2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

多層パーセプトロン [TensorFlow2.0でDeep Learning 3]

Posted at

(目次はこちら)

#はじめに
多層パーセプトロン [TensorFlowでDeep Learning 3]をtensorflow2.0で実現するためにはどうしたらいいのかを書く(tf.keras)。

コード

Python: 3.6.8, Tensorflow: 2.0.0a0で動作確認済み

多層パーセプトロン [TensorFlowでDeep Learning 3] (mnist_softmax_fc.py)を書き換えると、

v2/mnist_softmax_fc.py

v2/mnist_softmax_fc.py
from helper import *

IMAGE_SIZE = 28 * 28
CATEGORY_NUM = 10
LEARNING_RATE = 0.1
FEATURE_DIM = 100
EPOCHS = 30
BATCH_SIZE = 100
LOG_DIR = 'log_softmax_fc'
EPS = 1e-10


def loss_fn(y_true, y):
    y = tf.clip_by_value(y, EPS, 1.0)
    return -tf.reduce_sum(y_true * tf.math.log(y), axis=1)

class Dense(tf.keras.layers.Layer):
    def __init__(self, units, activation, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.units = units
        self.activation = tf.keras.activations.get(activation)

    def build(self, input_shape):
        input_dim = int(input_shape[-1])
        self.W = self.add_weight(
            name='weight',
            shape=(input_dim, self.units),
            initializer=tf.keras.initializers.GlorotUniform()
        )
        self.b = self.add_weight(
            name='bias',
            shape=(self.units,),
            initializer=tf.keras.initializers.Zeros()
        )
        self.built = True

    def call(self, x):
        if self.activation is None:
            raise Exception('Activation function is None')
        return self.activation(tf.matmul(x, self.W) + self.b)

if __name__ == '__main__':
    (X_train, y_train), (X_test, y_test) = mnist_samples(flatten_image=True)

    model = tf.keras.models.Sequential()
    model.add(Dense(FEATURE_DIM, input_shape=(IMAGE_SIZE,), activation='relu'))
    model.add(Dense(CATEGORY_NUM, input_shape=(FEATURE_DIM,), activation='softmax'))
    model.compile(loss=loss_fn, optimizer=tf.keras.optimizers.SGD(LEARNING_RATE), metrics=['accuracy'])

    cb = [tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR)]
    model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=cb, validation_data=(X_test, y_test))
    print(model.evaluate(X_test, y_test))

と書ける。結局2つの層は活性化関数が異なるだけなのでそれを引数として渡せるように変更。
で、この、Denseクラスは、tf.keras.layers.Dense(tensorflow/python/keras/layers/core.py)とほぼ同じものなので、
わざわざ定義する必要は全くなく、シンプルに書ける。

v2/mnist_softmax_fc_simple.py

v2/mnist_softmax_fc_simple.py
from helper import *

IMAGE_SIZE = 28 * 28
CATEGORY_NUM = 10
LEARNING_RATE = 0.1
FEATURE_DIM = 100
EPOCHS = 30
BATCH_SIZE = 100
LOG_DIR = 'log_softmax_fc'
EPS = 1e-10


if __name__ == '__main__':
    (X_train, y_train), (X_test, y_test) = mnist_samples(flatten_image=True)

    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.Dense(FEATURE_DIM, input_shape=(IMAGE_SIZE,), activation='relu'))
    model.add(tf.keras.layers.Dense(CATEGORY_NUM, input_shape=(FEATURE_DIM,), activation='softmax'))
    model.compile(
            loss='categorical_crossentropy',
            optimizer=tf.keras.optimizers.SGD(LEARNING_RATE), metrics=['accuracy'])

    cb = [tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR)]
    model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=cb, validation_data=(X_test, y_test))
    print(model.evaluate(X_test, y_test))

めでたしめでたし
image.png

2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?