3
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

BigQueryのみでtf-idf(英語/日本語)

Last updated at Posted at 2020-07-02

#1.最初に
文章から特徴的なワードを抽出するためのtf-idf
scikit-learngensimを使えば結構簡単に取得できる。

from sklearn.feature_extraction.text import TfidfVectorizer
docs = ['','','',・・・] #日本語だと分かち書き後のテキスト
vectorizer = TfidfVectorizer() # tf-idfの計算
X = vectorizer.fit_transform(docs)
#・・・以下略
import gensim.downloader as api
from gensim.models import TfidfModel
from gensim.corpora import Dictionary
dataset = api.load("text8")
dct = Dictionary(dataset)  # fit dictionary
corpus = [dct.doc2bow(line) for line in dataset]  # convert corpus to BoW format
model = TfidfModel(corpus)  # fit model
vector = model[corpus[0]]  # apply model to the first corpus document

が、大量の文章からtfidfをサクッと取り出したい。
tfidfは計算できるから、データがBigQueryにあれば、BigQueryで実現したいと試したもの。
日本語は分かち書きが先に入るけど、解決策もあるので日本語やってみたらできた。

#2.実現方法
このQAの回答と、以前作ったBigQueryでngram作成する方法を組み合わせてできた。Ngramも使えるので、連続する2単語のtfidfも一緒に取得できる。

3.少し解説
words_by_app⇒ngramを作成して1レコード1列に格納する。(前作ったやつ)
WHERE句を変えれば色々できる。
words_tf⇒tf算出(count/文章長)+不要語を削除する指定:WHERE w MOT IN の部分
doc_idf⇒idf算出:LOG(docs_n/docs_with_word)

英語で実行可能なSQL
#standardSQL
WITH words_by_app AS (
    SELECT application_number as id,
        STRING_AGG(DISTINCT titles.text) as title,
        ML.NGRAMS(SPLIT(STRING_AGG(titles.text),' '),[1,2]) as words,
        COUNT(*) OVER() docs_n
    FROM `patents-public-data.patents.publications`,UNNEST(title_localized) as titles
    WHERE filing_date > 20181201 AND SUBSTR(publication_number,0,2) = 'US'
    GROUP BY family_id,application_number
), 

words_tf AS (
  SELECT id, 
         words,
         ARRAY(
             SELECT AS STRUCT w word, 
                              COUNT(*)/ARRAY_LENGTH(words) tf
                              FROM UNNEST(words) a 
             JOIN (SELECT DISTINCT w FROM UNNEST(words) w) b 
             ON a=b.w 
             WHERE w NOT IN ('a','the', 'and', 'for', 'this', 'that', 'can', 'but') 
             GROUP BY word ORDER BY word
          ) tfs,
          ARRAY_LENGTH((words)) words_in_doc, 
          docs_n, 
          title
  FROM words_by_app
), 

docs_idf AS (
  SELECT *, LOG(docs_n/docs_with_word) idf
  FROM (
      SELECT id, 
           word,
           tf.tf,
           COUNTIF(word IN UNNEST(words)) OVER(PARTITION BY word) docs_with_word, 
           docs_n, 
           title
      FROM words_tf, UNNEST(tfs) tf
  )
)    


#SELECT *, tf*idf tfidf
#FROM docs_idf
#WHERE docs_with_word > 1
#ORDER BY tfidf DESC

SELECT id, 
       SUBSTR(ANY_VALUE(title),0,40) title,
       ARRAY_AGG(STRUCT(word, tf,idf,tf*idf AS tf_idf, docs_with_word) ORDER BY tf*idf DESC) tfidfs
FROM docs_idf
WHERE docs_with_word > 1
GROUP BY 1

image.png

#4.追加:日本語での処理
上記のBigQueryのML.NGRAMSは、英文(スペースで区切れる)対象なので、日本語では分かち書きをかませないといけない。
UDFでJavaScriptのライブラリ(TinySegmenter)を疑似的に使わせてもらうことに。

英語バージョンとの違いとしては、1回pat_tableに、処理対象の文章と書誌事項を書きだしてから、そのテーブルを使ってwords_by_appで処理を行うところ。

SELECT STRING_AGG(h.token,' ')
                FROM UNNEST(segmenter(text)) as h

のsegmenter(text)の部分に直接

STRING_AGG(DISTINCT texts.text)

を入れようとしたらUNNESTの中にSTRING_AGGは入れられない、と怒られたので。
あと、こちらは要約でも行けるかな、と思ったらいけた。

日本語用のSQL
#StandardSQL

CREATE TEMPORARY FUNCTION segmenter(x STRING)
RETURNS ARRAY<STRUCT<index INT64, token STRING>>
LANGUAGE js AS """
/* 以下TinySegmenterのコードそのまま */

// TinySegmenter 0.1 -- Super compact Japanese tokenizer in Javascript
// (c) 2008 Taku Kudo <taku@chasen.org>
// TinySegmenter is freely distributable under the terms of a new BSD licence.
// For details, see http://chasen.org/~taku/software/TinySegmenter/LICENCE.txt

function TinySegmenter() {
  var patterns = {
    "[一二三四五六七八九十百千万億兆]":"M",
    "[-龠々〆ヵヶ]":"H",
    "[-]":"I",
    "[-ヴーア-ン゙ー]":"K",
    "[a-zA-Z-zA-]":"A",
    "[0-9-]":"N"
  }
  this.chartype_ = [];
  for (var i in patterns) {
    var regexp = new RegExp;
    regexp.compile(i)
    this.chartype_.push([regexp, patterns[i]]);
  }

  this.BIAS__ = -332
  this.BC1__ = {"HH":6,"II":2461,"KH":406,"OH":-1378};
  this.BC2__ = {"AA":-3267,"AI":2744,"AN":-878,"HH":-4070,"HM":-1711,"HN":4012,"HO":3761,"IA":1327,"IH":-1184,"II":-1332,"IK":1721,"IO":5492,"KI":3831,"KK":-8741,"MH":-3132,"MK":3334,"OO":-2920};
  this.BC3__ = {"HH":996,"HI":626,"HK":-721,"HN":-1307,"HO":-836,"IH":-301,"KK":2762,"MK":1079,"MM":4034,"OA":-1652,"OH":266};
  this.BP1__ = {"BB":295,"OB":304,"OO":-125,"UB":352};
  this.BP2__ = {"BO":60,"OO":-1762};
  this.BQ1__ = {"BHH":1150,"BHM":1521,"BII":-1158,"BIM":886,"BMH":1208,"BNH":449,"BOH":-91,"BOO":-2597,"OHI":451,"OIH":-296,"OKA":1851,"OKH":-1020,"OKK":904,"OOO":2965};
  this.BQ2__ = {"BHH":118,"BHI":-1159,"BHM":466,"BIH":-919,"BKK":-1720,"BKO":864,"OHH":-1139,"OHM":-181,"OIH":153,"UHI":-1146};
  this.BQ3__ = {"BHH":-792,"BHI":2664,"BII":-299,"BKI":419,"BMH":937,"BMM":8335,"BNN":998,"BOH":775,"OHH":2174,"OHM":439,"OII":280,"OKH":1798,"OKI":-793,"OKO":-2242,"OMH":-2402,"OOO":11699};
  this.BQ4__ = {"BHH":-3895,"BIH":3761,"BII":-4654,"BIK":1348,"BKK":-1806,"BMI":-3385,"BOO":-12396,"OAH":926,"OHH":266,"OHK":-2036,"ONN":-973};
  this.BW1__ = {",":660,",":727,"B1":1404,"B1":542,"、と":660,"、同":727,"」と":1682,"あっ":1505,"いう":1743,"いっ":-2055,"いる":672,"うし":-4817,"うん":665,"から":3472,"がら":600,"こう":-790,"こと":2083,"こん":-1262,"さら":-4143,"さん":4573,"した":2641,"して":1104,"すで":-3399,"そこ":1977,"それ":-871,"たち":1122,"ため":601,"った":3463,"つい":-802,"てい":805,"てき":1249,"でき":1127,"です":3445,"では":844,"とい":-4915,"とみ":1922,"どこ":3887,"ない":5713,"なっ":3015,"など":7379,"なん":-1113,"にし":2468,"には":1498,"にも":1671,"に対":-912,"の一":-501,"の中":741,"ませ":2448,"まで":1711,"まま":2600,"まる":-2155,"やむ":-1947,"よっ":-2565,"れた":2369,"れで":-913,"をし":1860,"を見":731,"亡く":-1886,"京都":2558,"取り":-2784,"大き":-2604,"大阪":1497,"平方":-2314,"引き":-1336,"日本":-195,"本当":-2423,"毎日":-2113,"目指":-724,"B1あ":1404,"B1同":542,"」と":1682};
  this.BW2__ = {"..":-11822,"11":-669,"――":-5730,"−−":-13175,"いう":-1609,"うか":2490,"かし":-1350,"かも":-602,"から":-7194,"かれ":4612,"がい":853,"がら":-3198,"きた":1941,"くな":-1597,"こと":-8392,"この":-4193,"させ":4533,"され":13168,"さん":-3977,"しい":-1819,"しか":-545,"した":5078,"して":972,"しな":939,"その":-3744,"たい":-1253,"たた":-662,"ただ":-3857,"たち":-786,"たと":1224,"たは":-939,"った":4589,"って":1647,"っと":-2094,"てい":6144,"てき":3640,"てく":2551,"ては":-3110,"ても":-3065,"でい":2666,"でき":-1528,"でし":-3828,"です":-4761,"でも":-4203,"とい":1890,"とこ":-1746,"とと":-2279,"との":720,"とみ":5168,"とも":-3941,"ない":-2488,"なが":-1313,"など":-6509,"なの":2614,"なん":3099,"にお":-1615,"にし":2748,"にな":2454,"によ":-7236,"に対":-14943,"に従":-4688,"に関":-11388,"のか":2093,"ので":-7059,"のに":-6041,"のの":-6125,"はい":1073,"はが":-1033,"はず":-2532,"ばれ":1813,"まし":-1316,"まで":-6621,"まれ":5409,"めて":-3153,"もい":2230,"もの":-10713,"らか":-944,"らし":-1611,"らに":-1897,"りし":651,"りま":1620,"れた":4270,"れて":849,"れば":4114,"ろう":6067,"われ":7901,"を通":-11877,"んだ":728,"んな":-4115,"一人":602,"一方":-1375,"一日":970,"一部":-1051,"上が":-4479,"会社":-1116,"出て":2163,"分の":-7758,"同党":970,"同日":-913,"大阪":-2471,"委員":-1250,"少な":-1050,"年度":-8669,"年間":-1626,"府県":-2363,"手権":-1982,"新聞":-4066,"日新":-722,"日本":-7068,"日米":3372,"曜日":-601,"朝鮮":-2355,"本人":-2697,"東京":-1543,"然と":-1384,"社会":-1276,"立て":-990,"第に":-1612,"米国":-4268,"11":-669};
  this.BW3__ = {"あた":-2194,"あり":719,"ある":3846,".":-1185,"い。":-1185,"いい":5308,"いえ":2079,"いく":3029,"いた":2056,"いっ":1883,"いる":5600,"いわ":1527,"うち":1117,"うと":4798,"えと":1454,".":2857,"か。":2857,"かけ":-743,"かっ":-4098,"かに":-669,"から":6520,"かり":-2670,",":1816,"が、":1816,"がき":-4855,"がけ":-1127,"がっ":-913,"がら":-4977,"がり":-2064,"きた":1645,"けど":1374,"こと":7397,"この":1542,"ころ":-2757,"さい":-714,"さを":976,",":1557,"し、":1557,"しい":-3714,"した":3562,"して":1449,"しな":2608,"しま":1200,".":-1310,"す。":-1310,"する":6521,",":3426,"ず、":3426,"ずに":841,"そう":428,".":8875,"た。":8875,"たい":-594,"たの":812,"たり":-1183,"たる":-853,".":4098,"だ。":4098,"だっ":1004,"った":-4748,"って":300,"てい":6240,"てお":855,"ても":302,"です":1437,"でに":-1482,"では":2295,"とう":-1387,"とし":2266,"との":541,"とも":-3543,"どう":4664,"ない":1796,"なく":-903,"など":2135,",":-1021,"に、":-1021,"にし":1771,"にな":1906,"には":2644,",":-724,"の、":-724,"の子":-1000,",":1337,"は、":1337,"べき":2181,"まし":1113,"ます":6943,"まっ":-1549,"まで":6154,"まれ":-793,"らし":1479,"られ":6820,"るる":3818,",":854,"れ、":854,"れた":1850,"れて":1375,"れば":-3246,"れる":1091,"われ":-605,"んだ":606,"んで":798,"カ月":990,"会議":860,"入り":1232,"大会":2217,"始め":1681,"":965,"新聞":-5055,",":974,"日、":974,"社会":2024,"カ月":990};
  this.TC1__ = {"AAA":1093,"HHH":1029,"HHM":580,"HII":998,"HOH":-390,"HOM":-331,"IHI":1169,"IOH":-142,"IOI":-1015,"IOM":467,"MMH":187,"OOI":-1832};
  this.TC2__ = {"HHO":2088,"HII":-1023,"HMM":-1154,"IHI":-1965,"KKH":703,"OII":-2649};
  this.TC3__ = {"AAA":-294,"HHH":346,"HHI":-341,"HII":-1088,"HIK":731,"HOH":-1486,"IHH":128,"IHI":-3041,"IHO":-1935,"IIH":-825,"IIM":-1035,"IOI":-542,"KHH":-1216,"KKA":491,"KKH":-1217,"KOK":-1009,"MHH":-2694,"MHM":-457,"MHO":123,"MMH":-471,"NNH":-1689,"NNO":662,"OHO":-3393};
  this.TC4__ = {"HHH":-203,"HHI":1344,"HHK":365,"HHM":-122,"HHN":182,"HHO":669,"HIH":804,"HII":679,"HOH":446,"IHH":695,"IHO":-2324,"IIH":321,"III":1497,"IIO":656,"IOO":54,"KAK":4845,"KKA":3386,"KKK":3065,"MHH":-405,"MHI":201,"MMH":-241,"MMM":661,"MOM":841};
  this.TQ1__ = {"BHHH":-227,"BHHI":316,"BHIH":-132,"BIHH":60,"BIII":1595,"BNHH":-744,"BOHH":225,"BOOO":-908,"OAKK":482,"OHHH":281,"OHIH":249,"OIHI":200,"OIIH":-68};
  this.TQ2__ = {"BIHH":-1401,"BIII":-1033,"BKAK":-543,"BOOO":-5591};
  this.TQ3__ = {"BHHH":478,"BHHM":-1073,"BHIH":222,"BHII":-504,"BIIH":-116,"BIII":-105,"BMHI":-863,"BMHM":-464,"BOMH":620,"OHHH":346,"OHHI":1729,"OHII":997,"OHMH":481,"OIHH":623,"OIIH":1344,"OKAK":2792,"OKHH":587,"OKKA":679,"OOHH":110,"OOII":-685};
  this.TQ4__ = {"BHHH":-721,"BHHM":-3604,"BHII":-966,"BIIH":-607,"BIII":-2181,"OAAA":-2763,"OAKK":180,"OHHH":-294,"OHHI":2446,"OHHO":480,"OHIH":-1573,"OIHH":1935,"OIHI":-493,"OIIH":626,"OIII":-4007,"OKAK":-8156};
  this.TW1__ = {"につい":-4681,"東京都":2026};
  this.TW2__ = {"ある程":-2049,"いった":-1256,"ころが":-2434,"しょう":3873,"その後":-4430,"だって":-1049,"ていた":1833,"として":-4657,"ともに":-4517,"もので":1882,"一気に":-792,"初めて":-1512,"同時に":-8097,"大きな":-1255,"対して":-2721,"社会党":-3216};
  this.TW3__ = {"いただ":-1734,"してい":1314,"として":-4314,"につい":-5483,"にとっ":-5989,"に当た":-6247,"ので,":-727,"ので、":-727,"のもの":-600,"れから":-3752,"十二月":-2287};
  this.TW4__ = {"いう.":8576,"いう。":8576,"からな":-2348,"してい":2958,"たが,":1516,"たが、":1516,"ている":1538,"という":1349,"ました":5543,"ません":1097,"ようと":-4258,"よると":5865};
  this.UC1__ = {"A":484,"K":93,"M":645,"O":-505};
  this.UC2__ = {"A":819,"H":1059,"I":409,"M":3987,"N":5775,"O":646};
  this.UC3__ = {"A":-1370,"I":2311};
  this.UC4__ = {"A":-2643,"H":1809,"I":-1032,"K":-3450,"M":3565,"N":3876,"O":6646};
  this.UC5__ = {"H":313,"I":-1238,"K":-799,"M":539,"O":-831};
  this.UC6__ = {"H":-506,"I":-253,"K":87,"M":247,"O":-387};
  this.UP1__ = {"O":-214};
  this.UP2__ = {"B":69,"O":935};
  this.UP3__ = {"B":189};
  this.UQ1__ = {"BH":21,"BI":-12,"BK":-99,"BN":142,"BO":-56,"OH":-95,"OI":477,"OK":410,"OO":-2422};
  this.UQ2__ = {"BH":216,"BI":113,"OK":1759};
  this.UQ3__ = {"BA":-479,"BH":42,"BI":1913,"BK":-7198,"BM":3160,"BN":6427,"BO":14761,"OI":-827,"ON":-3212};
  this.UW1__ = {",":156,"":156,"":-463,"":-941,"":-127,"":-553,"":121,"":505,"":-201,"":-547,"":-123,"":-789,"":-185,"":-847,"":-466,"":-470,"":182,"":-292,"":208,"":169,"":-446,"":-137,"":-135,"":-402,"":-268,"":-912,"":871,"":-460,"":561,"":729,"":-411,"":-141,"":361,"":-408,"":-386,"":-718,"":-463,"":-135};
  this.UW2__ = {",":-829,"":-829,"":892,"":-645,"":3145,"":-538,"":505,"":134,"":-502,"":1454,"":-856,"":-412,"":1141,"":878,"":540,"":1529,"":-675,"":300,"":-1011,"":188,"":1837,"":-949,"":-291,"":-268,"":-981,"":1273,"":1063,"":-1764,"":130,"":-409,"":-1273,"":1261,"":600,"":-1263,"":-402,"":1639,"":-579,"":-694,"":571,"":-2516,"":2095,"":-587,"":306,"":568,"":831,"":-758,"":-2150,"":-302,"":-968,"":-861,"":492,"":-123,"":978,"":362,"":548,"":-3025,"":-1566,"":-3414,"":-422,"":-1769,"":-865,"":-483,"":-1519,"":760,"":1023,"":-2009,"":-813,"":-1060,"":1067,"":-1519,"":-1033,"":1522,"":-1355,"":-1682,"":-1815,"":-1462,"":-630,"":-1843,"":-1650,"":-931,"":-665,"":-2378,"":-180,"":-1740,"":752,"":529,"":-1584,"":-242,"":-1165,"":-763,"":810,"":509,"":-1353,"":838,"西":-744,"":-3874,"調":1010,"":1198,"":3041,"":1758,"":-1257,"":-645,"":3145,"":831,"":-587,"":306,"":568};
  this.UW3__ = {",":4889,"1":-800,"":-1723,"":4889,"":-2311,"":5827,"":2670,"":-3573,"":-2696,"":1006,"":2342,"":1983,"":-4864,"":-1163,"":3271,"":1004,"":388,"":401,"":-3552,"":-3116,"":-1058,"":-395,"":584,"":3685,"":-5228,"":842,"":-521,"":-1444,"":-1081,"":6167,"":2318,"":1691,"":-899,"":-2788,"":2745,"":4056,"":4555,"":-2171,"":-1798,"":1199,"":-5516,"":-4384,"":-120,"":1205,"":2323,"":-788,"":-202,"":727,"":649,"":5905,"":2773,"":-1207,"":6620,"":-518,"":551,"":1319,"":874,"":-1350,"":521,"":1109,"":1591,"":2201,"":278,"":-3794,"":-1619,"":-1759,"":-2087,"":3815,"":653,"":-758,"":-1193,"":974,"":2742,"":792,"":1889,"":-1368,"":811,"":4265,"":-361,"":-2439,"":4858,"":3593,"":1574,"":-3030,"":755,"":-1880,"":5807,"":3095,"":457,"":2475,"":1129,"":2286,"":4437,"":365,"":-949,"":-1872,"":1327,"":-1038,"":4646,"":-2309,"":-783,"":-1006,"":483,"":1233,"":3588,"":-241,"":3906,"":-837,"":4513,"":642,"":1389,"":1219,"":-241,"":2016,"":-1356,"":-423,"":-1008,"":1078,"":-513,"":-3102,"":1155,"":3197,"":-1804,"":2416,"":-1030,"":1605,"":1452,"":-2352,"":-3885,"":1905,"":-1291,"":1822,"":-488,"":-3973,"":-2013,"":-1479,"":3222,"":-1489,"":1764,"":2099,"":5792,"":-661,"":-1248,"":-951,"":-937,"":4125,"":360,"":3094,"":364,"":-805,"":5156,"":2438,"":484,"":2613,"":-1694,"":-1073,"":1868,"":-495,"":979,"":461,"":-3850,"":-273,"":914,"":1215,"":7313,"":-1835,"":792,"":6293,"":-1528,"":4231,"":401,"":-960,"":1201,"":7767,"":3066,"":3663,"":1384,"":-4229,"":1163,"":1255,"":6457,"":725,"":-2869,"":785,"":1044,"調":-562,"":-733,"":1777,"":1835,"":1375,"":-1504,"":-1136,"":-681,"":1026,"":4404,"":1200,"":2163,"":421,"":-1432,"":1302,"":-1282,"":2009,"":-1045,"":2066,"":1620,"":-800,"":2670,"":-3794,"":-1350,"":551,"グ":1319,"":874,"":521,"":1109,"":1591,"":2201,"":278};
  this.UW4__ = {",":3930,".":3508,"":-4841,"":3930,"":3508,"":4999,"":1895,"":3798,"":-5156,"":4752,"":-3435,"":-640,"":-2514,"":2405,"":530,"":6006,"":-4482,"":-3821,"":-3788,"":-4376,"":-4734,"":2255,"":1979,"":2864,"":-843,"":-2506,"":-731,"":1251,"":181,"":4091,"":5034,"":5408,"":-3654,"":-5882,"":-1659,"":3994,"":7410,"":4547,"":5433,"":6499,"":1853,"":1413,"":7396,"":8578,"":1940,"":4249,"":-4134,"":1345,"":6665,"":-744,"":1464,"":1051,"":-2082,"":-882,"":-5046,"":4169,"":-2666,"":2795,"":-1544,"":3351,"":-2922,"":-9726,"":-14896,"":-2613,"":-4570,"":-1783,"":13150,"":-2352,"":2145,"":1789,"":1287,"":-724,"":-403,"":-1635,"":-881,"":-541,"":-856,"":-3637,"":-4371,"":-11870,"":-2069,"":2210,"":782,"":-190,"":-1768,"":1036,"":544,"":950,"":-1286,"":530,"":4292,"":601,"":-2006,"":-1212,"":584,"":788,"":1347,"":1623,"":3879,"":-302,"":-740,"":-2715,"":776,"":4517,"":1013,"":1555,"":-1834,"":-681,"":-910,"":-851,"":1500,"":-619,"":-1200,"":866,"":-1410,"":-2094,"":-1413,"":1067,"":571,"":-4802,"":-1397,"":-1057,"":-809,"":1910,"":-1328,"":-1500,"":-2056,"":-2667,"":2771,"":374,"":-4556,"":456,"":553,"":916,"":-1566,"":856,"":787,"":2182,"":704,"":522,"":-856,"":1798,"":1829,"":845,"":-9066,"":-485,"":-442,"":-360,"":-1043,"":5388,"":-2716,"":-910,"":-939,"":-543,"":-735,"":672,"":-1267,"":-1286,"":-1101,"":-2900,"":1826,"":2586,"":922,"":-3485,"":2997,"":-867,"":-2112,"":788,"":2937,"":786,"":2171,"":1146,"":-1169,"":940,"":-994,"":749,"":2145,"":-730,"":-852,"":-792,"":792,"":-1184,"":-244,"":-1000,"":730,"":-1481,"":1158,"":-1433,"":-3370,"":929,"":-1291,"":2596,"":-4866,"":1192,"":-1100,"":-2213,"":357,"":-2344,"":-2297,"":-2604,"":-878,"":-1659,"":-792,"":-1984,"":1749,"":2120,"":1895,"":3798,"":-4371,"":-724,"":-11870,"":2145,"":1789,"":1287,"":-403,"":-1635,"":-881,"":-541,"":-856,"":-3637};
  this.UW5__ = {",":465,".":-299,"1":-514,"E2":-32768,"]":-2762,"":465,"":-299,"":363,"":1655,"":331,"":-503,"":1199,"":527,"":647,"":-421,"":1624,"":1971,"":312,"":-983,"":-1537,"":-1371,"":-852,"":-1186,"":1093,"":52,"":921,"":-18,"":-850,"":-127,"":1682,"":-787,"":-1224,"":-635,"":-578,"":1001,"":502,"":865,"":3350,"":854,"":-208,"":429,"":504,"":419,"":-1264,"":327,"":241,"":451,"":-343,"":-871,"":722,"":-1153,"":-654,"":3519,"":-901,"":848,"":2104,"":-1296,"":-548,"":1785,"":-1304,"":-2991,"":921,"":1763,"":872,"":-814,"":1618,"":-1682,"":218,"":-4353,"":932,"":1356,"":-1508,"":-1347,"":240,"":-3912,"":-3149,"":1319,"":-1052,"":-4003,"":-997,"":-278,"":-813,"":1955,"":-2233,"":663,"":-1073,"":1219,"":-1018,"":-368,"":786,"":1191,"":2368,"":-689,"":-514,"E2":-32768,"":363,"":241,"":451,"":-343};
  this.UW6__ = {",":227,".":808,"1":-270,"E1":306,"":227,"":808,"":-307,"":189,"":241,"":-73,"":-121,"":-200,"":1782,"":383,"":-428,"":573,"":-1014,"":101,"":-105,"":-253,"":-149,"":-417,"":-236,"":-206,"":187,"":-135,"":195,"":-673,"":-496,"":-277,"":201,"":-800,"":624,"":302,"":1792,"":-1212,"":798,"":-960,"":887,"":-695,"":535,"":-697,"":753,"":-507,"":974,"":-822,"":1811,"":463,"":1082,"":-270,"E1":306,"":-673,"":-496};
  
  return this;
}

TinySegmenter.prototype.ctype_ = function(str) {
  for (var i in this.chartype_) {
    if (str.match(this.chartype_[i][0])) {
      return this.chartype_[i][1];
    }
  }
  return "O";
}

TinySegmenter.prototype.ts_ = function(v) {
  if (v) { return v; }
  return 0;
}

TinySegmenter.prototype.segment = function(input) {
  if (input == null || input == undefined || input == "") {
    return [];
  }
  var result = [];
  var seg = ["B3","B2","B1"];
  var ctype = ["O","O","O"];
  var o = input.split("");
  for (i = 0; i < o.length; ++i) {
    seg.push(o[i]);
    ctype.push(this.ctype_(o[i]))
  }
  seg.push("E1");
  seg.push("E2");
  seg.push("E3");
  ctype.push("O");
  ctype.push("O");
  ctype.push("O");
  var word = seg[3];
  var p1 = "U";
  var p2 = "U";
  var p3 = "U";
  for (var i = 4; i < seg.length - 3; ++i) {
    var score = this.BIAS__;
    var w1 = seg[i-3];
    var w2 = seg[i-2];
    var w3 = seg[i-1];
    var w4 = seg[i];
    var w5 = seg[i+1];
    var w6 = seg[i+2];
    var c1 = ctype[i-3];
    var c2 = ctype[i-2];
    var c3 = ctype[i-1];
    var c4 = ctype[i];
    var c5 = ctype[i+1];
    var c6 = ctype[i+2];
    score += this.ts_(this.UP1__[p1]);
    score += this.ts_(this.UP2__[p2]);
    score += this.ts_(this.UP3__[p3]);
    score += this.ts_(this.BP1__[p1 + p2]);
    score += this.ts_(this.BP2__[p2 + p3]);
    score += this.ts_(this.UW1__[w1]);
    score += this.ts_(this.UW2__[w2]);
    score += this.ts_(this.UW3__[w3]);
    score += this.ts_(this.UW4__[w4]);
    score += this.ts_(this.UW5__[w5]);
    score += this.ts_(this.UW6__[w6]);
    score += this.ts_(this.BW1__[w2 + w3]);
    score += this.ts_(this.BW2__[w3 + w4]);
    score += this.ts_(this.BW3__[w4 + w5]);
    score += this.ts_(this.TW1__[w1 + w2 + w3]);
    score += this.ts_(this.TW2__[w2 + w3 + w4]);
    score += this.ts_(this.TW3__[w3 + w4 + w5]);
    score += this.ts_(this.TW4__[w4 + w5 + w6]);
    score += this.ts_(this.UC1__[c1]);
    score += this.ts_(this.UC2__[c2]);
    score += this.ts_(this.UC3__[c3]);
    score += this.ts_(this.UC4__[c4]);
    score += this.ts_(this.UC5__[c5]);
    score += this.ts_(this.UC6__[c6]);
    score += this.ts_(this.BC1__[c2 + c3]);
    score += this.ts_(this.BC2__[c3 + c4]);
    score += this.ts_(this.BC3__[c4 + c5]);
    score += this.ts_(this.TC1__[c1 + c2 + c3]);
    score += this.ts_(this.TC2__[c2 + c3 + c4]);
    score += this.ts_(this.TC3__[c3 + c4 + c5]);
    score += this.ts_(this.TC4__[c4 + c5 + c6]);
//  score += this.ts_(this.TC5__[c4 + c5 + c6]);    
    score += this.ts_(this.UQ1__[p1 + c1]);
    score += this.ts_(this.UQ2__[p2 + c2]);
    score += this.ts_(this.UQ3__[p3 + c3]);
    score += this.ts_(this.BQ1__[p2 + c2 + c3]);
    score += this.ts_(this.BQ2__[p2 + c3 + c4]);
    score += this.ts_(this.BQ3__[p3 + c2 + c3]);
    score += this.ts_(this.BQ4__[p3 + c3 + c4]);
    score += this.ts_(this.TQ1__[p2 + c1 + c2 + c3]);
    score += this.ts_(this.TQ2__[p2 + c2 + c3 + c4]);
    score += this.ts_(this.TQ3__[p3 + c1 + c2 + c3]);
    score += this.ts_(this.TQ4__[p3 + c2 + c3 + c4]);
    var p = "O";
    if (score > 0) {
      result.push(word);
      word = "";
      p = "B";
    }
    p1 = p2;
    p2 = p3;
    p3 = p;
    word += seg[i];
  }
  result.push(word);

  return result;
}

/* 以下TinySegmenterを呼び出すコード */
var segmenter = new TinySegmenter();
return segmenter.segment(x).map((value, index) => ({'index': index + 1, 'token': value}));
""";

WITH pat_table AS(
    SELECT application_number as id,
    STRING_AGG(DISTINCT texts.text) as text,
    COUNT(*) OVER() docs_n 
    FROM `patents-public-data.patents.publications`,UNNEST(abstract_localized) as texts
    WHERE filing_date > 20191201 AND SUBSTR(publication_number,0,2) = 'JP'
    GROUP BY family_id,application_number
),

words_by_app AS (
    SELECT id,
           text,
        ML.NGRAMS(
            SPLIT(
                (
                SELECT STRING_AGG(h.token,' ')
                FROM UNNEST(segmenter(text)) as h
            )," ")
        ) as words,
        #,[1,2]) as words,
        docs_n
        FROM pat_table    
),

words_tf AS (
  SELECT id, 
         words,
         ARRAY(
             SELECT AS STRUCT w word, 
                              COUNT(*)/ARRAY_LENGTH(words) tf
                              FROM UNNEST(words) a 
             JOIN (SELECT DISTINCT w FROM UNNEST(words) w) b 
             ON a=b.w 
             WHERE w NOT IN ('a','the', 'and', 'for', 'this', 'that', 'can', 'but',',') 
             GROUP BY word ORDER BY word
          ) tfs,
          ARRAY_LENGTH((words)) words_in_doc, 
          docs_n, 
          text
  FROM words_by_app
), 

docs_idf AS (
  SELECT *, LOG(docs_n/docs_with_word) idf
  FROM (
      SELECT id, 
           word,
           tf.tf,
           COUNTIF(word IN UNNEST(words)) OVER(PARTITION BY word) docs_with_word, 
           docs_n, 
           text
      FROM words_tf, UNNEST(tfs) tf
  )
)    


#SELECT *, tf*idf tfidf
#FROM docs_idf
#WHERE docs_with_word > 1
#ORDER BY tfidf DESC

SELECT id, 
       SUBSTR(ANY_VALUE(text),0,40) text,
       ARRAY_AGG(STRUCT(word, tf,idf,tf*idf AS tf_idf, docs_with_word) ORDER BY tf*idf DESC) tfidfs
FROM docs_idf
#WHERE docs_with_word > 5
WHERE tf*idf > 0.01
GROUP BY 1



かなり多くても30秒くらいで結果がかえってくるので嬉しい。
image.png

#5.追加2:twitterの文章入れてみる。
たまたま煙草に関するtweet文章がbigqueryに入ってたので、上記のを適用してみる。
共起NWやワードクラウドなどにかけると楽しそう。

image.png

  • tfidf順
    結構ネガティブな言葉が多い。
Row word tf idf tf_idf
1 無理 0.9846153846153847 4.539162616729265 4.469329345702661
2 あータバコ 0.5 7.868115091518091 3.9340575457590456
3 たばこすい 0.5 7.781103714528462 3.890551857264231
4 だめ 0.6666666666666666 5.631281376086826 3.7541875840578838
5 やめろよ 0.5 7.3756386064202974 3.6878193032101487
6 泣く 0.5 7.270278090762471 3.6351390453812353
7 せえ 0.5 7.130516148387312 3.565258074193656
8 たばこく 0.5 7.047134539448261 3.5235672697241305
9 煙草く 0.5 6.970173498312133 3.4850867491560664
10 たばこやめ 0.5 6.898714534329988 3.449357267164994
11 かぁ 0.5 6.769502802849982 3.384751401424991
12 たばこ吸い 0.5 6.2957184507643404 3.1478592253821702
13 おいしい 0.5 6.240658673581312 3.120329336790656
14 たばこ吸う 0.5 5.883983729642581 2.9419918648212904
15 無理 0.6351351351351351 4.539162616729265 2.8829816619766953
16 0.42857142857142855 6.710662302827048 2.8759981297830204
17 タバコく 0.5 5.602571270204395 2.8012856351021975
18 0.4 6.970173498312133 2.7880693993248533
19 0.5714285714285714 4.713050779394845 2.693171873939911
20 なよ 0.5 5.324367941707158 2.662183970853579
21 起き 0.5 5.303165734056555 2.6515828670282775
22 なう 0.5 5.2553750702202064 2.6276875351101032
23 あータバコ 0.3333333333333333 7.868115091518091 2.6227050305060304
24 うめえ 0.3333333333333333 7.868115091518091 2.6227050305060304
25 やめるわ 0.3333333333333333 7.868115091518091 2.6227050305060304
26 たばこすい 0.3333333333333333 7.781103714528462 2.5937012381761537
27 タバコマン 0.3333333333333333 7.781103714528462 2.5937012381761537
28 パーカー 0.3333333333333333 7.781103714528462 2.5937012381761537
29 多すぎ 0.3333333333333333 7.701061006854926 2.5670203356183086
30 処女 0.3333333333333333 7.626953034701203 2.5423176782337342
31 たいね 0.3333333333333333 7.49342164207668 2.49780721402556
32 すってる 0.3333333333333333 7.432797020260246 2.4775990067534153
33 うめぇ 0.3333333333333333 7.3756386064202974 2.458546202140099
34 クッソ 0.3333333333333333 7.3756386064202974 2.458546202140099
35 すって 0.3333333333333333 7.321571385150022 2.440523795050007
36 離脱 0.3333333333333333 7.321571385150022 2.440523795050007
37 こよ 0.3333333333333333 7.270278090762471 2.4234260302541566
38 プカプカ 0.3333333333333333 7.221487926593039 2.4071626421976795
39 wwww 0.3333333333333333 7.174967910958146 2.391655970319382
40 せえ 0.3333333333333333 7.130516148387312 2.376838716129104
41 待機 0.3333333333333333 7.130516148387312 2.376838716129104
42 0.5 4.713050779394845 2.3565253896974223
43 たばこく 0.3333333333333333 7.047134539448261 2.3490448464827534
44 ! 0.5 4.64923926664989 2.324619633324945
45 たばこやめ 0.3333333333333333 6.898714534329988 2.2995715114433293
46 しね 0.3333333333333333 6.864812982654307 2.2882709942181023
47 まずい 0.3333333333333333 6.864812982654307 2.2882709942181023
48 無理 0.5 4.539162616729265 2.2695813083646326
49 美味しい 0.4 5.66084017832837 2.264336071331348
50 9 0.6071428571428571 3.7192249535559383 2.2581008646589624
3
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?