8
21

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

WindowsでNNabla(Neural Network Libraries)とNeural Network Consoleを試してみた

Last updated at Posted at 2017-08-27

#NNabla(Neural Network Libraries)とNeural Network Console
NNablaは、Neural Networkフレームワークであり、Neural Networkを構築するためのライブラリでC++とPython2, Python3が利用できる。
2017年8月17日、NNabla用のGUIツールNeural Network Consoleが公開された。
Neural Network Consoleを利用すればコードを書かなくてもGUIでNeural Networkを構築でき自動でいろいろと最適化をしてくれるらしい。
IMAGE ALT TEXT HERE
参考:http://qiita.com/HirofumiYashima/items/10b7773ea00fda17868e

#NNablaのインストール

要件

公式で動作保証されているのはWondows8.1とWindows10。
NNablaに必要なソフトは

  • Python 2.7 or Python>=3.5: PIP
  • Microsoft Visual C++ 2015 Redistributable

オプションで

  • CUDA Toolkit 8.0 / cuDNN 6.0 (for NVIDIA GPU users)

が利用できる。

インストール

  1. Microsoft Visual C++ 2015のインストール
    https://www.microsoft.com/ja-JP/download/details.aspx?id=52685

  2. Miniconda(Python3)のインストール
    https://repo.continuum.io/miniconda/Miniconda3-latest-Windows-x86_64.exe

  3. scipy scikit-image ipythonのインストール
    インストールされたAnaconda Promptで
    $ conda install scipy scikit-image ipython

  4. CUDAのインストール(オプション)
    http://nnabla.readthedocs.io/en/latest/python/install_on_windows.html#cuda-toolkit-8-0-cudnn-6-0

  5. NNablaのインストール
    インストールされたAnaconda Promptで
    $ pip install nnabla

#Neural Network Consoleのインストール
https://dl.sony.com/ja/
メールアドレスを入力して同意するとNeural Network Consoleのダウンロードリンクが送られてくる。(おおよそ1GB)
参考:http://imagingsolution.net/deep-learning/neural-network-console/neural-network-console-download-install/

neural_network_console_100.zipを解凍してneural_network_consoleをダブルクリックでNeural Network Consoleが起動する。
image.png

#Neural Networkの構築と学習と評価
お試しのNeural Network構築です。

  1. プロジェクトの新規作成
    New Projectをクリック
    test.png

  2. 全結合の3層のニューラルネットワークを構築
    MNISTの学習を想定(入力層28x28、中間層100+活性化関数ReLU、出力層1)
    image.png

  3. トレーニングデータ等の設定
    DATASETのクリック
    test2.png
    TraningとValidationのURIをそれぞれ設定
    Training : mnist_training.csv
    Validation : mnist_test.csv
    test3.png

  4. 学習
    Trainingの再生ボタンを押すと自動的に学習が始まります
    test4.png

  5. 評価
    Evaluationの再生ボタンを押すと正解データとNeural Networkの出力値(出力層は1でfloatで出力)が比較できます。
    image.png

#その他
今回雑なネットワークでしたが、ソフトマックスでMNISTの0~9の確率を出すモデルがサンプルで用意されているので参考にしてみてください(ホームの12_residual_learning.sdproj)。
※時間があったら自動最適化とか追記します
#注意書き
私自身SONY社員ですが、個人としての記事であり、組織とは関係ありません。

#参考ページ
https://blog.dl.sony.com/53/
http://arakan-pgm-ai.hatenablog.com/entry/2017/08/23/003000

8
21
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
8
21

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?