0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

MOSFET Fundamental Equations

Posted at

MOSFET Fundamental Equations

1. Large-Signal Characteristics

Regions of Operation

  • Cutoff Region
    Condition: $V_{GS} < V_{th}$
    $I_{DS} \approx 0$

  • Linear (Triode) Region
    Condition: $V_{GS} > V_{th}, ; V_{DS} < (V_{GS} - V_{th})$

$$
I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS}-V_{th})V_{DS} - \frac{1}{2} V_{DS}^2 \right]
$$

  • Saturation Region
    Condition: $V_{GS} > V_{th}, ; V_{DS} \ge (V_{GS}-V_{th})$

$$
I_{DS} = \tfrac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS}-V_{th})^2 (1+\lambda V_{DS})
$$

where $\lambda$ models channel-length modulation.

Definitions

$$
K = \mu_n C_{ox} \frac{W}{L}
$$

Overdrive voltage:

$$
V_{OV} = V_{GS} - V_{th}
$$


2. Small-Signal Parameters

  • Transconductance

$$
g_m = \frac{\partial I_{DS}}{\partial V_{GS}} = K(V_{GS}-V_{th})(1+\lambda V_{DS})
= \sqrt{2K I_{DS} (1+\lambda V_{DS})}
$$

  • Output resistance

$$
r_o = \left(\frac{\partial I_{DS}}{\partial V_{DS}}\right)^{-1} = \frac{1}{\lambda I_{DS}}
$$

  • Small-signal current relation

$$
i_{ds} = g_m v_{gs} + \frac{v_{ds}}{r_o}
$$

  • Intrinsic gain

$$
A_0 = g_m r_o
$$

  • Input and output impedance

$$
Z_{in} \approx \infty, \quad Z_{out} \approx r_o
$$


3. Current Mirror

Principle

Reference transistor M1 sets $V_{GS}$ through input current $I_{in}$:

$$
V_{GS} = V_{th} + \sqrt{\frac{2 I_{in}}{K_1}}
$$

Output transistor M2 shares the same $V_{GS}$, so:

$$
I_{out} = \frac{(W/L)_2}{(W/L)1} \cdot I{in}
$$

Small-Signal Model

  • Current transfer ratio (mirror gain):

$$
G_{mirror} = \frac{g_{m2}}{g_{m1}}
$$

  • Input impedance:

$$
Z_{in} \approx \frac{1}{g_{m1}}
$$

  • Output impedance:

$$
Z_{out} \approx r_{o2}
$$


0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?