LoginSignup
0
1

More than 5 years have passed since last update.

[Review] A Critical Review of Recurrent Neural Networks for Sequence Learning

Last updated at Posted at 2018-03-16

Link: https://arxiv.org/pdf/1506.00019.pdf
LaTex Command: https://qiita.com/PlanetMeron/items/63ac58898541cbe81ada#%E3%82%AE%E3%83%AA%E3%82%B7%E3%83%A3%E6%96%87%E5%AD%97

Abstract

Recurrent neural networks (RNNs) are connectionist models that capture the dynamics of sequences via cycles in the network of nodes. Unlike standard feedforward neural networks, recurrent networks retain a state that can represent information from an arbitrarily long context window.
In this survey, they review and summarise key researches of algorithms and its designs.
The goal is to provide an explanatory review with historical views.

  1. Introduction
    1. Why model sequentiality explicitly?
    2. Why not use Markov models?
    3. Are RNNs too expressive?
  2. Background
    1. Sequences
    2. Neural Networks
    3. Feedforward Networks and backpropagation
  3. RNN
    1. Early Recurrent Networks Designs
    2. Training Recurrent Networks
    3. Implementation
  4. Modern RNN
    1. LSTM (Long Short Term Memory)
    2. BRNNs (Bidirectional RNN)
    3. Neural Turing Machines

1. Introduction

Unlike traditional ML rely upon manual-engineered features, deep neural nets are suited well for machine perception tasks.
However, due to the explosively increase the amount of data, simple linear models tended to end up with under-fit of data. To tackle this issue, DNNs, which are aggressively built by evolutionary growth of certain architecture of DL. For instance, deep belief networks, boltzmann machine and CNN, have demonstrated ground-braking record in some tasks.
But none of these networks had the power to correctly represent the connection between past and present.
Hereby, RNN, which are connectionist models with the ability to selectively pass data across sequence steps while processing sequential data one element at a time, has been invented.

1.1 Why model sequentiality explicitly?

Advantages on conventional useful ML algorithms, like SVM and logistic regression.

  1. Easy to model with sequential data
  2. many models implicitly contain sequentiality inside by merging predecessors and successors of inputs

Disadvantages on Conventional models

Unable to include long-range dependencies!!

1.2 Why not use Markov models?

Frankly RNN is not the only models can represent time dependencies.
For instance, Markov chains, which model transitions between states in an observed sequence, and HMMs(Hidden Markov models) which model an observed sequence as probabilistically dependent upon a sequence of unobserved states.
However, if we extends the time steps hugely, it is infeasible for these markov models to calculate the transition probability using dynamic programming. Further, the basic concept of Markov is the present is independent of the history. hence not suited for largely sequential data.
Yet, hidden layers of RNN can maintain a nearly arbitrarily long context window.

1.3 Are RNNs too expressive?

First, given any fixed architecture (set of nodes, edges, and activation functions), the recurrent neural networks with this architecture are differentiable end to end. The derivative of the loss function can be calculated with respect to each of the parameters (weights) in the model. Thus, RNNs are amenable to gradient-based training.
Second, while the Turing-completeness of RNNs is an impressive property, given
a fixed-size RNN with a specific architecture, it is not actually possible to reproduce any arbitrary program.

1.4 Comparison to Prior literature

Other papers are garbage!!!

2. Background

2.1 Sequences

RNNs can be applied to not only time sequence, but also genetic data or any kind of sequential data
where T is called the maximum

input: (x^{(1)}, x^{(2)}, ..., x^{(T)})\\
output: (y^{(1)}, y^{(2)}, ..., y^{(T)})\\

2.2 Neural Networks (I skipped this part!)

v_j = l_j\biggl(\sum_{j'}w_{jj'}・v_{j'}\biggl)\\
\hat{y} = \frac{e^{a_k}}{\sum_{k'=1}^Ke^{a_{k'}}}

2.3 Feedforward Networks and backpropagation (I skipped this part!)

w \leftarrow w - \eta\nabla_wF_i\\
\delta_k = \frac{\partial L(\hat{y_k},y_k)}{\partial \hat{y_k}}・l_k'(a_k)\\
\delta_j = l'(a_j)\sum_k\delta_k・w_{kj}\\
\frac{\partial L}{\partial w_{jj'}} = \delta_j v_{j'}

3. Recurrent Neural Networks

h_{(t)} = \sigma(W^{hx}x^{(t)} + W^{(hh)}h^{(t-1)}+b_h)\\
\hat{y}^{(t)} = softmax(W^{(yh)}h^{(t)}+b_y)

where $W^{(hx)}$: weights matrix between inputs and hidden layers
$W^{(hh)}$: recurrent weights between hidden layer and itself, like looping
$b_h, b_y$: bias parameters
backpropagation through time: BPTT
image
Screen Shot 2018-03-16 at 18.12.04.png

3.1 Early Recurrent Network Designs

two architecture in RNN
1. Elman Model: Associate with each hidden units are contexts units. Good for NLP
reference: http://www.cis.twcu.ac.jp/~asakawa/chiba2002/lect4-SRN/recurrent-net.pdf
Screen Shot 2018-03-16 at 18.52.33.png

\begin{align}
h^{(t)}& = \sigma(I^{(t)} + ah^{(t-1)})\\
&= \sigma(I^{(t)} + a(I^{(t-1)} + h^{(t-2)}))\\
&= \sigma(I^{(t)} + aI^{(t-1)} + a^2h^{(t-2)} + a^2h^{(t-2)} ... a^nI^{(t-n)})\\
&= \sigma(\sum_{n=0}^T a^nI^{(t-n)})
\end{align}
  1. Jordan Model: good for robotics or some physical action
    refence: https://www.researchgate.net/figure/Jordan-neural-network_fig1_266204519

Screen Shot 2018-03-16 at 19.01.34.png

3.2 Training Recurrent Networks

During the backpropagation of training step, we will face two fundamental issues related with Gradients
1. Vanishing
2. Exploding

For the simplicity, Let's consider a network with a single input node, a single output.
Screen Shot 2018-03-17 at 9.03.41.png
The transitions of weights over time steps indicates that the recurrent edge at the hidden node $j$ always has the same weight. Hence, the gradient of weights can be either explosive(suddenly spike from 0 to some point) or flatten(zero).
Therefore, the derivative of the error with respect to the input will either explode or vanish.

As for solution to these two issues, we have seen some smart methods.
1. vanishing: use ReLu(Rectified Linear Unit max(0,x) ), instead of sigmoid
2. exploding: add regularization term forcing the weights to values where the gradient neither vanishes nor explodes.

Training Step with Backpropagation through Time (BPTT)

Reference: http://ir.hit.edu.cn/~jguo/docs/notes/bptt.pdf
* dear Jiang Guo, I really appreciate your contribution by this paper!! you saved us!

At this point, Let's get our hands a bit dirty to obtain practical knowledge to update weights in RNN.
For the simplicity, I have pre-defined some of important variables below.

variable description index
$x^t$ input layer i
$s^{t-1}$ previous hidden layer h
$s^{t}$ current hidden layer j
$y^t$ output layer k
$W$ current hidden layer $\rightarrow$ output j, k
$V$ input layer $\rightarrow$ current hidden layer i, j
$V$ previous hidden layer $\rightarrow$ current hidden layer h, j

Procedure

Forwardpropagation

Input $\rightarrow$ Hidden layer
1. Activate Neurons
2. Forward Propagation

Hidden layer $\rightarrow$ Output layer
1. Activate Neurons
2. Forward Propagation

Define Cost Function

Backpropagation using BPTT to update each weight matrix ($W$,$V$,$U$)

  1. Hidden layer $\leftarrow$ Output layer
  2. Input $\leftarrow$ Hidden layer

Image of the architecture of the network
Screen Shot 2018-03-17 at 17.20.13.png

Calculation

Forwardpropagation
Input $\rightarrow$ Hidden layer
1. Activate Neurons ($f$ is an activate function, like sigmoid)

s^t = f(net^t_j)
  1. Forward Propagation
net^t_j = \sum^I_i V^T_{ij} x_i + \sum^m_h U^T_{hj} s^{t-1}_h + b_j

Hence current Hidden layer looks like

s^t = f\bigl( \sum^I_i V^T_{ij} x_i + \sum^m_h U^T_{hj} s^{t-1}_h + b_j \bigl)

Hidden layer $\rightarrow$ Output layer
1. Activate Neurons

y^t_k = g(net^t_k)
  1. Forward Propagation
net^t_k = \sum^m_j W^T_{jk} s^t_j + b_k

Hence output layer looks like

y^t_k = g\bigl( \sum^m_j W^T_{jk} s^t_j + b_k \bigl)\\
y^t_k = g\biggl( \sum^m_j W^T_{jk} \bigl(f\bigl( \sum^I_i V^T_{ij} x_i + \sum^m_h U^T_{hj} s^{t-1}_h + b_j \bigl) \bigl) + b_k \biggl)

Define Cost Function
1. SSE(Summed Squared Error): $ C = \frac{1}{2}\sum^n_p \sum^o_k (d_{pk} - y_{pk})^2 $
2. Cross Entropy: $ C = -\sum^n_p \sum^o_k \bigl(d_{pk} \ln y_{pk} + (1 - d_{pk}) \ln (1 - y_{pk}) \bigl) $

Backpropagation using BPTT
1. Hidden layer $\leftarrow$ Output layer

\Delta w = - \eta \frac{\partial C}{\partial w} = - \eta \overbrace{\frac{\partial C}{\partial net_{pk}}}^{Non Linear} \overbrace{\frac{\partial net_{pk}}{\partial w}}^{Linear} \rightarrow
\left\{
\begin{array}{ll}
- \frac{\partial C}{\partial net_{pk}} = - \frac{\partial C}{\partial y_{pk}} \frac{\partial y_{pk}}{\partial net_{pk}} = (d_{pk} - y_{pk})g'(net_{pk}) = \delta_{pk}\\
\frac{\partial net_{pk}}{\partial w} = s^t_j
\end{array}
\right.\\

\Delta w_{kj} = \eta \sum^n_p \delta_{pk} s^t_{pj} 
  1. Input $\leftarrow$ Hidden layer
\Delta v = - \eta \frac{\partial C}{\partial v} = -\eta \frac{\partial C}{\partial net_{pk}} \frac{\partial net_{pk}}{\partial s^t} \frac{\partial s^t}{\partial net_{pj}} \frac{\partial net_{pj}}{\partial v} \\

\Delta v_{ji} = -\eta \sum^n_p \delta_{pk} w_{kj} f'(net_{pj}) x_{pi} \\
Likewise \\
\Delta u_{ji} = -\eta \sum^n_p \delta_{pk} w_{kj} f'(net_{pj}) s^{t-1}_{pi} \\

*Truncated Backpropagation Algorithm is well described here
Ilya Sutskever, Training Recurrent Neural Networks, Thesis, 2013
*nice summary
https://machinelearningmastery.com/gentle-introduction-backpropagation-time/

Summary of the Vanishing Gradients problem

Understanding The Difficulty of Training Deep Feedforward Neural Network
https://qiita.com/Rowing0914/items/372e403bf1eda65f8c15

Implementation

Followed this blog!
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/

This code is uploaded on Github
https://github.com/Rowing0914/NeuralNetwork_DeepLearning/blob/master/src/nn_scratch_denny/nn_from_scratch.py

import numpy as np
import csv
import itertools
import operator
import nltk
import sys
from datetime import datetime
from utils import *
import matplotlib.pyplot as plt

class RNNNumpy:
    def __init__(self, word_dim, nepoch, learning_rate, gradient_check_threshold, hidden_dim, bptt_truncate):
        # Assign instance variables
        self.word_dim = word_dim
        self.hidden_dim = hidden_dim
        self.bptt_truncate = bptt_truncate
        self.learning_rate = learning_rate
        self.nepoch = nepoch
        self.h = 0.01
        self.error_threshold = gradient_check_threshold
        # Randomly initialize the network parameters
        self.W = np.random.uniform(-np.sqrt(1./word_dim), np.sqrt(1./word_dim), (hidden_dim, word_dim))
        self.V = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (word_dim, hidden_dim))
        self.U = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (hidden_dim, hidden_dim))

    def forward_propagation(self, x):
        # The total number of time steps
        T = len(x)
        # During forward propagation we save all hidden states in s because need them later.
        # We add one additional element for the initial hidden, which we set to 0
        s = np.zeros((T + 1, self.hidden_dim))
        s[-1] = np.zeros(self.hidden_dim)
        # The outputs at each time step. Again, we save them for later.
        o = np.zeros((T, self.word_dim))
        # For each time step...
        for t in np.arange(T):
            # Note that we are indxing U by x[t]. This is the same as multiplying U with a one-hot vector.
            s[t] = np.tanh(self.W[:,x[t]] + self.U.dot(s[t-1]))
            o[t] = softmax(self.V.dot(s[t]))
        return [o, s]

    def predict(self, x):
        # Perform forward propagation and return index of the highest score
        o, s = self.forward_propagation(x)
        return np.argmax(o, axis=1)

    def calculate_total_loss(self, x, y):
        L = 0
        # For each sentence...
        for i in np.arange(len(y)):
            o, s = self.forward_propagation(x[i])
            # We only care about our prediction of the "target" words
            correct_word_predictions = o[np.arange(len(y[i])), y[i]]
            """
            We could access of targe word's vector in that sentence
            So (np.arange(len(y[i])), y[i]), this equates (array[0,1,2,...,length_of_sentence-1], index_word)
            =====Accessing to the list elements by list of index=====
            np.random.seed(0)
            a = np.random.randn(10,20)
            Idx = np.arange(3)
            print a[Idx,1]

            #output
            [ 0.40015721  0.6536186  -1.42001794]
            """
            # Add to the loss based on how off we were
            L += -1 * np.sum(np.log(correct_word_predictions))
            """
            =====elaboration of cross entropy=====
            y = np.array([[0],[1],[0],[0]])
            o = np.array([[0.3],[0.2],[0.15],[0.35]])

            print "y * np.log(o)"
            print y * np.log(o)
            print "np.log(np.dot(o.T,y))"
            print np.log(np.dot(o.T,y))

            print np.sum(y * np.log(o)) ,np.sum(np.log(np.dot(o.T,y)))

            # output
            y * np.log(o)
            [[-0.        ]
             [-1.60943791]
             [-0.        ]
             [-0.        ]]
            np.log(np.dot(o.T,y))
            [[-1.60943791]]
            -1.60943791243 -1.60943791243

            =====exponential of decimal numbers will be negative=====
            print np.log(0.00012523)

            # output
            -8.98535851139
            """
        return L

    def calculate_loss(self, x, y):
        # Divide the total loss by the number of training examples
        N = np.sum((len(y_i) for y_i in y))
        return self.calculate_total_loss(x,y)/N

    def from_index_to_word(index_words):
        res = []
        for i in index_words:
            res.append(index_to_word[i])
        return res

    # you can check his blog post as well
    # http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
    def bptt(self, x, y):
        T = len(y)
        # Perform forward propagation
        o, s = self.forward_propagation(x)
        # We accumulate the gradients in these variables
        dLdU = np.zeros(self.W.shape)
        dLdV = np.zeros(self.V.shape)
        dLdW = np.zeros(self.U.shape)
        delta_o = o
        # calculate the error of prediction : (target - predict), namely, (1 - outcome of softmax)
        delta_o[np.arange(len(y)), y] -= 1.
        """
        =====sample code=====
        o = np.array([ 0.00012408, 0.0001244, 0.00012603, 0.00012515, 0.00012488])
        o -= 1.
        print o

        # output
        [-0.99987592 -0.9998756  -0.99987397 -0.99987485 -0.99987512]
        """
        # For each output backwards...
        for t in np.arange(T)[::-1]:
            """
            =====slice & reverse of list => LIST[::-1]=====
            Link: https://stackoverflow.com/questions/3705670/best-way-to-create-a-reversed-list-in-python
            LIST[::-1] <= this smart guy slices the whole sequence, with a step of -1, i.e., in reverse

            a = "Hello World!!"
            print a[::-1]

            # output
            !!dlroW olleH
            """
            # error * activated hidden layer
            dLdV += np.outer(delta_o[t], s[t].T)
            """
            short summary : What we do here is obtaining the weight matrix for updating V

            detali of components : 
            o : softmax( Vs + b )
            delta_o : error signal(check the code above!!)
            s : activated hidden layer, which is the input of softmax => 
            V : weight matrix for output layer
            b : bias

            Example of calculation:
            delta_o = [error_1 , error_2, error_3, .... ]
            s = [s_1, s_2, s_3, .... ]

            the outer product of these two will be below
            outcome = [[error_1*s_1, error_1*s_2, error_1*s_3, .... ],
                       [error_2*s_1, error_2*s_2, error_2*s_3, .... ],
                       [error_3*s_1, error_3*s_2, error_3*s_3, .... ],
                       ....
                       ....
                       ....
                       ]
            In conclusion, with outer product, we could update the weight matrix

            As for outer product in numpy, check this link: 
            https://deepage.net/features/numpy-outer.html
            https://en.wikipedia.org/wiki/Outer_product

            =====np.outer=====
            a = np.linspace(-2, 2, 5)
            b = np.linspace(12, 52, 5)
            print a.reshape(-1,1)*b
            print np.outer(a,b)
            print np.outer(a,b.T)

            # output : same matrices!!
            [[ -24.  -44.  -64.  -84. -104.]
             [ -12.  -22.  -32.  -42.  -52.]
             [   0.    0.    0.    0.    0.]
             [  12.   22.   32.   42.   52.]
             [  24.   44.   64.   84.  104.]]
            [[ -24.  -44.  -64.  -84. -104.]
             [ -12.  -22.  -32.  -42.  -52.]
             [   0.    0.    0.    0.    0.]
             [  12.   22.   32.   42.   52.]
             [  24.   44.   64.   84.  104.]]
            [[ -24.  -44.  -64.  -84. -104.]
             [ -12.  -22.  -32.  -42.  -52.]
             [   0.    0.    0.    0.    0.]
             [  12.   22.   32.   42.   52.]
             [  24.   44.   64.   84.  104.]]
            """
            # Initial delta calculation
            """
            tanh's derivativation is (1 - tanh(x)^2)
            delta_t = V.T dot error * (1 - tanh(x)^2)
            """
            delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
            # Backpropagation through time (for at most self.bptt_truncate steps)
            for bptt_step in np.arange(max(0, t-self.bptt_truncate), t+1)[::-1]:
                # print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step)
                """
                dLdW += (V.T dot error * (1 - tanh(x)^2)) dot previous_hidden
                dLdU[:,x[bptt_step]] += (V.T dot error * (1 - tanh(x)^2)) dot previous_input??
                """
                dLdW += np.outer(delta_t, s[bptt_step-1].T)              
                dLdU[:,x[bptt_step]] += delta_t
                # Update delta for next step
                # one time step backprop
                delta_t = self.U.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
        return [dLdU, dLdV, dLdW]

    def gradient_check(self, x, y):
        # Calculate the gradients using backpropagation. We want to checker if these are correct.
        bptt_gradients = model.bptt(x, y)
        # List of all parameters we want to check.
        model_parameters = ['U', 'V', 'W']
        # Gradient check for each parameter
        for pidx, pname in enumerate(model_parameters):
            # Get the actual parameter value from the mode, e.g. model.W
            parameter = operator.attrgetter(pname)(self)
            """
            Above code tries to access the member attributes(U, V, W) of RNNNumpy class one by one.
            Check this link!: https://docs.python.org/2/library/operator.html#operator.attrgetter
            """
            print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape))
            # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ...
            it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite'])
            """
            =====np.nditer=====
            we can access to each element by above one liner!

            # code
            np_array = np.random.randn(2, 3)
            print "np_array","\n", np_array

            nditer = np.nditer(np_array, flags=['multi_index'])
            while not nditer.finished:
                print nditer.multi_index
                print np_array[nditer.multi_index]
                nditer.iternext()

            #output
            np_array
            [[-0.94897844 -0.1013277  -0.94604283]
             [-1.05055428 -1.00631297 -2.38182881]]

            (0, 0)
            -0.948978439054
            (0, 1)
            -0.101327697174
            (0, 2)
            -0.94604283326
            (1, 0)
            -1.05055428018
            (1, 1)
            -1.00631296902
            (1, 2)
            -2.38182880702
            """
            while not it.finished:
                ix = it.multi_index
                # Save the original value so we can reset it later
                original_value = parameter[ix]
                # Estimate the gradient using (f(x+h) - f(x-h))/(2*h)
                """
                parameter[ix] is now accessing to the member attributes of RNNNumpy.
                So (parameter[ix] = original_value + h) and (parameter[ix] = original_value - h) are affecting self.some_weight directly!!
                That's why we need model.calculate_total_loss([x],[y]) twice!
                """
                parameter[ix] = original_value + self.h
                gradplus = model.calculate_total_loss([x],[y])
                parameter[ix] = original_value - self.h
                gradminus = model.calculate_total_loss([x],[y])
                estimated_gradient = (gradplus - gradminus)/(2*self.h)
                # Reset parameter to original value
                parameter[ix] = original_value
                # The gradient for this parameter calculated using backpropagation
                backprop_gradient = bptt_gradients[pidx][ix]
                # calculate The relative error: (|a - b|/(|a| + |b|))
                # http://mathworld.wolfram.com/RelativeError.html
                """
                As 'a' gets closer to 'b', the relative error decrease.
                =====relative error=====
                a = np.array([000000.1, 0.5, 0.79, 1000])
                b = 0.8
                print np.abs(a-b)/np.abs(a+b)

                #output
                [ 0.77777778  0.23076923  0.00628931  0.99840128]
                """
                relative_error = np.abs(backprop_gradient - estimated_gradient)/(np.abs(backprop_gradient) + np.abs(estimated_gradient))
                # If the error is to large fail the gradient check
                if relative_error > self.error_threshold:
                    print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix)
                    print "+h Loss: %f" % gradplus
                    print "-h Loss: %f" % gradminus
                    print "Estimated_gradient: %f" % estimated_gradient
                    print "Backpropagation gradient: %f" % backprop_gradient
                    print "Relative Error: %f" % relative_error
                    return 
                it.iternext()
            print "Gradient check for parameter %s passed." % (pname)

    # Performs one step of SGD.
    def numpy_sdg_step(self, x, y):
        # Calculate the gradients
        dLdU, dLdV, dLdW = self.bptt(x, y)
        # Change parameters according to gradients and learning rate
        self.W -= self.learning_rate * dLdU
        self.V -= self.learning_rate * dLdV
        self.U -= self.learning_rate * dLdW

    # Outer SGD Loop
    # - model: The RNN model instance
    # - X_train: The training data set
    # - y_train: The training data labels
    # - learning_rate: Initial learning rate for SGD
    # - nepoch: Number of times to iterate through the complete dataset
    # - evaluate_loss_after: Evaluate the loss after this many epochs
    def train_with_sgd(self, model, X_train, y_train, evaluate_loss_after=5):
        # We keep track of the losses so we can plot them later
        losses = []
        num_examples_seen = 0
        for epoch in range(self.nepoch):
            # Optionally evaluate the loss
            if (epoch % evaluate_loss_after == 0):
                loss = model.calculate_loss(X_train, y_train)
                losses.append((num_examples_seen, loss))
                time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
                print "%s: Loss after num_examples_seen=%d epoch=%d: %f" % (time, num_examples_seen, epoch, loss)
                # Adjust the learning rate if loss increases
                if (len(losses) > 1 and losses[-1][1] > losses[-2][1]):
                    self.learning_rate = self.learning_rate * 0.5  
                    print "Setting learning rate to %f" % self.learning_rate
                sys.stdout.flush()
            # For each training example...
            for i in range(len(y_train)):
                # One SGD step
                model.sgd_step(X_train[i], y_train[i], self.learning_rate)
                num_examples_seen += 1

    # not working .....
    def mini_batch_train_with_sgd(self, model, X_train, y_train, mini_batch_size=100, learning_rate=0.005, nepoch=100, evaluate_loss_after=5):
        # We keep track of the losses so we can plot them later
        losses = []
        num_examples_seen = 0
        for epoch in range(nepoch):
            # create mini-batch training dataset.
            mini_batches = np.arange(0, len(X_train), mini_batch_size)
            """
            [i for i in range(0, 100, 20)] => [0, 20, 40, 60, 80]
            this  means the index of mini-batch
            """
            for mini_batch in mini_batches:
                loss = model.calculate_loss(X_train[mini_batch:mini_batch+mini_batch_size], y_train[mini_batch:mini_batch+mini_batch_size])
                losses.append((num_examples_seen, loss))
                time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
                print "%s: Loss after num_examples_seen=%d epoch=%d: loss=%f" % (time, num_examples_seen, epoch, loss)
                # Adjust the learning rate if loss increases
                if (len(losses) > 1 and losses[-1][1] > losses[-2][1]):
                    learning_rate = learning_rate * 0.5  
                    print "Setting learning rate to %f" % learning_rate
                sys.stdout.flush()
            # For each training example...
            for mini_batch in mini_batches:
                # One SGD step
                model.sgd_step(X_train[mini_batch:mini_batch+mini_batch_size], y_train[mini_batch:mini_batch+mini_batch_size], learning_rate)
                num_examples_seen += 1

    def generate_sentence(model):
        # We start the sentence with the start token
        new_sentence = [word_to_index[sentence_start_token]]
        # Repeat until we get an end token
        while not new_sentence[-1] == word_to_index[sentence_end_token]:
            next_word_probs, _ = model.forward_propagation(new_sentence)
            sampled_word = word_to_index[unknown_token]
            # We don't want to sample unknown words
            while sampled_word == word_to_index[unknown_token]:
                samples = np.random.multinomial(1, next_word_probs[-1])
                """
                format: numpy.random.multinomial(n, pvals, size=None)
                description: draw samples following the pvals distribution.
                Link: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.multinomial.html
                Link: https://stackoverflow.com/questions/29014620/use-np-random-multinomial-in-python
                =====sampling methods=====
                print np.random.multinomial(20, [1/6.]*6)
                print sum(np.random.multinomial(20, [1/6.]*6))
                a = softmax(np.random.randn(10))
                print a
                print np.random.multinomial(100, a, 1 )
                print sum(np.random.multinomial(100, a, 1))

                #output
                [5 4 1 3 2 5]
                20
                [ 0.0651358   0.08968716  0.07765962  0.36091358  0.09490753  0.08519846
                  0.06437316  0.03076936  0.0554286   0.07592674]
                [[ 9 11  7 36  4  8 12  3  2  8]]
                [ 7 15 12 36  8  6  5  3  4  4]
                """
                sampled_word = np.argmax(samples)
            new_sentence.append(sampled_word)
        sentence_str = [index_to_word[x] for x in new_sentence[1:-1]]
        return sentence_str

class DataPreparation():
    def __init__(self, word_dim, sentence_start_token, sentence_end_token):
        self.word_dim=word_dim
        self.sentence_start_token=sentence_start_token
        self.sentence_end_token=sentence_end_token

    def data_preprocessing(self):
        # Read the data and append SENTENCE_START and SENTENCE_END tokens
        print "Reading CSV file..."
        with open('data/reddit-comments-2015-08.csv', 'rb') as f:
            reader = csv.reader(f, skipinitialspace=True)
            reader.next()
            # Split full comments into sentences
            sentences = itertools.chain(*[nltk.sent_tokenize(x[0].decode('utf-8').lower()) for x in reader])
            # Append SENTENCE_START and SENTENCE_END
            sentences = ["%s %s %s" % (self.sentence_start_token, x, self.sentence_end_token) for x in sentences]
        print "Parsed %d sentences." % (len(sentences))

        # Tokenize the sentences into words
        tokenized_sentences = [nltk.word_tokenize(sent) for sent in sentences]

        # Count the word frequencies
        word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences))
        print "Found %d unique words tokens." % len(word_freq.items())

        # Get the most common words and build index_to_word and word_to_index vectors
        vocab = word_freq.most_common(word_dim-1)
        index_to_word = [x[0] for x in vocab]
        index_to_word.append(unknown_token)
        word_to_index = dict([(w,i) for i,w in enumerate(index_to_word)])

        print "Using vocabulary size %d." % word_dim
        print "The least frequent word in our vocabulary is '%s' and appeared %d times." % (vocab[-1][0], vocab[-1][1])

        # Replace all words not in our vocabulary with the unknown token
        for i, sent in enumerate(tokenized_sentences):
            tokenized_sentences[i] = [w if w in word_to_index else unknown_token for w in sent]

        print "\nExample sentence: '%s'" % sentences[0]
        print "\nExample sentence after Pre-processing: '%s'" % tokenized_sentences[0]

        # Create the training data
        X_train = np.asarray([[word_to_index[w] for w in sent[:-1]] for sent in tokenized_sentences])
        y_train = np.asarray([[word_to_index[w] for w in sent[1:]] for sent in tokenized_sentences])
        return X_train, y_train


if __name__ == '__main__':
    word_dim = 8000
    learning_rate = 0.005
    nepoch = 100
    hidden_dim=100
    bptt_truncate=4
    gradient_check_threshold = 0.001
    unknown_token = "UNKNOWN_TOKEN"
    sentence_start_token = "SENTENCE_START"
    sentence_end_token = "SENTENCE_END"
    np.random.seed(10)

    data = DataPreparation(word_dim, sentence_start_token, sentence_end_token)
    X_train, y_train = data.data_preprocessing()

    # Train on a small subset of the data to see what happens
    print "Initialise Model"
    model = RNNNumpy(word_dim, nepoch, learning_rate, gradient_check_threshold, hidden_dim, bptt_truncate)

    print "Train Model"
    model.train_with_sgd(model, X_train, y_train, evaluate_loss_after=1)

    print "Training done!"
    print "Generate random sentence based on the model!"
    print "Let's see how it goes!"
    num_sentences = 10
    senten_min_length = 7
    for i in range(num_sentences):
        sent = []
        # We want long sentences, not sentences with one or two words
        while len(sent) < senten_min_length:
            sent = generate_sentence(model)
        print " ".join(sent)

4. Modern Architecture of RNNs

4.1 LSTM(Long Short Term Memory)

Check this my note out!!
https://qiita.com/Rowing0914/items/1edf16ead2190308ce90

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1