0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

オーバーサンプリングの積分

Posted at

オーバーサンプリングだけのとき

量子化ノイズ電力

$$
P_{qn}=\frac{\Delta^2}{12}
$$

均一スペクトル密度

$$
S_e(f)=\frac{\Delta^2}{12}\cdot\frac{1}{f_s}
$$

信号帯域 $[-f_b,f_b]$ に理想LPF $H(f)$ を通すと

$$
P_e=\int_{-f_b}^{f_b}S_e(f)|H(f)|^2,df
=\frac{\Delta^2}{12}\frac{1}{f_s}\int_{-f_b}^{f_b}1,df
=\frac{\Delta^2}{12}\frac{2f_b}{f_s}
$$

オーバーサンプリング比 $M=\frac{f_s}{2f_b}$ より

$$
P_e=\frac{\Delta^2}{12M}
$$


ΔΣ(離散時間)でノイズシェーピングする場合の一般形

離散角周波数 $\omega=2\pi f/f_s$,帯域端 $\omega_b=2\pi f_b/f_s=\pi/M$。
出力の帯域内ノイズ電力

$$
P_n=\frac{\Delta^2}{12}\cdot\frac{1}{2\pi}\int_{-\omega_b}^{\omega_b}!!\left|NTF!\left(e^{j\omega}\right)\right|^2 d\omega
$$

一次の基本NTFは $NTF(z)=1-z^{-1}$ なので

$$
\left|NTF(e^{j\omega})\right|^2=\left|1-e^{-j\omega}\right|^2
=2-2\cos\omega=4\sin^2!\frac{\omega}{2}
$$

一次(厳密積分→近似)

$$
\begin{aligned}
P_n&=\frac{\Delta^2}{12}\frac{1}{2\pi}\int_{-\omega_b}^{\omega_b}4\sin^2!\frac{\omega}{2},d\omega\
&=\frac{\Delta^2}{12}\frac{1}{2\pi}\cdot 4\bigl(\omega_b-\sin\omega_b\bigr)
\end{aligned}
$$

OSRが大($\omega_b\ll1$)では $\sin\omega_b=\omega_b-\omega_b^3/6+O(\omega_b^5)$ だから

$$
P_n\approx\frac{\Delta^2}{12}\frac{1}{2\pi}\cdot 4\cdot\frac{\omega_b^3}{6}
=\frac{\Delta^2}{12}\cdot\frac{\omega_b^3}{3\pi}
$$

$\omega_b=\pi/M$ を代入すると

$$
P_n\approx\frac{\Delta^2}{12}\cdot\frac{\pi^2}{3}\cdot M^{-3}
$$

二次(厳密積分→近似)

二次NTFは $(1-z^{-1})^2$,よって

$$
\left|NTF(e^{j\omega})\right|^2=16\sin^4!\frac{\omega}{2}
$$

積分は(偶関数を利用)

$$
\int_{-\omega_b}^{\omega_b}16\sin^4!\frac{\omega}{2},d\omega
=12\omega_b-16\sin\omega_b+2\sin2\omega_b
$$

小$\omega_b$ 展開($\sin\omega_b=\omega_b-\omega_b^3/6+\omega_b^5/120$, $\sin2\omega_b=2\omega_b-\tfrac{4}{3}\omega_b^3+\tfrac{4}{15}\omega_b^5$)から

$$
12\omega_b-16\sin\omega_b+2\sin2\omega_b
=\frac{2}{5}\omega_b^5+O(\omega_b^7)
$$

したがって

$$
P_n\approx\frac{\Delta^2}{12}\frac{1}{2\pi}\cdot\frac{2}{5}\omega_b^5
=\frac{\Delta^2}{12}\cdot\frac{\omega_b^5}{5\pi}
=\frac{\Delta^2}{12}\cdot\frac{\pi^4}{5}\cdot M^{-5}
$$

一般次数 $L$

$NTF(z)=(1-z^{-1})^{L}\Rightarrow |NTF(e^{j\omega})|^2=(2\sin(\omega/2))^{2L}$。
$\omega\ll1$ で $\sin(\omega/2)\approx\omega/2$ を用いると被積分関数は $\omega^{2L}$ に近似でき

$$
\int_{-\omega_b}^{\omega_b}\omega^{2L},d\omega=\frac{2,\omega_b^{2L+1}}{2L+1}
$$

よって

$$
P_n\approx\frac{\Delta^2}{12}\cdot\frac{1}{2\pi}\cdot\frac{2,\omega_b^{2L+1}}{2L+1}
=\frac{\Delta^2}{12}\cdot\frac{\pi^{2L}}{2L+1}\cdot M^{-(2L+1)}
$$

($L=1,2$ を代入すると上の結果と一致)


SNRの式(フルスケール正弦入力の例)

信号電力(量子化ステップ $\Delta$,有効ビット $N$)

$$
P_s=\frac{(2^N-1)^2\Delta^2}{8}
$$

よって

$$
SNR=\frac{P_s}{P_n}
\approx
\begin{cases}
\displaystyle \frac{9}{2\pi^2}(2^N-1)^2,M^{3} & (L=1)\[6pt]
\displaystyle \frac{45}{2\pi^4}(2^N-1)^2,M^{5} & (L=2)\[6pt]
\displaystyle \frac{(2L+1)}{2,\pi^{2L}}(2^N-1)^2,M^{(2L+1)} & (\text{一般 }L)
\end{cases}
$$


0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?