2
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Bluemix上のApache Spark環境を使ってみた

Last updated at Posted at 2017-01-19

はじめに

Apache Saprkのお勉強を始めるにあたってPC上に環境を作ってみようと思ったのですが、IBM Bluemix上でSparkのサービスが提供されているようなので使ってみました。
基本的なコマンドを実行してみる所までのメモです。

※Bluemixは30日間無償のフリートライアルというのが提供されています。
※Bluemixのユーザーインターフェースは結構コロコロと変わるイメージがあります。細かい所はすぐ変わってしまうかもしれませんがあしからず。

手順例

Sparkインスタンス作成

BluemixにログインしてカタログからSparkを検索します。
データ&分析のカテゴリに 「Apache Spark」というサービスが表示されるので、ポチっとクリックします。
image01.JPG

サービス名とか変更できるようですが、そのまま。
価格プランは2 Spark Execution(無料)を選択して、作成!
image02.jpg

インスタンスが作成されて、以下のような画面が表示されました。
image03.jpg

さて、この辺↓の記事をみてると、
Apache Spark for Bluemixで天気情報を高速分析
Sparkを手っ取り早く使ってみるツールとして、Jupyter Notebookというツールが使えそうだったのでそれを想定していたら、上の画面に、Notebookは2017年1月で使えなくなるようなことが書いてありました。Data Science Experience なるものに置き換わるようですね。

The notebook capabilities in IBM Analytics for Apache Spark will be discontinued in January 2017.
Your new platform to work with notebooks is Data Science Experience.

DSX(Data Science Experience)の設定

DSXのサービス?を利用してNotebook(これはJupyter Notebookと同じモノなのか?)を使うための設定をします。

Data Science Experienceのリンクを辿ると以下のページに飛ばされます。
image_dsx01.JPG

SignInのリンクから指示に従ってBluemixのアカウントを元に、DSX(Data Science Experience)のアカウントを設定します。
image_dsx02.JPG

DSXにログイン?した状態になるようです。
左上のメニューから「My Projects」を選択します。
image_dsx025.JPG

My Projectsの右上の「create project」を選択します。
image_dsx03.JPG

プロジェクトの名前などを設定します。
ここで、Spark Serviceとして先ほど作成したインスタンスが表示されるので、それを選択します。
で、「Create」
image_dsx04.JPG

プロジェクトが作成されて、以下のようなメニューが出てきます。
Notebooks という項目の右側の「add notebooks」をクリックします。
image_dsx05.JPG

Notebookの設定を行います。ここでは、言語としてScala、Spark Versionとして2.0を選択し、Spark Serviceは先に作成したインスタンスを指定します。
image_dsx06_2.JPG

「Create Notebook」をすると、以下のようにNotebookが起動し、Scalaのコードが投入できる状態になりました。
image_dsx065.JPG

Scalaコードの実行1

簡単なコードを試してみます。
image_dsx07_2.JPG
ふむ、一応動いているっぽい。

Scalaコードの実行2

次にcsvファイルを読んでRDDで扱ってみたいと思います。
テスト用のcsvを用意します。

test.csv
test01,10
test02,20
test03,30
test04,40
test05,50

データは、Object Storage(My Projectの画面のData Assetという項目で管理される)に登録しておく必要があるっぽい。

My Projectの画面で、右上の「Find and add data」のアイコン(10 01っぽいやつ)をクリックして、扱いたいファイル(ここではtest.csv)をここにドラッグ&ドロップするか、browseのリンクからファイルを選択し、Applyを押します。
image_dsx08.JPG

test.csvがData Assetsに追加されました。
image_dsx09.JPG

Notebook開いて、同じく「Find and Add data」のアイコンをクリックすると、Data Assetsに登録されているファイルがリストされます(この画面からもファイルのアップロードは可能)。扱いたいファイルの「Insert to code」のプルダウンメニューから、Insert Spark RDDを選択します。
image_dsx10.JPG

そうすると、左側の入力欄に、ペロッとそのデータをアクセスするためのコードが自動生成されます。実行すると、RDDとしてCSVのデータがハンドリングできていることが分かります。
image_dsx11.JPG

Rコードの実行

同じようにRの実行を試してみます。
R用のNotebookを作成して起動します。
test.csvの「Insert to code」プルダウンメニューから、「Insert SparkSession DataFrame」を選択し、生成されたコードを実行します。
image_dsx12.JPG

こんな感じに実行されました。

2
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?