15
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Edge TPU Accelaratorの動作を少しでも高速化したかったのでMobileNetv2-SSD/MobileNetv1-SSD+MS-COCOをPascal VOCで転移学習して.tfliteを生成した_Docker編_その2

Last updated at Posted at 2019-03-28

Tensorflow-bin GitHub stars

TPU-MobilenetSSD GitHub stars

1.Introduction

前回、無謀にも非サポートのモデル MobileNetv2-SSDLite のTPUモデルを生成しようとして失敗しました。
【前回記事】 Edge TPU Accelaratorの動作を少しでも高速化したかったのでダメ元でMobileNetv2-SSDLite(Pascal VOC)の.tfliteを生成してTPUモデルへコンパイルしようとした_その1
今回は手順を大幅に見直したうえで、再度 MobileNetv2-SSDLite のコンバートと、MobileNetv1-SSD / MobileNetv2-SSD のコンバートを実施します。 公式の手順でリトライしたところ、 GPUを使用できないDocker環境 という、なかなか挑戦的な環境での作業を強要されました。 正直、転移学習でも無駄に時間が掛かりますので、公式の手順の大半を無視してリトライしました。
公式のDockerイメージを一切使用せず、なおかつ Google Colaboratory も使用しません。

環境構築を含む全ての手順を明示するため、Dockerファイルをただ貼り付けるのではなく、作成した全てのスクリプトをそのまま記載します。 どうしても Dockerファイル が必要な方は、お手数ですがご自身でImageを細かく分離するなどしてDockerファイルを生成してください。 学習用のデータセットは私の個人用Googleドライブから高速にダウンロードされるようにしてあります。 また、ショボいGPUでも比較的大きなバッチサイズでトレーニングができるように工夫してあります。

  • 今回カスタマイズのポイント
    1. DockerイメージによるGPU学習対応
    2. MobileNetv1-SSD / MobileNetv2-SSD / MobileNetv2-SSDLite の転移学習への対応
    3. Pascal VOC データセット (20クラス) への対応

※ 学習時間を大幅に短縮したい方は、素直に Google Colaboratory で作業を実施してください。
※ MS-COCOデータセットに比べ、Pascal VOCデータセットでは 1MB ほど.tfliteファイルのサイズが小さくなりました。
※ MS-COCO = 6.9 MB, Pascal VOC = 5.9 MB

2.Environment

  • Ubuntu 16.04 x86_64
  • Corei7 Gen8
  • Geforce GTX 1070
  • Tensorflow-GPU v1.12.0
  • CUDA 9.0
  • cuDNN 7
  • Pascal VOC 2007/2012 Dataset
  • Netron 2.8.1 here
  • Protobuf 3.7.0 here
  • Nvidia-Docker version 18.09.2, build 6247962 here
  • NVIDIA Driver Version: 396.54
  • [Docker Image] nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04 here

3.Procedure

docker_run
$ sudo docker run -it --privileged -p 6006:6006 --name="edgetpu-detect" nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04 /bin/bash
Environmental_preparation
$ apt-get update;apt-get upgrade -y
$ apt-get install -y protobuf-compiler python-pil python-lxml python-tk \
autoconf automake libtool curl make g++ unzip wget git nano \
libgflags-dev libgoogle-glog-dev liblmdb-dev libleveldb-dev \
libhdf5-10 libhdf5-serial-dev libhdf5-dev libhdf5-cpp-11 \
python3-dev python3-numpy python3-skimage gfortran libturbojpeg \
python-dev python-numpy python-skimage python3-pip python-pip \
libboost-all-dev libopenblas-dev libsnappy-dev software-properties-common \
protobuf-compiler python-pil python-lxml python-tk libfreetype6-dev pkg-config libpng12-dev

$ wget https://bootstrap.pypa.io/get-pip.py
$ python3 get-pip.py
$ pip3 install pip==18.0.0 --upgrade
$ pip3 install --user Cython contextlib2 jupyter matplotlib opencv-python lxml

$ git clone https://github.com/tensorflow/models.git
Create_script_for_constant_definition
$ cd models/research
$ nano constants.sh
constants.sh
#!/bin/bash

declare -A ckpt_link_map
declare -A ckpt_name_map
declare -A config_filename_map

#ckpt_link_map["mobilenet_v1_ssd"]="http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz"
ckpt_link_map["mobilenet_v1_ssd"]="http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz"
#ckpt_link_map["mobilenet_v2_ssd"]="http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz"
ckpt_link_map["mobilenet_v2_ssd"]="http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz"
ckpt_link_map["mobilenet_v2_ssdlite"]="http://download.tensorflow.org/models/object_detection/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz"

#ckpt_name_map["mobilenet_v1_ssd"]="ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18"
ckpt_name_map["mobilenet_v1_ssd"]="ssd_mobilenet_v1_coco_2018_01_28"
#ckpt_name_map["mobilenet_v2_ssd"]="ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03"
ckpt_name_map["mobilenet_v2_ssd"]="ssd_mobilenet_v2_coco_2018_03_29"
ckpt_name_map["mobilenet_v2_ssdlite"]="ssdlite_mobilenet_v2_coco_2018_05_09"

config_filename_map["mobilenet_v1_ssd-true"]="pipeline_mobilenet_v1_ssd_retrain_whole_model.config"
config_filename_map["mobilenet_v1_ssd-false"]="pipeline_mobilenet_v1_ssd_retrain_last_few_layers.config"
config_filename_map["mobilenet_v2_ssd-true"]="pipeline_mobilenet_v2_ssd_retrain_whole_model.config"
config_filename_map["mobilenet_v2_ssd-false"]="pipeline_mobilenet_v2_ssd_retrain_last_few_layers.config"
config_filename_map["mobilenet_v2_ssdlite-true"]="pipeline_mobilenet_v2_ssdlite_retrain_whole_model.config"
config_filename_map["mobilenet_v2_ssdlite-false"]="pipeline_mobilenet_v2_ssdlite_retrain_last_few_layers.config"

INPUT_TENSORS='normalized_input_image_tensor'
OUTPUT_TENSORS='TFLite_Detection_PostProcess,TFLite_Detection_PostProcess:1,TFLite_Detection_PostProcess:2,TFLite_Detection_PostProcess:3'

OBJ_DET_DIR="$PWD"
LEARN_DIR="${OBJ_DET_DIR}/learn"
DATASET_DIR="${LEARN_DIR}/data"
CKPT_DIR="${LEARN_DIR}/ckpt"
TRAIN_DIR="${LEARN_DIR}/train"
OUTPUT_DIR="${LEARN_DIR}/models"
Create_training_data_set_generation_script
$ nano prepare_checkpoint_and_dataset.sh
prepare_checkpoint_and_dataset.sh
#!/bin/bash

# Exit script on error.
set -e
# Echo each command, easier for debugging.
set -x

usage() {
  cat << END_OF_USAGE
  Downloads checkpoint and dataset needed for the tutorial.

  --network_type      Can be one of [mobilenet_v1_ssd, mobilenet_v2_ssd, mobilenet_v2_ssdlite],
                      mobilenet_v1_ssd by default.
  --train_whole_model Whether or not to train all layers of the model. false
                      by default, in which only the last few layers are trained.
  --help              Display this help.
END_OF_USAGE
}

network_type="mobilenet_v1_ssd"
train_whole_model="false"
while [[ $# -gt 0 ]]; do
  case "$1" in
    --network_type)
      network_type=$2
      shift 2 ;;
    --train_whole_model)
      train_whole_model=$2
      shift 2;;
    --help)
      usage
      exit 0 ;;
    --*)
      echo "Unknown flag $1"
      usage
      exit 1 ;;
  esac
done

export PYTHONPATH=`pwd`:`pwd`/slim:$PYTHONPATH
export PATH=/usr/local/cuda-9.0/bin:${PATH}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64/:/usr/local/cuda-9.0/targets/x86_64-linux/lib/stubs:${LD_LIBRARY_PATH}
ldconfig

cp pipeline_mobilenet_v1_ssd_retrain_whole_model.config configs
cp pipeline_mobilenet_v1_ssd_retrain_last_few_layers.config configs
cp pipeline_mobilenet_v2_ssd_retrain_whole_model.config configs
cp pipeline_mobilenet_v2_ssd_retrain_last_few_layers.config configs
cp pipeline_mobilenet_v2_ssdlite_retrain_last_few_layers.config configs

source "$PWD/constants.sh"

echo "PREPARING checkpoint..."
mkdir -p "${LEARN_DIR}"

ckpt_link="${ckpt_link_map[${network_type}]}"
ckpt_name="${ckpt_name_map[${network_type}]}"
cd "${LEARN_DIR}"
wget -O "${ckpt_name}.tar.gz" "$ckpt_link"
tar zxvf "${ckpt_name}.tar.gz"
rm "${ckpt_name}.tar.gz"
rm -rf "${CKPT_DIR}/${ckpt_name}"
rm -rf "${CKPT_DIR}/saved_model"
mv -f ${ckpt_name}/* "${CKPT_DIR}"

echo "CHOSING config file..."
config_filename="${config_filename_map[${network_type}-${train_whole_model}]}"
cd "${OBJ_DET_DIR}"
cp "configs/${config_filename}" "${CKPT_DIR}/pipeline.config"

echo "REPLACING variables in config file..."
sed -i "s%CKPT_DIR_TO_CONFIGURE%${CKPT_DIR}%g" "${CKPT_DIR}/pipeline.config"
sed -i "s%DATASET_DIR_TO_CONFIGURE%${DATASET_DIR}%g" "${CKPT_DIR}/pipeline.config"

echo "PREPARING dataset"
rm -rf "${DATASET_DIR}"
mkdir "${DATASET_DIR}"
cd "${DATASET_DIR}"

# VOCtrainval_11-May-2012.tar <--- 1.86GB
curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1rATNHizJdVHnaJtt-hW9MOgjxoaajzdh" > /dev/null
CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1rATNHizJdVHnaJtt-hW9MOgjxoaajzdh" -o VOCtrainval_11-May-2012.tar

# VOCtrainval_06-Nov-2007.tar <--- 460MB
curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1c8laJUn-aaWEhE5NlDwIdNv5ZdogUAcD" > /dev/null
CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1c8laJUn-aaWEhE5NlDwIdNv5ZdogUAcD" -o VOCtrainval_06-Nov-2007.tar

# Extract the data.
tar -xvf VOCtrainval_11-May-2012.tar;rm VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_06-Nov-2007.tar;rm VOCtrainval_06-Nov-2007.tar

echo "PREPARING label map..."
cd "${OBJ_DET_DIR}"
cp "object_detection/data/pascal_label_map.pbtxt" "${DATASET_DIR}"

echo "CONVERTING dataset to TF Record..."
protoc object_detection/protos/*.proto --python_out=.
python3 object_detection/dataset_tools/create_pascal_tf_record.py \
  --label_map_path="${DATASET_DIR}/pascal_label_map.pbtxt" \
  --data_dir=${DATASET_DIR}/VOCdevkit \
  --year=merged \
  --set=train \
  --output_path="${DATASET_DIR}/pascal_train.record"

python3 object_detection/dataset_tools/create_pascal_tf_record.py \
  --label_map_path="${DATASET_DIR}/pascal_label_map.pbtxt" \
  --data_dir=${DATASET_DIR}/VOCdevkit \
  --year=merged \
  --set=val \
  --output_path="${DATASET_DIR}/pascal_val.record"

Edit pipeline_config.
First, the MobileNet-SSD v2 config sample is shown below.
"Left side" for transfer learning. If you do not transfer learning, "Right side".

sabun.png

Create_"pipeline_mobilenet_v1_ssd_retrain_whole_model.config"
$ nano pipeline_mobilenet_v1_ssd_retrain_whole_model.config
pipeline_mobilenet_v1_ssd_retrain_whole_model.config
model {
  ssd {
    num_classes: 20
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v1"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 3.99999989895e-05
          }
        }
        initializer {
          random_normal_initializer {
            mean: 0.0
            stddev: 0.00999999977648
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.97000002861
          center: true
          scale: true
          epsilon: 0.0010000000475
        }
      }
      override_base_feature_extractor_hyperparams: true
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        use_matmul_gather: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 3.99999989895e-05
            }
          }
          initializer {
            random_normal_initializer {
              mean: 0.0
              stddev: 0.00999999977648
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.97000002861
            center: true
            scale: true
            epsilon: 0.0010000000475
          }
        }
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.800000011921
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        class_prediction_bias_init: -4.59999990463
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.20000000298
        max_scale: 0.949999988079
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.333299994469
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 0.300000011921
        iou_threshold: 0.600000023842
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid_focal {
          gamma: 2.0
          alpha: 0.75
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    encode_background_as_zeros: true
    normalize_loc_loss_by_codesize: true
    inplace_batchnorm_update: true
    freeze_batchnorm: false
  }
}
train_config {
  batch_size: 64
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  sync_replicas: true
  optimizer {
    adam_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: .0002
          schedule {
            step: 500
            learning_rate: .00003
          }
          schedule {
            step: 1000
            learning_rate: .000003
          }
          schedule {
            step: 3000
            learning_rate: .0000003
          }
          schedule {
            step: 6000
            learning_rate: .00000003
          }
        }
      }
    }
    use_moving_average: false
  }
  fine_tune_checkpoint: "CKPT_DIR_TO_CONFIGURE/model.ckpt"
  from_detection_checkpoint: true
  load_all_detection_checkpoint_vars: true
  num_steps: 50000
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
}
train_input_reader {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_train.record"
  }
}
eval_config: {
  num_examples: 10
  num_visualizations: 10
  eval_interval_secs: 0
}
eval_input_reader {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_val.record"
  }
}
graph_rewriter {
  quantization {
    delay: 48000
    weight_bits: 8
    activation_bits: 8
  }
}
Create_"pipeline_mobilenet_v1_ssd_retrain_last_few_layers.config"
$ nano pipeline_mobilenet_v1_ssd_retrain_last_few_layers.config
pipeline_mobilenet_v1_ssd_retrain_last_few_layers.config
model {
  ssd {
    num_classes: 20
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v1"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 3.99999989895e-05
          }
        }
        initializer {
          random_normal_initializer {
            mean: 0.0
            stddev: 0.00999999977648
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.97000002861
          center: true
          scale: true
          epsilon: 0.0010000000475
        }
      }
      override_base_feature_extractor_hyperparams: true
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        use_matmul_gather: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 3.99999989895e-05
            }
          }
          initializer {
            random_normal_initializer {
              mean: 0.0
              stddev: 0.00999999977648
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.97000002861
            center: true
            scale: true
            epsilon: 0.0010000000475
          }
        }
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.800000011921
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        class_prediction_bias_init: -4.59999990463
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.20000000298
        max_scale: 0.949999988079
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.333299994469
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 0.300000011921
        iou_threshold: 0.600000023842
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid_focal {
          gamma: 2.0
          alpha: 0.75
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    encode_background_as_zeros: true
    normalize_loc_loss_by_codesize: true
    inplace_batchnorm_update: true
    freeze_batchnorm: false
  }
}
train_config {
  batch_size: 64
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  sync_replicas: true
  optimizer {
    adam_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: .0002
          schedule {
            step: 500
            learning_rate: .00003
          }
          schedule {
            step: 1000
            learning_rate: .000003
          }
          schedule {
            step: 3000
            learning_rate: .0000003
          }
          schedule {
            step: 6000
            learning_rate: .00000003
          }
        }
      }
    }
    use_moving_average: false
  }
  fine_tune_checkpoint: "CKPT_DIR_TO_CONFIGURE/model.ckpt"
  from_detection_checkpoint: true
  load_all_detection_checkpoint_vars: true
  num_steps: 50000
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
  freeze_variables:
        ['Conv2d_0',
          'Conv2d_1_pointwise',
          'Conv2d_1_depthwise',
          'Conv2d_2_pointwise',
          'Conv2d_2_depthwise',
          'Conv2d_3_pointwise',
          'Conv2d_3_depthwise',
          'Conv2d_4_pointwise',
          'Conv2d_4_depthwise',
          'Conv2d_5_pointwise',
          'Conv2d_5_depthwise',
          'Conv2d_6_pointwise',
          'Conv2d_6_depthwise',
          'Conv2d_7_pointwise',
          'Conv2d_7_depthwise',
          'Conv2d_8_pointwise',
          'Conv2d_8_depthwise',
          'Conv2d_9_pointwise',
          'Conv2d_9_depthwise']
}
train_input_reader {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_train.record"
  }
}
eval_config: {
  num_examples: 10
  num_visualizations: 10
  eval_interval_secs: 0
}
eval_input_reader {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_val.record"
  }
}
graph_rewriter {
  quantization {
    delay: 48000
    weight_bits: 8
    activation_bits: 8
  }
}
Create_"pipeline_mobilenet_v2_ssd_retrain_whole_model.config"
$ nano pipeline_mobilenet_v2_ssd_retrain_whole_model.config
pipeline_mobilenet_v2_ssd_retrain_whole_model.config
# Quantized trained SSD with Mobilenet v2 on Pascal VOC Dataset.

model {
  ssd {
    num_classes: 20
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v2"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 3.99999989895e-05
          }
        }
        initializer {
          random_normal_initializer {
            mean: 0.0
            stddev: 0.00999999977648
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.97000002861
          center: true
          scale: true
          epsilon: 0.0010000000475
        }
      }
      override_base_feature_extractor_hyperparams: true
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        use_matmul_gather: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 3.99999989895e-05
            }
          }
          initializer {
            random_normal_initializer {
              mean: 0.0
              stddev: 0.00999999977648
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.97000002861
            center: true
            scale: true
            epsilon: 0.0010000000475
          }
        }
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.800000011921
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        class_prediction_bias_init: -4.59999990463
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.20000000298
        max_scale: 0.949999988079
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.333299994469
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 0.300000011921
        iou_threshold: 0.600000023842
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid_focal {
          gamma: 2.0
          alpha: 0.75
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    encode_background_as_zeros: true
    normalize_loc_loss_by_codesize: true
    inplace_batchnorm_update: true
    freeze_batchnorm: false
  }
}
train_config {
  batch_size: 64
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  sync_replicas: true
  optimizer {
    adam_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: .0002
          schedule {
            step: 500
            learning_rate: .00003
          }
          schedule {
            step: 1000
            learning_rate: .000003
          }
          schedule {
            step: 3000
            learning_rate: .0000003
          }
          schedule {
            step: 6000
            learning_rate: .00000003
          }
        }
      }
    }
    use_moving_average: false
  }
  fine_tune_checkpoint: "CKPT_DIR_TO_CONFIGURE/model.ckpt"
  from_detection_checkpoint: true
  load_all_detection_checkpoint_vars: true
  num_steps: 50000
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
}
train_input_reader {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_train.record"
  }
}
eval_config: {
  num_examples: 10
  num_visualizations: 10
  eval_interval_secs: 0
}
eval_input_reader {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_train.record"
  }
}
graph_rewriter {
  quantization {
    delay: 48000
    weight_bits: 8
    activation_bits: 8
  }
}
Create_"pipeline_mobilenet_v2_ssd_retrain_last_few_layers.config"
$ nano pipeline_mobilenet_v2_ssd_retrain_last_few_layers.config
pipeline_mobilenet_v2_ssd_retrain_last_few_layers.config
# Quantized trained SSD with Mobilenet v2 on Pascal VOC Dataset.

model {
  ssd {
    num_classes: 20
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v2"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 3.99999989895e-05
          }
        }
        initializer {
          random_normal_initializer {
            mean: 0.0
            stddev: 0.00999999977648
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.97000002861
          center: true
          scale: true
          epsilon: 0.0010000000475
        }
      }
      override_base_feature_extractor_hyperparams: true
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        use_matmul_gather: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 3.99999989895e-05
            }
          }
          initializer {
            random_normal_initializer {
              mean: 0.0
              stddev: 0.00999999977648
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.97000002861
            center: true
            scale: true
            epsilon: 0.0010000000475
          }
        }
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.800000011921
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        class_prediction_bias_init: -4.59999990463
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.20000000298
        max_scale: 0.949999988079
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.333299994469
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 0.300000011921
        iou_threshold: 0.600000023842
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid_focal {
          gamma: 2.0
          alpha: 0.75
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    encode_background_as_zeros: true
    normalize_loc_loss_by_codesize: true
    inplace_batchnorm_update: true
    freeze_batchnorm: false
  }
}
train_config {
  batch_size: 64
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  sync_replicas: true
  optimizer {
    adam_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: .0002
          schedule {
            step: 500
            learning_rate: .00003
          }
          schedule {
            step: 1000
            learning_rate: .000003
          }
          schedule {
            step: 3000
            learning_rate: .0000003
          }
          schedule {
            step: 6000
            learning_rate: .00000003
          }
        }
      }
    }
    use_moving_average: false
  }
  fine_tune_checkpoint: "CKPT_DIR_TO_CONFIGURE/model.ckpt"
  from_detection_checkpoint: true
  load_all_detection_checkpoint_vars: true
  num_steps: 50000
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
  freeze_variables:
        [ 'FeatureExtractor/MobilenetV2/Conv/',
          'FeatureExtractor/MobilenetV2/expanded_conv/',
          'FeatureExtractor/MobilenetV2/expanded_conv_1/',
          'FeatureExtractor/MobilenetV2/expanded_conv_2/',
          'FeatureExtractor/MobilenetV2/expanded_conv_3/',
          'FeatureExtractor/MobilenetV2/expanded_conv_4/',
          'FeatureExtractor/MobilenetV2/expanded_conv_5/',
          'FeatureExtractor/MobilenetV2/expanded_conv_6/',
          'FeatureExtractor/MobilenetV2/expanded_conv_7/']
}
train_input_reader {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_train.record"
  }
}
eval_config: {
  num_examples: 10
  num_visualizations: 10
  eval_interval_secs: 0
}
eval_input_reader {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_val.record"
  }
}
graph_rewriter {
  quantization {
    delay: 48000
    weight_bits: 8
    activation_bits: 8
  }
}
Create_"pipeline_mobilenet_v2_ssdlite_retrain_last_few_layers.config"
$ nano pipeline_mobilenet_v2_ssdlite_retrain_last_few_layers.config
pipeline_mobilenet_v2_ssdlite_retrain_last_few_layers.config
# SSDLite with Mobilenet v2 configuration for VOC Dataset.

model {
  ssd {
    num_classes: 20
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v2'
      depth_multiplier: 1.0
      min_depth: 16
      use_depthwise: true
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            mean: 0.0
            stddev: 0.03
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.9997
          center: true
          scale: true
          epsilon: 0.001
        }
      }
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              mean: 0.0
              stddev: 0.03
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.9997
            center: true
            scale: true
            epsilon: 0.001
          }
        }
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 3
        box_code_size: 4
        apply_sigmoid_to_scores: false
        use_depthwise: true
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid {
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 3
      }
    }
  }
}
train_config: {
  batch_size: 64
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  sync_replicas: true
  optimizer {
    adam_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: .0002
          schedule {
            step: 500
            learning_rate: .00003
          }
          schedule {
            step: 1000
            learning_rate: .000003
          }
          schedule {
            step: 3000
            learning_rate: .0000003
          }
          schedule {
            step: 6000
            learning_rate: .00000003
          }
        }
      }
    }
    use_moving_average: false
  }
  fine_tune_checkpoint: "CKPT_DIR_TO_CONFIGURE/model.ckpt"
  from_detection_checkpoint: true
  load_all_detection_checkpoint_vars: true
  num_steps: 50000
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
  freeze_variables:
        [ 'FeatureExtractor/MobilenetV2/Conv/',
          'FeatureExtractor/MobilenetV2/expanded_conv/',
          'FeatureExtractor/MobilenetV2/expanded_conv_1/',
          'FeatureExtractor/MobilenetV2/expanded_conv_2/',
          'FeatureExtractor/MobilenetV2/expanded_conv_3/',
          'FeatureExtractor/MobilenetV2/expanded_conv_4/',
          'FeatureExtractor/MobilenetV2/expanded_conv_5/',
          'FeatureExtractor/MobilenetV2/expanded_conv_6/',
          'FeatureExtractor/MobilenetV2/expanded_conv_7/']
}
train_input_reader: {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_train.record"
  }
}
eval_config: {
  num_examples: 10
  num_visualizations: 10
  eval_interval_secs: 0
}
eval_input_reader: {
  label_map_path: "DATASET_DIR_TO_CONFIGURE/pascal_label_map.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader {
    input_path: "DATASET_DIR_TO_CONFIGURE/pascal_val.record"
  }
}
graph_rewriter {
  quantization {
    delay: 48000
    weight_bits: 8
    activation_bits: 8
  }
}
$ nano retrain_detection_model.sh
retrain_detection_model.sh
#!/bin/bash

# Exit script on error.
set -e
# Echo each command, easier for debugging.
set -x

usage() {
  cat << END_OF_USAGE
  Starts retraining detection model.

  --num_training_steps Number of training steps to run, 500 by default.
  --num_eval_steps     Number of evaluation steps to run, 100 by default.
  --help               Display this help.
END_OF_USAGE
}

num_training_steps=500
while [[ $# -gt 0 ]]; do
  case "$1" in
    --num_training_steps)
      num_training_steps=$2
      shift 2 ;;
    --num_eval_steps)
      num_eval_steps=$2
      shift 2 ;;
    --help)
      usage
      exit 0 ;;
    --*)
      echo "Unknown flag $1"
      usage
      exit 1 ;;
  esac
done

export PYTHONPATH=`pwd`:`pwd`/slim:$PYTHONPATH
export PATH=/usr/local/cuda-9.0/bin:${PATH}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64/:/usr/local/cuda-9.0/targets/x86_64-linux/lib/stubs:${LD_LIBRARY_PATH}
ldconfig

source "$PWD/constants.sh"

mkdir "${TRAIN_DIR}"

python3 object_detection/model_main.py \
  --pipeline_config_path="${CKPT_DIR}/pipeline.config" \
  --model_dir="${TRAIN_DIR}" \
  --num_train_steps="${num_training_steps}" \
  --num_eval_steps="${num_eval_steps}"
Preparation_before_data_processing
$ chmod +x constants.sh
$ chmod +x prepare_checkpoint_and_dataset.sh
$ chmod +x retrain_detection_model.sh
$ chmod +x protoc_update.sh
$ mkdir configs
$ git clone https://github.com/pdollar/coco.git
$ cd coco/PythonAPI
$ python3 setup.py install
$ cd ../..
$ pip3 install tensorflow-gpu==1.12.0 --upgrade
$ wget https://github.com/protocolbuffers/protobuf/archive/v3.7.0.zip
$ unzip v3.7.0.zip;rm v3.7.0.zip;cd protobuf-3.7.0
$ ./autogen.sh
$ ./configure
$ make -j$(($(nproc) + 1))
$ make install
$ cd python
$ export LD_LIBRARY_PATH=../src/.libs
$ python3 setup.py build --cpp_implementation
$ python3 setup.py test --cpp_implementation
$ python3 setup.py install --cpp_implementation
$ ldconfig

$ cd ../..
$ nano object_detection/utils/object_detection_evaluation.py
object_detection/utils/object_detection_evaluation.py
# Two lines of correction are required.

#category_name = unicode(category_name, 'utf-8')
category_name = str(category_name, 'utf-8')

Restart Docker container.

prepare_checkpoint_and_dataset,_start_training
$ cd models/research

# No sharing of weight values ​​from learned models
$ ./prepare_checkpoint_and_dataset.sh --network_type mobilenet_v1_ssd --train_whole_model true

or

# Sharing of weight value from learned model
$ ./prepare_checkpoint_and_dataset.sh --network_type mobilenet_v1_ssd --train_whole_model false

or

# No sharing of weight values ​​from learned models
$ ./prepare_checkpoint_and_dataset.sh --network_type mobilenet_v2_ssd --train_whole_model true

or

# Sharing of weight value from learned model
$ ./prepare_checkpoint_and_dataset.sh --network_type mobilenet_v2_ssd --train_whole_model false

or

# Sharing of weight value from learned model
$ ./prepare_checkpoint_and_dataset.sh --network_type mobilenet_v2_ssdlite --train_whole_model false


$ source "$PWD/constants.sh";NUM_TRAINING_STEPS=10000 && NUM_EVAL_STEPS=500;rm -rf learn/train;\
./retrain_detection_model.sh \
  --num_training_steps ${NUM_TRAINING_STEPS} \
  --num_eval_steps ${NUM_EVAL_STEPS}

or

$ source "$PWD/constants.sh";NUM_TRAINING_STEPS=500 && NUM_EVAL_STEPS=100;rm -rf learn/train;\
./retrain_detection_model.sh \
  --num_training_steps ${NUM_TRAINING_STEPS} \
  --num_eval_steps ${NUM_EVAL_STEPS}
Check_the_progress_of_learning
$ sudo docker exec -it edgetpu-detect /bin/bash
$ cd models/research/learn/train
$ tensorboard --logdir=.

To check the progress of learning with Tensorboard, access "http://localhost:6006" from the browser of the host PC.

Create_tflite_conversion_script
$ nano convert_checkpoint_to_edgetpu_tflite.sh
convert_checkpoint_to_edgetpu_tflite.sh
#!/bin/bash

# Exit script on error.
set -e
# Echo each command, easier for debugging.
set -x

usage() {
  cat << END_OF_USAGE
  Converts TensorFlow checkpoint to EdgeTPU-compatible TFLite file.

  --network_type    Can be one of [mobilenet_v1_ssd, mobilenet_v2_ssd, mobilenet_v2_ssdlite],
                    mobilenet_v1_ssd by default.
  --checkpoint_num  Checkpoint number, by default 0.
  --help            Display this help.
END_OF_USAGE
}

network_type="mobilenet_v1_ssd"
ckpt_number=0
while [[ $# -gt 0 ]]; do
  case "$1" in
    --network_type)
      network_type=$2
      shift 2 ;;
    --checkpoint_num)
      ckpt_number=$2
      shift 2 ;;
    --help)
      usage
      exit 0 ;;
    --*)
      echo "Unknown flag $1"
      usage
      exit 1 ;;
  esac
done

export PYTHONPATH=`pwd`:`pwd`/slim:$PYTHONPATH
export PATH=/usr/local/cuda-9.0/bin:${PATH}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64/:/usr/local/cuda-9.0/targets/x86_64-linux/lib/stubs:${LD_LIBRARY_PATH}
ldconfig

source "$PWD/constants.sh"

rm -rf "${OUTPUT_DIR}"
mkdir "${OUTPUT_DIR}"

echo "0 aeroplane" > "${OUTPUT_DIR}/labels.txt"
echo "1 bicycle" >> "${OUTPUT_DIR}/labels.txt"
echo "2 bird" >> "${OUTPUT_DIR}/labels.txt"
echo "3 boat" >> "${OUTPUT_DIR}/labels.txt"
echo "4 bottle" >> "${OUTPUT_DIR}/labels.txt"
echo "5 bus" >> "${OUTPUT_DIR}/labels.txt"
echo "6 car" >> "${OUTPUT_DIR}/labels.txt"
echo "7 cat" >> "${OUTPUT_DIR}/labels.txt"
echo "8 chair" >> "${OUTPUT_DIR}/labels.txt"
echo "9 cow" >> "${OUTPUT_DIR}/labels.txt"
echo "10 diningtable" >> "${OUTPUT_DIR}/labels.txt"
echo "11 dog" >> "${OUTPUT_DIR}/labels.txt"
echo "12 horse" >> "${OUTPUT_DIR}/labels.txt"
echo "13 motorbike" >> "${OUTPUT_DIR}/labels.txt"
echo "14 person" >> "${OUTPUT_DIR}/labels.txt"
echo "15 pottedplant" >> "${OUTPUT_DIR}/labels.txt"
echo "16 sheep" >> "${OUTPUT_DIR}/labels.txt"
echo "17 sofa" >> "${OUTPUT_DIR}/labels.txt"
echo "18 train" >> "${OUTPUT_DIR}/labels.txt"
echo "19 tvmonitor" >> "${OUTPUT_DIR}/labels.txt"

echo "EXPORTING frozen graph from checkpoint..."
python3 object_detection/export_tflite_ssd_graph.py \
  --pipeline_config_path="${CKPT_DIR}/pipeline.config" \
  --trained_checkpoint_prefix="${TRAIN_DIR}/model.ckpt-${ckpt_number}" \
  --output_directory="${OUTPUT_DIR}" \
  --add_postprocessing_op=true

echo "CONVERTING frozen graph to TF Lite file..."
tflite_convert \
  --output_file="${OUTPUT_DIR}/output_tflite_graph.tflite" \
  --graph_def_file="${OUTPUT_DIR}/tflite_graph.pb" \
  --inference_type=QUANTIZED_UINT8 \
  --input_arrays="${INPUT_TENSORS}" \
  --output_arrays="${OUTPUT_TENSORS}" \
  --mean_values=128 \
  --std_dev_values=128 \
  --input_shapes=1,300,300,3 \
  --change_concat_input_ranges=false \
  --allow_nudging_weights_to_use_fast_gemm_kernel=true \
  --allow_custom_ops

echo "TFLite graph generated at ${OUTPUT_DIR}/output_tflite_graph.tflite"
Execute_conversion_process_from_meta_file_to_tflite_file
$ chmod +x convert_checkpoint_to_edgetpu_tflite.sh

$ ./convert_checkpoint_to_edgetpu_tflite.sh --network_type mobilenet_v1_ssd --checkpoint_num 50000

or

$ ./convert_checkpoint_to_edgetpu_tflite.sh --network_type mobilenet_v2_ssd --checkpoint_num 50000

or

$ ./convert_checkpoint_to_edgetpu_tflite.sh --network_type mobilenet_v2_ssdlite --checkpoint_num 50000

Screenshot 2019-03-24 09:40:59.png
https://coral.withgoogle.com/web-compiler/
Screenshot 2019-03-21 16:18:27.png

[Successful] MobileNetv1-SSD / MobileNetv2-SSD
Screenshot 2019-03-24 16:46:05.png

[Failed] MobileNetv2-SSDLite
Screenshot 2019-03-21 18:34:59.png

4.Reference articles

Retrain an object detection model
https://coral.withgoogle.com/tutorials/edgetpu-retrain-detection/

Edge TPU Model Compiler
https://coral.withgoogle.com/web-compiler/

Tensorflow detection model zoo
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

tensorflow/tensorflow/python/tools/freeze_graph.py
https://github.com/tensorflow/tensorflow/blob/5a74dd467f49cf44d80bd02a1979ecff45ae29e8/tensorflow/python/tools/freeze_graph.py

【Tensorflow】Tensorflow Object Detection API 学習させてみた
http://app.road.jp.net/?p=1985

Adam Optimizer
https://stackoverflow.com/questions/51915803/tensorflow-object-detection-use-adam-instead-of-rmsprop/51920195#51920195

Post-training quantization
https://www.tensorflow.org/lite/performance/post_training_quantization

Tensorflow r1.13.1 Quantization-aware training
https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize

nvidia-docker2のインストール(On Ubuntu 16.04 LTS)
https://qiita.com/spiderx_jp/items/32c421fd00c6ade19720

15
6
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
15
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?