Qiita Teams that are logged in
You are not logged in to any team

Community
Service
Qiita JobsQiita ZineQiita Blog
1
Help us understand the problem. What is going on with this article?
@campbel2525

# 電磁気まとめ

More than 1 year has passed since last update.

## ローレンツゲージにおけるマクスウェルの方程式

    \boldsymbol{A} = \left(\frac{\phi}{c}, A_x, A_y, A_z \right)        \tag{電磁ポテンシャル}

    \boldsymbol{i} = \left(\rho c, i_x, i_y, i_z \right)        \tag{4元電流密度}

    \Box \boldsymbol{A} = - \mu_0 \boldsymbol{i}        \tag{ローレンツゲージにおけるマクスウェルの方程式}

    \mathbf{div} \boldsymbol{A} + \frac{1}{c^2} \frac{∂ \phi}{∂t} = 0       \tag{ローレンツ条件}


## 相対論的なマクスウェルの方程式

    \boldsymbol{A} = \left(\frac{\phi}{c}, A_x, A_y, A_z \right)        \tag{電磁ポテンシャル}

    \boldsymbol{i} = \left(\rho c, i_x, i_y, i_z \right)        \tag{4元電流密度}

    \Box A^\mu - ∂^\mu \left(∂_\nu A^\nu \right)
= - \mu_0 i^\nu        \tag{相対論的なマクスウェルの方程式}

    ∂_\nu i^\nu = 0        \tag{相対論的な電荷の保存則}

    ∂_\nu A^\nu = 0        \tag{相対論的なローレンツ条件}


## ゲージ変換

    \boldsymbol{A}^{’} = \boldsymbol{A} + \mathbf{grad} \chi

    \phi^{’} = \phi - \frac{∂ \chi}{∂t}


## 電磁気でよく使用するベクトル公式

    \mathbf{rot} (\mathbf{rot} \boldsymbol{X}) = \mathbf{grad} (\mathbf{div} \boldsymbol{X}) - \triangle \boldsymbol{X}

    \mathbf{rot} \cdot\mathbf{grad} \phi = \boldsymbol{0}

        \mathbf{div} \cdot\mathbf{rot} \boldsymbol{X} = 0

1
Help us understand the problem. What is going on with this article?
Why not register and get more from Qiita?
1. We will deliver articles that match you
By following users and tags, you can catch up information on technical fields that you are interested in as a whole
2. you can read useful information later efficiently
By "stocking" the articles you like, you can search right away