Help us understand the problem. What is going on with this article?

Scilab (NumPy) - plotの書き方

参考:Scilab,NumPy,R行列処理の比較

自分用のメモです。

プロット

SciLab (NumPy) (R)
プロット
(散布図)
x={0,0.1,...}
y=sin(x)
x=[0:0.1:6];
y=sin(x);
plot(x,y)
plt.plot(x,y,label="sin")
軸範囲 0<=x<=6
-1<=y<=1
a=gca();//軸ハンドル取得
a.data_bounds=[0,-1;6,1];//X,Y共に設定
a.data_bounds(:,1)=[0,6];//X軸を設定
a.data_bounds(:,2)=[-1,1];//Y軸を設定
a.tight_limits(1)="on";//X軸を厳密に設定
a.sub_tics(1)=8;//x軸の目盛
タイトル "ABC" title("ABC","X軸","Y軸");//軸も指定 plt.title="ABC"
x軸ラベル "X" xtitle="X" plt.xlabel="X"
凡例 legends(["A","B","C"],1);//1右上、-1右上外 plt.legend()
表示 plt.show()
スタイル

線種類
ドット
brgcmykw
-,--,-.,:
+x*o.^v<>sdp

画像

SciLab NumPy R
画像読み込み #"IPCV"を使う場合
img=imread("filename")
from matplotlib.image import imread
img=imread()
画像表示 imshow(img) plt.imshow(img)
ピクセル値の取得 pixel=img(10,12,:);
2次元可視化 image(A,col=gray(0:16/16))

リンク
Scilab超入門(齊藤 宣一)
scilabつかいませんか(望月 孔二) 沼津高専
SciLab 勉強会(藤田研究室,小方研究室) 岩手県立大学

Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした