/10000 [==============================] - 0s 10us/sample - loss: 0.0239 - accuracy: 0.9937
[0.023882714230008425, 0.9937]

実際は、こんなに長ったらしく書く必要はなく、

v2/mnist_logistic_simple.py でOK

v2/mnist_logistic_simple.py
from helper import *

IMAGE_SIZE = 28 * 28
CATEGORY_NUM = 1
LEARNING_RATE = 0.1
EPOCHS = 20
BATCH_SIZE = 100
LOG_DIR = 'log_logistic'


if __name__ == '__main__':
    (X_train, y_train), (X_test, y_test) = mnist_samples(flatten_image=True, binalize_label=True)

    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.Dense(CATEGORY_NUM, input_shape=(IMAGE_SIZE,), activation='sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.SGD(LEARNING_RATE), metrics=['accuracy'])

    cb = [tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR)]
    model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=cb, validation_data=(X_test, y_test))
    print(model.evaluate(X_test, y_test))

もはや、tensorflowの原形がない。
TensorBoardも引き続き利用できる。(なぜか、validationがtrainを常に上回っている。。。)

image.png

2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?