0
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

電磁気まとめ

Last updated at Posted at 2020-02-10

シリーズ

物理・数学・プログラムのページについて

ローレンツゲージにおけるマクスウェルの方程式

証明はここ
    \boldsymbol{A} = \left(\frac{\phi}{c}, A_x, A_y, A_z \right)        \tag{電磁ポテンシャル}
    \boldsymbol{i} = \left(\rho c, i_x, i_y, i_z \right)        \tag{4元電流密度}
    \Box \boldsymbol{A} = - \mu_0 \boldsymbol{i}        \tag{ローレンツゲージにおけるマクスウェルの方程式}
    \mathbf{div} \boldsymbol{A} + \frac{1}{c^2} \frac{∂ \phi}{∂t} = 0       \tag{ローレンツ条件}

相対論的なマクスウェルの方程式

証明はここ
    \boldsymbol{A} = \left(\frac{\phi}{c}, A_x, A_y, A_z \right)        \tag{電磁ポテンシャル}
    \boldsymbol{i} = \left(\rho c, i_x, i_y, i_z \right)        \tag{4元電流密度}
    \Box A^\mu - ∂^\mu \left(∂_\nu A^\nu \right)
    = - \mu_0 i^\nu        \tag{相対論的なマクスウェルの方程式}
    ∂_\nu i^\nu = 0        \tag{相対論的な電荷の保存則}
    ∂_\nu A^\nu = 0        \tag{相対論的なローレンツ条件}

ゲージ変換

    \boldsymbol{A}^{’} = \boldsymbol{A} + \mathbf{grad} \chi
    \phi^{’} = \phi - \frac{∂ \chi}{∂t}

電磁気でよく使用するベクトル公式

    \mathbf{rot} (\mathbf{rot} \boldsymbol{X}) = \mathbf{grad} (\mathbf{div} \boldsymbol{X}) - \triangle \boldsymbol{X}
    \mathbf{rot} \cdot\mathbf{grad} \phi = \boldsymbol{0}
        \mathbf{div} \cdot\mathbf{rot} \boldsymbol{X} = 0
0
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?