2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

KerasAdvent Calendar 2017

Day 18

kerasのimagenetモデルを使ってみる。

Posted at

#概要
kerasのimagenetモデルを使ってみる。

#写真
p1m.jpg

#Xceptionの場合

Predicted: [('n04179913', 'sewing_machine', 1.0), ('n15075141', 'toilet_tissue', 0.0), ('n02317335', 'starfish', 0.0)]
Time elapsed: 12

#サンプルコード

from tensorflow.contrib.keras.python.keras.applications.xception import Xception
from tensorflow.contrib.keras.python.keras.preprocessing import image
from tensorflow.contrib.keras.python.keras.applications.imagenet_utils import preprocess_input, decode_predictions
import numpy as np
import time

img_path = 'p1m.jpg'
img = image.load_img(img_path, target_size = (299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis = 0)
x = preprocess_input(x)
begin = time.clock()
model = Xception(weights = 'imagenet')
preds = model.predict(x)
print ('Predicted:', decode_predictions(preds, top = 3)[0])
print ('Time elapsed: %.0f' % (time.clock() - begin))


#ResNet50の場合

Predicted: [('n02098286', 'West_Highland_white_terrier', 1.0), ('n15075141', 'toilet_tissue', 0.0), ('n02319095', 'sea_urchin', 0.0)]
Time elapsed: 14

#サンプルコード

from tensorflow.contrib.keras.python.keras.applications.resnet50 import ResNet50
from tensorflow.contrib.keras.python.keras.preprocessing import image
from tensorflow.contrib.keras.python.keras.applications.imagenet_utils import preprocess_input, decode_predictions
import numpy as np
import time

img_path = 'p1m.jpg'
img = image.load_img(img_path, target_size = (224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis = 0)
x = preprocess_input(x)
begin = time.clock()
model = ResNet50(weights = 'imagenet')
preds = model.predict(x)
print ('Predicted:', decode_predictions(preds, top = 3)[0])
print ('Time elapsed: %.0f' % (time.clock() - begin))


#InceptionV3の場合

Predicted: [('n01924916', 'flatworm', 0.8119747), ('n04328186', 'stopwatch', 0.16520669), ('n06359193', 'web_site', 0.0094488058)]
Time elapsed: 26

#サンプルコード

from tensorflow.contrib.keras.python.keras.applications.inception_v3 import InceptionV3
from tensorflow.contrib.keras.python.keras.preprocessing import image
from tensorflow.contrib.keras.python.keras.applications.imagenet_utils import preprocess_input, decode_predictions
import numpy as np
import time

img_path = 'p1m.jpg' #0.png 1.png
img = image.load_img(img_path, target_size = (299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis = 0)
x = preprocess_input(x)
begin = time.clock()
model = InceptionV3(weights = 'imagenet')
preds = model.predict(x)
print ('Predicted:', decode_predictions(preds, top = 3)[0])
print ('Time elapsed: %.0f' % (time.clock() - begin))

#VGG16の場合

Predicted: [('n03785016', 'moped', 0.51865774), ('n03791053', 'motor_scooter', 0.36139873), ('n03445924', 'golfcart', 0.049456675)]
Time elapsed: 98

#サンプルコード

from tensorflow.contrib.keras.python.keras.applications.vgg16 import VGG16
from tensorflow.contrib.keras.python.keras.preprocessing import image
from tensorflow.contrib.keras.python.keras.applications.imagenet_utils import preprocess_input, decode_predictions
import numpy as np
import time

img_path = 'p1m.jpg' #0.png 1.png
img = image.load_img(img_path, target_size = (224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis = 0)
x = preprocess_input(x)
begin = time.clock()
model = VGG16(weights = 'imagenet')
preds = model.predict(x)
print ('Predicted:', decode_predictions(preds, top = 3)[0])
print ('Time elapsed: %.0f' % (time.clock() - begin))

以上。

2
2
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?