1
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

因果推論 Uplift Modeling X Learner for Multiple Treatments【Python】

Last updated at Posted at 2021-07-31

はじめに

この記事は、Uplift Modeling for Multiple Treatments with Cost Optimization の内容をベースとしています。

余談ですが、執筆時2021年7月31日より幾月前からUber EatsさんがYouTube上で音声のない広告を流しています。とてもユーザの的を得ているように思えその発想にアルゴリズムが関与しているのであればとても興味深いです。

X-Learner & Extending X-Learner for Multiple Treatments

X-Learner と Extending X-Learner for Multiple Treatments それぞれのアルゴリズムを紹介します。
X-Learner の考え方は 2 つの段階に分けられます。
1 段階目では Treatment / Control それぞれの効果 $\mu_{1}, \ \mu_{0}$ を推定。
2 段階目では既に推定された効果と結果変数の差分を利用し条件付き期待値を算出。さらに傾向スコアで重みづけをすることで精度を高めています。
CATE の推定において「CATE がスパースな場合」「CATE の滑らかさ」「Treatment / Control 群の間に偏りがある場合」に対しある程度の対応をすることができます。

Extending X-Learner for Multiple Treatments は X-Learner を拡張し複数介入のケースにも対応できるようにした Meta-Learner のアルゴリズムです。
これはつまり「X-Learner は $t_j ∈ \{t_0, t_1\}$ を考えている」のに対し「Extending X-Learner for Multiple Treatments は $t_j ∈ \{t_0, t_1, ..., t_m\} \ (j ∈ \mathbb{Z})$ を考えている」ということを意味しています。
数式からも見て取れるように考え方の流れは X-Learner と同じです。

X-Learner

“pseudo-effects” ${D_{i}}$ for the observations in the control group as

\tilde{D_{i}^{0}} = \widehat{\mu }_{1}\left( x\right) - Y_{i}^{0} \tag{1}

and for the individuals in the treatment groups as

\tilde{D_{i}^{1}} = Y_{i}^{1} - \widehat{\mu }_{0}\left( x\right) \tag{2}

where ${Y_{i}}$ is the observed value for the user. The pseudo-effects are then used as the outcome in another pair of regression methods to obtain the response functions ${\tilde{\tau_{1}^{}}(x)}$ and ${\tilde{\tau_{1}^{}}(x)}$ for the control and treatment groups, respectively.

\begin{aligned}\widehat{\tau }\left( x\right) =e\left( x\right) \widehat{\tau }_{0}\left( x\right)  +\left( 1-e\left( x\right) \right) \widehat{\tau }_{1}\left( x\right) \end{aligned} \tag{3}

where ${e(x)}$ is the propensity score $P[W_{i} = 1 \ | \ X_{i} = x]$ with ${W_{i}}$ indicating the treatment assignment.

Extending X-Learner for Multiple Treatments

Consider an experiment with a control group and m treatment groups. Here, we use any suitable regression method to estimate the response functions under each group:

\begin{aligned}\mu _{t_{j}}\left( x\right) = \mathbb{E}[ Y\left( t_{j}\right) \ | \ X=x] \end{aligned} \tag{4}

where $t_j ∈ \{t_0, t_1, ..., t_m\}$ with t0 denoting the control group.
We estimate ${\mu_{t_{0}}(x)}$ using data from the control group and${\mu_{t_{1}}(x)}$ using data from the j-th treatment group. We then proceed to estimate the pseudo-effects analogously,

{\begin{equation}
  \begin{split}
\tilde{D_{i}^{t_{0}}} = \hat{\mu} _{t_{j}}(x) - Y_{i}
\\
\tilde{D_{i}^{t_{j}}} = Y_{i} - \hat{\mu} _{t_{0}}(x)
  \end{split}
\end{equation}
} \tag{5}

where ${\tilde{D_{i}^{t_{0}}}}$ is estimated using control group data and ${\tilde{D_{i}^{t_{j}}}}$ is estimated using the data from the j-th treatment group. Finally, as in the two-group experiment, we use the pseudo-effects as
the outcomes in another pair of regressions to obtain $\hat{\tau} _{t_0}$ and $\hat{\tau}_{t_j}$.

In the multiple treatment group case, we need to estimate
the propensity score

e_{t_{j}}(x) \ = \ \mathbb{P}[W_{i} = t_{j} \ | \ X = x] \tag{6}

for each m experiment groups. Focusing on the case in which we compare each treatment group against the control, we then estimate the CATEor a given treatment group as follows :

\hat{\tau}^{t_{j}}(x) = \dfrac{\hat{e}_{t_j}(x)}{\hat{e}_{t_j}(x) + \hat{e}_{t_0}(x)}\hat{\tau}_{t_0}(x) \ + \ \dfrac{\hat{e}_{t_0}(x)}{\hat{e}_{t_j}(x) + \hat{e}_{t_0}(x)}\hat{\tau}_{t_j}(x) \tag{7}

Finally, to predict the best treatment group for an individual,
we estimate $\tau^{t_j}$ as

\hat{\tau}^{t_{j}}(X_i) = \dfrac{\hat{e}_{t_j}^{(-1)}(X_i)}{\hat{e}_{t_j}^{(-1)}(X_i)  +  \hat{e}_{t_0}^{(-1)}(X_i)}\hat{\tau}_{t_0}^{(-1)}(X_i)  +  \dfrac{\hat{e}_{t_0}^{(-1)}(X_i)}{\hat{e}_{t_j}^{(-1)}(X_i) + \hat{e}_{t_0}^{(-1)}(X_i)}\hat{\tau}_{t_j}^{(-1)}(X_i) \tag{8}

where notation of the form $\hat{e} _{t_j}^{(-1)}$ indicates that $\hat{e}_{t_j}$ has been estimated without using the $i$-th observation. We then simply compare which treatment group gives the highest predicted uplift for the individual and recommend that as the treatment group if the costs of treatments are equal.

Implementation

Check versions of libraries

import pandas
import numpy
import scipy
import sklearn
import lightgbm
import causalml



library_dict = {0: 'pandas', 1: 'numpy', 2: 'scipy', 3: 'sklearn', 4: 'lightgbm', 5: 'causalml'}
for num, library in enumerate([pandas, numpy, scipy, sklearn, lightgbm, causalml]):
    print('{}: v{}'.format(library_dict[num], library.__version__))

>>
pandas: v1.3.1
numpy: v1.18.5
scipy: v1.4.1
sklearn: v0.23.2
lightgbm: v3.1.1
causalml: v0.10.0

X Learner execution class

import pandas as pd
import numpy as np
import sys
import logging
logger = logging.getLogger()
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
import matplotlib.pyplot as plt
%matplotlib inline
from copy import deepcopy

from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.metrics import mean_squared_error as mse
from sklearn.metrics import log_loss

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
import lightgbm as lgb

from causalml.dataset import synthetic_data, get_synthetic_summary_holdout
from causalml.propensity import compute_propensity_score
from causalml.metrics import plot, auuc_score
from causalml.inference.meta import BaseXRegressor



class XLearner(object):
    
    def __init__(self, covariance_df: pd.core.frame.DataFrame, intervention_df: pd.core.frame.DataFrame) -> None:
        """
        covariance_df: Covariate DataFrame.
        intervention_df: Intervention DataFrame. If there are two types of interventions, three types of data will be stored together with the control.
        """
        self.covariance_df = covariance_df
        self.intervention_df = intervention_df
        
        self.groups = list(self.intervention_df.iloc[:, 0].unique())
        self.num_groups = len(self.groups)
    
    def propensity_score_RF(self, n_splits: int, kfold_type: str):
        self.n_splits = n_splits
        self.kfold_type = kfold_type
        
        self.preds_rf = {group_num: np.zeros(self.covariance_df.shape[0]) for group_num in range(self.num_groups)}
        self.logloss_rf_train = {group_num: [] for group_num in range(self.num_groups)}
        self.logloss_rf_valid = {group_num: [] for group_num in range(self.num_groups)}
        
        if self.kfold_type == 'KFold':
            self.c_v_instance = KFold(n_splits = self.n_splits, shuffle = False)
            self.split = self.c_v_instance.split(self.covariance_df)
        elif self.kfold_type == 'StratifiedKFold':
            self.c_v_instance = StratifiedKFold(n_splits = self.n_splits, shuffle = True)
            self.split = self.c_v_instance.split(self.covariance_df, self.intervention_df)
        else:
            raise Exception("kfold_type {} is invalid argument".format(self.kfold_type))
        
        logger.info("RandomForestClassifier is progressing ...")
        # self.valid_index_list = list()
        for n_fold, (train_index, valid_index) in enumerate(self.split):
            logger.info('{} Cross Validation {}'.format(self.kfold_type, n_fold))
            # self.valid_index_list.extend(list(valid_index))
            X_train, z_train = self.covariance_df.iloc[train_index], self.intervention_df.iloc[train_index]
            X_valid, z_valid = self.covariance_df.iloc[valid_index], self.intervention_df.iloc[valid_index]
            
            model_rf = RandomForestClassifier()
            model_rf.fit(X_train, z_train.values.ravel())
            
            pred_prob_train = {group_num: model_rf.predict_proba(X_train)[:, group_num] for group_num in range(self.num_groups)}
            logloss_train = {group_num: log_loss(z_train, pred_prob_train[group_num]) for group_num in range(self.num_groups)}
            [self.logloss_rf_train[group_num].append(logloss_train[group_num]) for group_num in range(self.num_groups)]
            
            pred_prob_valid = {group_num: model_rf.predict_proba(X_valid)[:, group_num] for group_num in range(self.num_groups)}
            logloss_valid = {group_num: log_loss(z_valid, pred_prob_valid[group_num]) for group_num in range(self.num_groups)}
            [self.logloss_rf_valid[group_num].append(logloss_valid[group_num]) for group_num in range(self.num_groups)]
            
            for group_num in range(self.num_groups):
                self.preds_rf[group_num][valid_index] = pred_prob_valid[group_num]
                
        self.logloss_rf_train_mean = {group_num: sum(self.logloss_rf_train[group_num]) / self.n_splits for group_num in range(self.num_groups)}
        self.logloss_rf_valid_mean = {group_num: sum(self.logloss_rf_valid[group_num]) / self.n_splits for group_num in range(self.num_groups)}
        
        self.eps = np.finfo(float).eps
        self.preds_rf = {group_num: np.where(self.preds_rf[group_num] < 0 + self.eps, 0 + self.eps * 1.001, self.preds_rf[group_num]) for group_num in range(self.num_groups)}
        self.preds_rf = {group_num: np.where(self.preds_rf[group_num] > 1 - self.eps, 1 - self.eps * 1.001, self.preds_rf[group_num]) for group_num in range(self.num_groups)}
        
        logger.info("RandomForestClassifier is complete.")
        
        return self.preds_rf, self.logloss_rf_train_mean, self.logloss_rf_valid_mean
    
    def learners(self, learner, control_outcome_learner = None, treatment_outcome_learner = None, control_effect_learner = None, treatment_effect_learner = None) -> None:
        self.learner = learner
        self.control_outcome_learner = control_outcome_learner
        self.treatment_outcome_learner = treatment_outcome_learner
        self.control_effect_learner = control_effect_learner
        self.treatment_effect_learner = treatment_effect_learner
    
    def cate(self, target_df: pd.core.frame.DataFrame, intervention_col_name: str, covariance_col_name: list[str], target_col_name: str, ps_col_list: list[str], verbose: bool = False):
        if self.control_outcome_learner is None:
            self.model_mu_c = deepcopy(learner)
        else:
            self.model_mu_c = control_outcome_learner
            
        if self.treatment_outcome_learner is None:
            self.model_mu_t = deepcopy(learner)
        else:
            self.model_mu_t = treatment_outcome_learner
            
        if self.control_effect_learner is None:
            self.model_tau_c = deepcopy(learner)
        else:
            self.model_tau_c = control_effect_learner
            
        if self.treatment_effect_learner is None:
            self.model_tau_t = deepcopy(learner)
        else:
            self.model_tau_t = treatment_effect_learner
            
        self.target_df = target_df
        self.intervention_col_name = intervention_col_name
        self.covariance_col_name = covariance_col_name
        self.target_col_name = target_col_name
        self.verbose = verbose
        self.control_name = 0
        self.t_groups = list(self.target_df[self.intervention_col_name].loc[self.target_df[self.intervention_col_name] != self.control_name].unique())
        self.t_groups.sort() # ascending
        
        self.ps = {group: np.array(self.target_df[ps_col]) for group, ps_col in enumerate(ps_col_list)}
        
        self.te = np.zeros((self.target_df.shape[0], len(self.t_groups)))
        self.dhat_cs = {}
        self.dhat_ts = {}
        
        self.models_mu_c = {group: deepcopy(self.model_mu_c) for group in self.t_groups}
        self.models_mu_t = {group: deepcopy(self.model_mu_t) for group in self.t_groups}
        self.models_tau_c = {group: deepcopy(self.model_tau_c) for group in self.t_groups}
        self.models_tau_t = {group: deepcopy(self.model_tau_t) for group in self.t_groups}
        
        for group in self.t_groups:
            self.models_mu_c[group].fit(self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.covariance_col_name], self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.target_col_name])
            self.models_mu_t[group].fit(self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.covariance_col_name], self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.target_col_name])
            
            self.d_c = self.models_mu_t[group].predict(self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.covariance_col_name]) - self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.target_col_name]
            self.d_t = self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.target_col_name] - self.models_mu_c[group].predict(self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.covariance_col_name])
            
            self.models_tau_c[group].fit(self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.covariance_col_name], self.d_c)
            self.models_tau_t[group].fit(self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.covariance_col_name], self.d_t)
            
            self.dhat_cs[group] = self.models_tau_c[group].predict(self.target_df[self.covariance_col_name])
            self.dhat_ts[group] = self.models_tau_t[group].predict(self.target_df[self.covariance_col_name])
            
            self.te_ = ((self.ps[group] / (self.ps[group] + self.ps[0])) * self.dhat_cs[group] + (self.ps[0] / (self.ps[group] + self.ps[0])) * self.dhat_ts[group]).reshape(-1, 1)
            self.group_ = int(group) - 1
            self.te[:, self.group_] = np.ravel(self.te_)
            
        if self.verbose:
            for group in self.t_groups:
                logger.info("Treatment group: {}".format(group))
                
                y_hat_control = self.models_mu_c[group].predict(self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.covariance_col_name])
                y_hat_treatment = self.models_mu_t[group].predict(self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.covariance_col_name])
                
                # RMSE
                rmse = np.sqrt(mse(np.array(self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.target_col_name]), np.array(y_hat_control)))
                logger.info("RMSE Control: %s" %rmse)
                rmse = np.sqrt(mse(np.array(self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.target_col_name]), np.array(y_hat_treatment)))
                logger.info("RMSE Treatment: %s" %rmse)
                
                # Gini Coefficient
                arr_control = np.array([np.array(self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.target_col_name]), y_hat_control]).transpose()
                arr_treatment = np.array([np.array(self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.target_col_name]), y_hat_treatment]).transpose()
                
                for num, arr in enumerate([arr_control, arr_treatment]):
                    if num == 0:
                        n_samples = self.target_df.loc[self.target_df[self.intervention_col_name] == 0, self.target_col_name].shape[0]
                    elif num == 1:
                        n_samples = self.target_df.loc[self.target_df[self.intervention_col_name] == group, self.target_col_name].shape[0]
                    
                    # sort rows on prediction column from largest to smallest
                    true_order = arr[arr[:, 0].argsort()][::-1, 0]
                    pred_order = arr[arr[:, 1].argsort()][::-1, 0]
                    
                    # get Lorenz curves
                    l_true = np.cumsum(true_order) / np.sum(true_order)
                    l_pred = np.cumsum(pred_order) / np.sum(pred_order)
                    l_ones = np.linspace(1 / n_samples, 1, n_samples)
                    
                    # get Gini coefficients, area between curves
                    g_true = np.sum(l_ones - l_true)
                    g_pred = np.sum(l_ones - l_pred)
                    
                    # normalize to true Gini coefficient
                    true_gini = g_pred / g_true
                    
                    if num == 0:
                        logger.info("Gini Control: %s" %true_gini)
                    elif num == 1:
                        logger.info("Gini Treatment: %s" %true_gini)
                
        return self.te
y, X, treatment, _, _, e = synthetic_data(mode = 1, n = 10000, p = 5, sigma = 1.0)

synthetic_data_ = np.hstack(( y.reshape(len(y), 1), X, treatment.reshape(len(y), 1), e.reshape(len(y), 1) ))
synthetic_df = pd.DataFrame(data = synthetic_data_)
synthetic_df.rename(columns = {0 : 'Y', 1 : 'cova_1', 2 : 'cova_2', 
                               3 : 'cova_3', 4 : 'cova_4', 5 : 'cova_5', 
                               6 : 'inte', 7 :  'ps'}, 
                    inplace = True
                   )

covariance_df = synthetic_df[['cova_1', 'cova_2', 'cova_3', 'cova_4', 'cova_5']]
synthetic_df['inte'] = synthetic_df['inte'].astype(int)
intervention_df = synthetic_df['inte']

ins = XLearner(covariance_df, pd.DataFrame(intervention_df))

ps, logloss_rf_train, logloss_rf_valid = ins.propensity_score_RF(n_splits = 5, kfold_type = 'StratifiedKFold')

learner = lgb.LGBMRegressor(
            boosting_type = 'gbdt', 
            objective = 'regression', 
            reg_alpha = 1, 
            reg_lambda = 1, 
            subsample = 0.6, 
            max_depth = 10, 
            num_leaves = 20, 
            colsample_bytree = 0.5, 
            min_child_weight = 10, 
            n_estimators = 1000
        )

ins.learners(learner)

synthetic_df['ps_0'] = ps[0]
synthetic_df['ps_1'] = ps[1]

cate = ins.cate(synthetic_df, 'inte', ['cova_1', 'cova_2', 'cova_3', 'cova_4', 'cova_5'], 'Y', ['ps_0', 'ps_1'], True)

learner_x = BaseXRegressor(learner = learner)
cate_x = learner_x.fit_predict(X = X, treatment = treatment, y = synthetic_df['Y'], p = e, return_ci = False)

CATE

alpha = 0.2
bins = 30
plt.figure(figsize = (12, 8))
plt.hist(cate_x, alpha = alpha, bins = bins, label = 'X Learner')
plt.hist(cate, alpha = alpha, bins = bins, label = 'X Learner Multiple')
plt.legend()
plt.show()

AUUC

synthetic_df['uplift_score_1'] = cate
# synthetic_df['uplift_score_causalml'] = cate_x

accu_score_ = auuc_score(df = synthetic_df[['Y','inte', 'uplift_score_1']], kind = 'gain', 
                        outcome_col = 'Y', 
                        treatment_col = 'inte')
logger.info('AUUC : %s' %accu_score_)

threshold_index = int(accu_score_.uplift_score_1 * synthetic_df.shape[0])
threshold = synthetic_df['uplift_score_1'].sort_values(ascending = False).reset_index(drop = True)[threshold_index]
logger.info('Threshold : %s' %threshold)

plot(df = synthetic_df[['Y','inte', 'uplift_score_1']], kind = 'gain',
     outcome_col = 'Y', 
     treatment_col = 'inte'
    )
# plot(df = synthetic_df[['Y','inte', 'uplift_score_causalml']], kind = 'gain',
#      outcome_col = 'Y', 
#      treatment_col = 'inte'
#     )

>> 
AUUC : uplift_score_1    0.789995
Random            0.498822
dtype: float64
Threshold : -0.011212206037982897

まとめ

Uplift Modeling for Multiple Treatments with Cost Optimization の内容をもとに Extending X-Learner for Multiple Treatments を実装してみました。
認識や実装の間違いなどありましたらご指摘のほどよろしくお願いいたします。

1
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?