25
28

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

DNN(ディープラーニング)ライブラリ : chainerとTensorFlowの比較 (2) ~CNN編~

Posted at

#はじめに
前回の記事 では,multi layer perceptron(MLP)のサンプルコードを走らせてみました.今回は畳み込みニューラルネットワーク(CNN)です.

#サンプルコード

##データセット・ネットワーク構造
データセットは前回と同じくMNISTの手書き文字データセットを使います($28 \times 28$の画像).

CNNの説明及びネットワーク構造について次の図を作ってみました.
CNN.png

畳み込み層

畳み込みのフィルタサイズは$5 \times 5$で,ゼロパディングをしているので出力画像は入力画像と同じサイズになります.このパディングの操作,いまいち何のためにやっているか(やっていいのか)が説明できませんでした.

  • サイズが途中で変わらないので次元の計算が簡単になる?
  • 画像端の部分の特徴量抽出ができる?

という感じなのでしょうか?

プーリング

プーリング層ではマックス・プーリングを使いました.プーリングすることで,物体(文字)の位置ずれに強い特徴量抽出が行えるようになります.

ネットワークの記述

chianer

chainer.py
import chainer
import chainer.functions as F
import chainer.links as L

class CNN(chainer.Chain):
    def __init__(self):
        super(MLP, self).__init__(
                                  conv1=L.Convolution2D(1, 32, 5, pad=2),
                                  conv2=L.Convolution2D(32, 64, 5, pad=2),
                                  l3=L.Linear(7 * 7 * 64, 1024),
                                  l4=L.Linear(1024, 10),
                                  )
            
    def __call__(self, x):
        h_conv1 = F.relu(self.conv1(x)) # xは[1,28,28]
        h_pool1 = F.max_pooling_2d(h_conv1, 2)
        
        h_conv2 = F.relu(self.conv2(h_pool1))
        h_pool2 = F.max_pooling_2d(h_conv2, 2)
        
        h_l3 = F.relu(self.l3(h_pool2))
       
        y = F.relu(self.l4(h_l3))
        
        return y

tensorFLow

tensorFlow.py
import tensorFlow as tf

# input
    x = tf.placeholder(tf.float32, [None, 784])                     
    x_image = tf.reshape(x, [-1, 28, 28, 1]) #フラットなベクトルを入力としているので2次元の画像に戻します
    
# conv1
    w_conv1 = tf.Variable(tf.random_normal([5, 5, 1, 32], mean=0.0, stddev=0.05))
    b_conv1 = tf.Variable(tf.zeros([32]))            
    
    h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, w_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
# pool1
    h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
# conv2
    w_conv2 = tf.Variable(tf.random_normal([5, 5, 32, 64], mean=0.0, stddev=0.05))
    b_conv2 = tf.Variable(tf.zeros([64]))            
    
    h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, w_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
# pool2
    h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')            
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    
# FC3
    W3 = tf.Variable(tf.random_normal([(28 / 2 / 2) ** 2 * 64, 1024], mean=0.0, stddev=0.05))
    b3 = tf.Variable(tf.zeros([1024]))
    
    h3 = tf.nn.relu(tf.matmul(h_pool2_flat, W3) + b3)        

# FC4
    W4 = tf.Variable(tf.random_normal([1024, 10], mean=0.0, stddev=0.05))
    b4 = tf.Variable(tf.zeros([10]))            
                          
    y = tf.nn.softmax(tf.matmul(h3, W4) + b4)
    
# label
    y_ = tf.placeholder(tf.float32, [None, 10])

本来は畳み込み層などはメソッド化するとよいです.今回はスライドにのせるために書き下しました.

#おわりに
総じてtensorFlowに比べてchainerの方がシンプルに書けるかなという印象ですね."レイヤー型"の記述だからでしょうか.しかし,まだ私が実装したことのあるネットワーク構造は非常にシンプルなものであるためまだライブラリの違いを実感するレベルにはありません.「chainerはRNNを簡単にかける」という話を聞いたことがあるのでRNNも試してみたいところです.

そう言っておきながらあれですが,個人的にはtensorFlowを使っていこうかなと思っています.理由としては

  • tensorBoardやdistributed tensorflowなどの拡張機能
  • googleってことで発展性がありそう?

みたいなところです.
tensorBoardは試してみましたが,パラメータ等のビジュアライズは便利そうです.そして肝は分散処理を簡単に(?)行えるdistributed tensorflowです.まだ試してみませんが,TITAN4枚刺しのサーバ複数台の環境が使えるようになる(かもしれない)ので是非試してみたいものです.

25
28
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
25
28

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?