2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

chainerの作法 その5

Posted at

概要

chainerの作法、調べてみた。
autoencoder。

インポート

import numpy as np
from chainer import datasets, iterators
from chainer import optimizers
from chainer import Chain
from chainer import training
from chainer.training import extensions
import chainer.functions as F
import chainer.links as L
import chainer
import matplotlib.pyplot as plt

訓練データセットのイテレーション

datasetsのget_mnist使う。

	train, test = datasets.get_mnist()
	train = train[0 : 1000]
	train = [i[0] for i in train]

ミニバッチに対する前処理

datasetsのTupleDataset使う。

	train = datasets.TupleDataset(train, train)
	train_iter = iterators.SerialIterator(train, 100)
	test = test[0 : 25]

ニューラルネットワークのForward/backward計算

Classifier使うけど、lossは、mean_squaredを使う。
活性化は、relu。

class Autoencoder(Chain):
	def __init__(self):
		super(Autoencoder, self).__init__(encoder = L.Linear(784, 80), decoder = L.Linear(80, 784))
	def __call__(self, x, hidden = False):
		h = F.relu(self.encoder(x))
		if hidden:
			return h
		else:
			return F.relu(self.decoder(h))
	model = L.Classifier(Autoencoder(), lossfun = F.mean_squared_error)
	model.compute_accuracy = False

パラメータの更新

optimaizerは、Adam。

	optimizer = optimizers.Adam()
	optimizer.setup(model)
	updater = training.StandardUpdater(train_iter, optimizer, device = -1)
	trainer = training.Trainer(updater, (80, 'epoch'), out = "result")

	trainer.run()

評価データセットにおける現在のパラメータの評価


中間結果をログに残す

	trainer.extend(extensions.LogReport())
	trainer.extend(extensions.PrintReport(['epoch', 'main/loss']))

結果

auto1.png

以上。

2
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?