6
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Flutter + Firebase MLKitでモバイル端末上でカスタムモデルを使用する方法

Last updated at Posted at 2018-12-16

この記事は全部俺 Advent Calendar 2018の16日目の記事です。

やること

Flutterを使って、Firebase MLKitのカスタムモデルを動かします。
Firebase MLKitでは、TensorflowLiteのモデルをサポートしています。
動作しているイメージはこんな感じです。

custom_model.gif

結果画面が早くてみにくいですが、ちゃんとtoilet tissueが一番スコアが高くなっていることがわかります。
(前回の記事でAndroidのgifを載せたので今回はiPhone XRでの動作例を載せています。)

注意

mlkitを使用するために使うライブラリは、公式のfirebase_ml_visionではなく、flutter_mlkitにしています。
これは、公式が未だにカスタムモデルをサポートしていないためです。
公式にカスタムモデルがサポートされた場合は、そちらを使用したほうが良いと思いますし、むしろカスタムモデルを使用しない前提なら、公式のfirebase_ml_visionを使用したほうが良いと思います。(実は公式リポジトリもあんまり更新されていないのですが。。)
flutter_mlkitの作者様も、「公式のfirebase_ml_visionを使用することを検討してください」と言っています。
公式がカスタムモデルをサポートしたら、また記事を上げるつもりです。
おそらくFirebase MLKitがβじゃなくなってからサポートされるのでは?と思っています。

カスタムモデルを使用せずに組み込みのモデルを使用する場合は、こちらの記事を参考にしてください。(公式リポジトリではなくflutter_mlkitを使用しています。)
組み込みモデルだけでも、以下のことができます。

  • 画像からの文字起こし
  • 画像に写っているもののラベリング
  • バーコードスキャン
  • 顔画像取り出し

カスタムモデルのダウンロードとFirebase MLKitの準備

ここから、mobilenet_v1_1.0_224_quant.tgzをダウンロードしてきて解凍します。
このモデルは、Inputとなる画像をここに記載されているラベルで分類するモデルとなります。

ダウンロードしたあとは、Flutterのプロジェクトを作成しておきます。(すでに作成してあるものを使う場合はスルーでOKです。)
名前は何でもいいのですが、今回はProject名をmlkit_sample、Company Domainをmlkitとして、パッケージ名がmlkit.mlkitsampleという名前になるように設定しました。
以下、この名称を使用しますが、変更する場合は適宜読み替えてください。

Firebaseコンソールから、MLKitを選択し、「カスタム」タブから「カスタムモデルを追加」を選択します。
カスタムモデルの名前を入力することになるので、好きな名前を入れます。ここでは、先ほどのモデル名称をもとにmobilenet_v1_224_quantという名前にしました。
この名前が後でソースコードからアクセスする際に使用する名前になるので、わかりやすい名前をつけておくと良いです。
その後、実際に使用するカスタムモデルをアップロードするので、先ほど解凍したモデルから、mobilenet_v1_1.0_224_quant.tfliteを選んでアップロードしておきます。
モデルのアップロードが完了したら、「公開」を押します。これでFirebase上での作業は完了です。

image.png

必要であれば、google-services.jsonGoogleService-Info.plistをダウンロードしてプロジェクトに配置しておきます。
具体的な手順はこちらを参照してください。

Flutterソースコード

labels.txtの作成とpubspeck.yamlの記載

まず、今回のカスタムモデルが使用するlabels.txtを作成します。
ここを参考に、プロジェクト配下にassets/label.txtを作成しましょう。
ソースコードからアクセスできるようにpubspeck.yaml- assets/labels.txtを記載しておきます。
pubspeck.yamlの全量は以下のようになります。

pubspeck.yaml
name: mlkit_sample
description: mlkit_sample application with custom model.

version: 1.0.0+1

environment:
  sdk: ">=2.0.0-dev.68.0 <3.0.0"

dependencies:
  flutter:
    sdk: flutter
  cupertino_icons: ^0.1.2
  image_picker:
  mlkit:
  image:

dev_dependencies:
  flutter_test:
    sdk: flutter

flutter:
  uses-material-design: true

  assets:
    - assets/labels.txt

lib以下のソースコード

以下の2ファイルを作成します。
ソースコードは、こちらからお借りしたものをもとに編集しました。
※長くなったので折りたたみました。

lib/main.dart
lib/main.dart
import 'package:mlkit_sample/ml_detail.dart';
import 'package:flutter/material.dart';
import 'package:image_picker/image_picker.dart';
import 'dart:io';

const String TEXT_SCANNER = 'TEXT_SCANNER';
const String BARCODE_SCANNER = 'BARCODE_SCANNER';
const String LABEL_SCANNER = 'LABEL_SCANNER';
const String FACE_SCANNER = 'FACE_SCANNER';
const String CUSTOM_MODEL = 'CUSTOM_MODEL';

void main() => runApp(new MyApp());

class MyApp extends StatelessWidget {
  @override
  Widget build(BuildContext context) {
    return new MaterialApp(
      debugShowCheckedModeBanner: false,
      title: 'Flutter Demo',
      theme: new ThemeData(
        primarySwatch: Colors.blue,
      ),
      home: new MLHome(),
    );
  }
}
class MLHome extends StatefulWidget {
  MLHome({Key key}) : super(key: key);

  @override
  State<StatefulWidget> createState() => _MLHomeState();
}

class _MLHomeState extends State<MLHome> {
  static const String CAMERA_SOURCE = 'CAMERA_SOURCE';
  static const String GALLERY_SOURCE = 'GALLERY_SOURCE';

  final GlobalKey<ScaffoldState> _scaffoldKey = GlobalKey<ScaffoldState>();

  File _file;
  String _selectedScanner = TEXT_SCANNER;

  @override
  Widget build(BuildContext context) {
    final columns = List<Widget>();
    columns.add(buildRowTitle(context, 'Select Scanner Type'));
    columns.add(buildSelectScannerRowWidget(context));
    columns.add(buildRowTitle(context, 'Pick Image'));
    columns.add(buildSelectImageRowWidget(context));

    return Scaffold(
        key: _scaffoldKey,
        appBar: AppBar(
          centerTitle: true,
          title: Text('MLKit Demo'),
        ),
        body: SingleChildScrollView(
          child: Column(
            children: columns,
          ),
        ));
  }

  Widget buildRowTitle(BuildContext context, String title) {
    return Center(
        child: Padding(
          padding: EdgeInsets.symmetric(horizontal: 8.0, vertical: 16.0),
          child: Text(
            title,
            style: Theme.of(context).textTheme.headline,
          ),
        ));
  }

  Widget buildSelectImageRowWidget(BuildContext context) {
    return Row(
      children: <Widget>[
        Expanded(
            child: Padding(
              padding: EdgeInsets.symmetric(horizontal: 8.0),
              child: RaisedButton(
                  color: Colors.blue,
                  textColor: Colors.white,
                  splashColor: Colors.blueGrey,
                  onPressed: () {
                    onPickImageSelected(CAMERA_SOURCE);
                  },
                  child: const Text('Camera')),
            )),
        Expanded(
            child: Padding(
              padding: EdgeInsets.symmetric(horizontal: 8.0),
              child: RaisedButton(
                  color: Colors.blue,
                  textColor: Colors.white,
                  splashColor: Colors.blueGrey,
                  onPressed: () {
                    onPickImageSelected(GALLERY_SOURCE);
                  },
                  child: const Text('Gallery')),
            ))
      ],
    );
  }

  Widget buildSelectScannerRowWidget(BuildContext context) {
    return Wrap(
      children: <Widget>[
        RadioListTile<String>(
          title: Text('Text Recognition'),
          groupValue: _selectedScanner,
          value: TEXT_SCANNER,
          onChanged: onScannerSelected,
        ),
        RadioListTile<String>(
          title: Text('Barcode Scanner'),
          groupValue: _selectedScanner,
          value: BARCODE_SCANNER,
          onChanged: onScannerSelected,
        ),
        RadioListTile<String>(
          title: Text('Label Scanner'),
          groupValue: _selectedScanner,
          value: LABEL_SCANNER,
          onChanged: onScannerSelected,
        ),
        RadioListTile<String>(
          title: Text('Face Scanner'),
          groupValue: _selectedScanner,
          value: FACE_SCANNER,
          onChanged: onScannerSelected,
        ),
        RadioListTile<String>(
          title: Text('Custom Model'),
          groupValue: _selectedScanner,
          value: CUSTOM_MODEL,
          onChanged: onScannerSelected,
        )
      ],
    );
  }

  Widget buildImageRow(BuildContext context, File file) {
    return SizedBox(
        height: 500.0,
        child: Image.file(
          file,
          fit: BoxFit.fitWidth,
        ));
  }

  Widget buildDeleteRow(BuildContext context) {
    return Center(
      child: Padding(
        padding: EdgeInsets.symmetric(horizontal: 8.0, vertical: 8.0),
        child: RaisedButton(
            color: Colors.red,
            textColor: Colors.white,
            splashColor: Colors.blueGrey,
            onPressed: () {
              setState(() {
                _file = null;
              });
              ;
            },
            child: const Text('Delete Image')),
      ),
    );
  }

  void onScannerSelected(String scanner) {
    setState(() {
      _selectedScanner = scanner;
    });
  }

  void onPickImageSelected(String source) async {
    var imageSource;
    if (source == CAMERA_SOURCE) {
      imageSource = ImageSource.camera;
    } else {
      imageSource = ImageSource.gallery;
    }

    final scaffold = _scaffoldKey.currentState;

    try {
      final file = await ImagePicker.pickImage(source: imageSource);
      if (file == null) {
        throw Exception('File is not available');
      }

      Navigator.push(
        context,
        new MaterialPageRoute(
            builder: (context) => MLDetail(file, _selectedScanner)),
      );
    } catch (e) {
      scaffold.showSnackBar(SnackBar(
        content: Text(e.toString()),
      ));
    }
  }
}
lib/ml_detail.dart
lib/ml_detail.dart
import 'dart:typed_data';

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'dart:io';
import 'dart:async';
import 'package:mlkit/mlkit.dart';
import 'package:mlkit_sample/main.dart';
import 'package:image/image.dart' as img;

class MLDetail extends StatefulWidget {
  final File _file;
  final String _scannerType;

  MLDetail(this._file, this._scannerType);

  @override
  State<StatefulWidget> createState() {
    return _MLDetailState();
  }
}

class _MLDetailState extends State<MLDetail> {
  FirebaseVisionTextDetector textDetector = FirebaseVisionTextDetector.instance;
  FirebaseVisionBarcodeDetector barcodeDetector =
      FirebaseVisionBarcodeDetector.instance;
  FirebaseVisionLabelDetector labelDetector =
      FirebaseVisionLabelDetector.instance;
  FirebaseVisionFaceDetector faceDetector = FirebaseVisionFaceDetector.instance;
  List<VisionText> _currentTextLabels = <VisionText>[];
  List<VisionBarcode> _currentBarcodeLabels = <VisionBarcode>[];
  List<VisionLabel> _currentLabelLabels = <VisionLabel>[];
  List<VisionFace> _currentFaceLabels = <VisionFace>[];
  List<_CustomLabelScore> _currentCustomLabels = <_CustomLabelScore>[];

  // For firebase MLKit custom model
  FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.instance;
  FirebaseModelManager manager = FirebaseModelManager.instance;

  Stream sub;
  StreamSubscription<dynamic> subscription;

  @override
  void initState() {
    super.initState();
    sub = new Stream.empty();
    subscription = sub.listen((_) => _getImageSize)..onDone(analyzeLabels);
    manager.registerCloudModelSource(
      FirebaseCloudModelSource(modelName: "mobilenet_v1_224_quant"));
  }

  void analyzeLabels() async {
    try {
      var currentLabels;
      if (widget._scannerType == TEXT_SCANNER) {
        currentLabels = await textDetector.detectFromPath(widget._file.path);
        if (this.mounted) {
          setState(() {
            _currentTextLabels = currentLabels;
          });
        }
      } else if (widget._scannerType == BARCODE_SCANNER) {
        currentLabels = await barcodeDetector.detectFromPath(widget._file.path);
        if (this.mounted) {
          setState(() {
            _currentBarcodeLabels = currentLabels;
          });
        }
      } else if (widget._scannerType == LABEL_SCANNER) {
        currentLabels = await labelDetector.detectFromPath(widget._file.path);
        if (this.mounted) {
          setState(() {
            _currentLabelLabels = currentLabels;
          });
        }
      } else if (widget._scannerType == FACE_SCANNER) {
        currentLabels = await faceDetector.detectFromPath(widget._file.path);
        if (this.mounted) {
          setState(() {
            _currentFaceLabels = currentLabels;
          });
        }
      } else if (widget._scannerType == CUSTOM_MODEL) {
        var customLabels = (await rootBundle.loadString('assets/labels.txt')).split("\n");
        var imageBytes = (await rootBundle.load(widget._file.path)).buffer;
        img.Image image = img.decodeJpg(imageBytes.asUint8List());
        image = img.copyResize(image, 224, 224);
        var results = await interpreter.run(
            "mobilenet_v1_224_quant",
            FirebaseModelInputOutputOptions(
                0,
                FirebaseModelDataType.BYTE,
                [1, 224, 224, 3],
                0,
                FirebaseModelDataType.BYTE,
                [1, 1001]),
            imageToByteList(image));
        var labelScores = <_CustomLabelScore>[];
        for (int i = 0; i < customLabels.length; i++) {
          if (results[i] > 0) {
            labelScores.add(_CustomLabelScore(customLabels[i], results[i]));
          }
        }
        labelScores.sort((a, b) => b.score.compareTo(a.score));
        print(labelScores[0].label + ", " + labelScores[1].label);
        if (this.mounted) {
          setState(() {
            _currentCustomLabels = labelScores;
          });
        }
      }
    } catch (e) {
      print("MyEx: " + e.toString());
    }
  }

  // int model
  Uint8List imageToByteList(img.Image image) {
    var _inputSize = 224;
    var convertedBytes = new Uint8List(1 * _inputSize * _inputSize * 3);
    var buffer = new ByteData.view(convertedBytes.buffer);
    int pixelIndex = 0;
    for (var i = 0; i < _inputSize; i++) {
      for (var j = 0; j < _inputSize; j++) {
        var pixel = image.getPixel(i, j);
        buffer.setUint8(pixelIndex, (pixel >> 16) & 0xFF);
        pixelIndex++;
        buffer.setUint8(pixelIndex, (pixel >> 8) & 0xFF);
        pixelIndex++;
        buffer.setUint8(pixelIndex, (pixel) & 0xFF);
        pixelIndex++;
      }
    }
    return convertedBytes;
  }

  @override
  void dispose() {
    // TODO: implement dispose
    super.dispose();
    subscription?.cancel();
  }

  @override
  Widget build(BuildContext context) {
    return Scaffold(
        appBar: AppBar(
          centerTitle: true,
          title: Text(widget._scannerType),
        ),
        body: Column(
          children: <Widget>[
            buildImage(context),
            widget._scannerType == TEXT_SCANNER
                ? buildTextList(_currentTextLabels)
                : widget._scannerType == BARCODE_SCANNER
                ? buildBarcodeList<VisionBarcode>(_currentBarcodeLabels)
                : widget._scannerType == FACE_SCANNER
                ? buildBarcodeList<VisionFace>(_currentFaceLabels)
                : widget._scannerType == LABEL_SCANNER
                ? buildBarcodeList<VisionLabel>(_currentLabelLabels)
                : buildBarcodeList<_CustomLabelScore>(_currentCustomLabels)
          ],
        ));
  }

  Widget buildImage(BuildContext context) {
    return Expanded(
      flex: 2,
      child: Container(
          decoration: BoxDecoration(color: Colors.black),
          child: Center(
            child: widget._file == null
                ? Text('No Image')
                : FutureBuilder<Size>(
              future: _getImageSize(
                  Image.file(widget._file, fit: BoxFit.fitWidth)),
              builder:
                  (BuildContext context, AsyncSnapshot<Size> snapshot) {
                if (snapshot.hasData) {
                  return Container(
                      foregroundDecoration: (widget._scannerType ==
                          TEXT_SCANNER)
                          ? TextDetectDecoration(
                          _currentTextLabels, snapshot.data)
                          : (widget._scannerType == FACE_SCANNER)
                          ? FaceDetectDecoration(
                          _currentFaceLabels, snapshot.data)
                          : (widget._scannerType == BARCODE_SCANNER)
                          ? BarcodeDetectDecoration(
                          _currentBarcodeLabels,
                          snapshot.data)
                          : LabelDetectDecoration(
                          _currentLabelLabels, snapshot.data),
                      child:
                      Image.file(widget._file, fit: BoxFit.fitWidth));
                } else {
                  return CircularProgressIndicator();
                }
              },
            ),
          )),
    );
  }

  Widget buildBarcodeList<T>(List<T> barcodes) {
    if (barcodes.length == 0) {
      return Expanded(
        flex: 1,
        child: Center(
          child: Text('Nothing detected',
              style: Theme.of(context).textTheme.subhead),
        ),
      );
    }
    return Expanded(
      flex: 1,
      child: Container(
        child: ListView.builder(
            padding: const EdgeInsets.all(1.0),
            itemCount: barcodes.length,
            itemBuilder: (context, i) {
              var text;

              final barcode = barcodes[i];
              switch (widget._scannerType) {
                case BARCODE_SCANNER:
                  VisionBarcode res = barcode as VisionBarcode;
                  text = "Raw Value: ${res.rawValue}";
                  break;
                case FACE_SCANNER:
                  VisionFace res = barcode as VisionFace;
                  text =
                  "Raw Value: ${res.smilingProbability},${res.trackingID}";
                  break;
                case LABEL_SCANNER:
                  VisionLabel res = barcode as VisionLabel;
                  text = "Raw Value: ${res.label}";
                  break;
                case CUSTOM_MODEL:
                  _CustomLabelScore res = barcode as _CustomLabelScore;
                  text = "Raw Value: ${res.label}, Score: ${res.score}";
                  break;
              }

              return _buildTextRow(text);
            }),
      ),
    );
  }

  Widget buildTextList(List<VisionText> texts) {
    if (texts.length == 0) {
      return Expanded(
          flex: 1,
          child: Center(
            child: Text('No text detected',
                style: Theme.of(context).textTheme.subhead),
          ));
    }
    return Expanded(
      flex: 1,
      child: Container(
        child: ListView.builder(
            padding: const EdgeInsets.all(1.0),
            itemCount: texts.length,
            itemBuilder: (context, i) {
              return _buildTextRow(texts[i].text);
            }),
      ),
    );
  }

  Widget _buildTextRow(text) {
    return ListTile(
      title: Text(
        "$text",
      ),
      dense: true,
    );
  }

  Future<Size> _getImageSize(Image image) {
    Completer<Size> completer = Completer<Size>();
    image.image.resolve(ImageConfiguration()).addListener(
            (ImageInfo info, bool _) => completer.complete(
            Size(info.image.width.toDouble(), info.image.height.toDouble())));
    return completer.future;
  }
}

/*
  This code uses the example from azihsoyn/flutter_mlkit
  https://github.com/azihsoyn/flutter_mlkit/blob/master/example/lib/main.dart
*/

class BarcodeDetectDecoration extends Decoration {
  final Size _originalImageSize;
  final List<VisionBarcode> _barcodes;

  BarcodeDetectDecoration(List<VisionBarcode> barcodes, Size originalImageSize)
      : _barcodes = barcodes,
        _originalImageSize = originalImageSize;

  @override
  BoxPainter createBoxPainter([VoidCallback onChanged]) {
    return _BarcodeDetectPainter(_barcodes, _originalImageSize);
  }
}

class _BarcodeDetectPainter extends BoxPainter {
  final List<VisionBarcode> _barcodes;
  final Size _originalImageSize;
  _BarcodeDetectPainter(barcodes, originalImageSize)
      : _barcodes = barcodes,
        _originalImageSize = originalImageSize;

  @override
  void paint(Canvas canvas, Offset offset, ImageConfiguration configuration) {
    final paint = Paint()
      ..strokeWidth = 2.0
      ..color = Colors.red
      ..style = PaintingStyle.stroke;

    final _heightRatio = _originalImageSize.height / configuration.size.height;
    final _widthRatio = _originalImageSize.width / configuration.size.width;
    for (var barcode in _barcodes) {
      final _rect = Rect.fromLTRB(
          offset.dx + barcode.rect.left / _widthRatio,
          offset.dy + barcode.rect.top / _heightRatio,
          offset.dx + barcode.rect.right / _widthRatio,
          offset.dy + barcode.rect.bottom / _heightRatio);
      canvas.drawRect(_rect, paint);
    }
    canvas.restore();
  }
}

class TextDetectDecoration extends Decoration {
  final Size _originalImageSize;
  final List<VisionText> _texts;
  TextDetectDecoration(List<VisionText> texts, Size originalImageSize)
      : _texts = texts,
        _originalImageSize = originalImageSize;

  @override
  BoxPainter createBoxPainter([VoidCallback onChanged]) {
    return _TextDetectPainter(_texts, _originalImageSize);
  }
}

class _TextDetectPainter extends BoxPainter {
  final List<VisionText> _texts;
  final Size _originalImageSize;
  _TextDetectPainter(texts, originalImageSize)
      : _texts = texts,
        _originalImageSize = originalImageSize;

  @override
  void paint(Canvas canvas, Offset offset, ImageConfiguration configuration) {
    final paint = Paint()
      ..strokeWidth = 2.0
      ..color = Colors.red
      ..style = PaintingStyle.stroke;

    final _heightRatio = _originalImageSize.height / configuration.size.height;
    final _widthRatio = _originalImageSize.width / configuration.size.width;
    for (var text in _texts) {
      final _rect = Rect.fromLTRB(
          offset.dx + text.rect.left / _widthRatio,
          offset.dy + text.rect.top / _heightRatio,
          offset.dx + text.rect.right / _widthRatio,
          offset.dy + text.rect.bottom / _heightRatio);
      canvas.drawRect(_rect, paint);
    }
    canvas.restore();
  }
}

class FaceDetectDecoration extends Decoration {
  final Size _originalImageSize;
  final List<VisionFace> _faces;
  FaceDetectDecoration(List<VisionFace> faces, Size originalImageSize)
      : _faces = faces,
        _originalImageSize = originalImageSize;

  @override
  BoxPainter createBoxPainter([VoidCallback onChanged]) {
    return _FaceDetectPainter(_faces, _originalImageSize);
  }
}

class _FaceDetectPainter extends BoxPainter {
  final List<VisionFace> _faces;
  final Size _originalImageSize;
  _FaceDetectPainter(faces, originalImageSize)
      : _faces = faces,
        _originalImageSize = originalImageSize;

  @override
  void paint(Canvas canvas, Offset offset, ImageConfiguration configuration) {
    final paint = Paint()
      ..strokeWidth = 2.0
      ..color = Colors.red
      ..style = PaintingStyle.stroke;

    final _heightRatio = _originalImageSize.height / configuration.size.height;
    final _widthRatio = _originalImageSize.width / configuration.size.width;
    for (var face in _faces) {
      final _rect = Rect.fromLTRB(
          offset.dx + face.rect.left / _widthRatio,
          offset.dy + face.rect.top / _heightRatio,
          offset.dx + face.rect.right / _widthRatio,
          offset.dy + face.rect.bottom / _heightRatio);
      canvas.drawRect(_rect, paint);
    }
    canvas.restore();
  }
}

class LabelDetectDecoration extends Decoration {
  final Size _originalImageSize;
  final List<VisionLabel> _labels;
  LabelDetectDecoration(List<VisionLabel> labels, Size originalImageSize)
      : _labels = labels,
        _originalImageSize = originalImageSize;

  @override
  BoxPainter createBoxPainter([VoidCallback onChanged]) {
    return _LabelDetectPainter(_labels, _originalImageSize);
  }
}

class _LabelDetectPainter extends BoxPainter {
  final List<VisionLabel> _labels;
  final Size _originalImageSize;
  _LabelDetectPainter(labels, originalImageSize)
      : _labels = labels,
        _originalImageSize = originalImageSize;

  @override
  void paint(Canvas canvas, Offset offset, ImageConfiguration configuration) {
    final paint = Paint()
      ..strokeWidth = 2.0
      ..color = Colors.red
      ..style = PaintingStyle.stroke;

    final _heightRatio = _originalImageSize.height / configuration.size.height;
    final _widthRatio = _originalImageSize.width / configuration.size.width;
    for (var label in _labels) {
      final _rect = Rect.fromLTRB(
          offset.dx + label.rect.left / _widthRatio,
          offset.dy + label.rect.top / _heightRatio,
          offset.dx + label.rect.right / _widthRatio,
          offset.dy + label.rect.bottom / _heightRatio);
      canvas.drawRect(_rect, paint);
    }
    canvas.restore();
  }
}

class _CustomLabelScore {
  String label;
  int score;
  _CustomLabelScore(this.label, this.score);
}

これをビルドすると、冒頭の動画のようなアプリケーションが動作しているはずです!

まとめ

Firebase MLKit経由でTensorflow Liteモデルをモバイル端末上で動作させることができました。
Firebase MLKitを使用すると、モデルのバージョン管理やリリースなどが簡単にできるようになる上、それがクロスプラットフォームで実現できるのでとても良いですね!
ただ、Tensorflow Lite自体の制約やFirebase MLKitがまだβであること、Flutter公式リポジトリがカスタムモデルに対応していないことを考えると、まだまだ一般利用には程遠い現状だと思います。
今後も引き続きウォッチしていこうと思っているので、なにか動きがあったらまた記事にしようと思います!

6
6
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?