search
LoginSignup
22

More than 5 years have passed since last update.

posted at

updated at

[Survey] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

どういった話かというと,GoogleNetやVGG16を使えば物体認識の性能は良いんだろうけど,携帯とかはメモリも計算速度もあんまりないので使いづらい.
こういう問題の解決方法の一つとして計算時間やメモリと性能のトレードオフを取れるようなネットワークMobileNet1をGoogleが作ったらしいので調べてみたという話です.

MobileNetとは

特徴

  • ネットワークのサイズが小さい
  • 学習時間が短い
  • そこそこ性能が良い
  • 入力データの画像サイズが32以上なら大丈夫
  • 計算量と性能のトレードオフとなるハイパーパラメータ$\alpha$が用意されている.
  • Keras2で実装済み
  • Kerasでは画像サイズが224か192, 160, 128で$\alpha$が1.0か0.75, 0.5, 0.25の計16パターンのImageNetでの学習済みモデルを用意

仕組み

  • 従来の畳込みフィルターの代わりにDepthwise畳み込みフィルターと1x1の畳み込みフィルターを組み合わせることで計算量を削減.

image.png

  • 従来はカーネルサイズxカーネルサイズxチャネル数(入力)で畳み込みフィルターをチャネル数(出力)分用意するけど,畳み込みを行う.

  • MobileNetでは,カーネルサイズxカーネルサイズx1の畳み込みフィルターをチャネル数(入力)分用意して畳み込みを行う.

  • つぎに1x1xチャネル数(入力)の畳み込みフィルターをチャネル数(出力)分用意して畳み込む.

  • これで,従来の畳込みと似たような処理を実現.

image.png
MobileNets1より引用

ネットワーク構造

CIFAR10で$\alpha=0.5$とした場合の構造.

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 32, 32, 3)         0         
_________________________________________________________________
conv1 (Conv2D)               (None, 16, 16, 16)        432       
_________________________________________________________________
conv1_bn (BatchNormalization (None, 16, 16, 16)        64        
_________________________________________________________________
conv1_relu (Activation)      (None, 16, 16, 16)        0         
_________________________________________________________________
conv_dw_1 (DepthwiseConv2D)  (None, 16, 16, 16)        144       
_________________________________________________________________
conv_dw_1_bn (BatchNormaliza (None, 16, 16, 16)        64        
_________________________________________________________________
conv_dw_1_relu (Activation)  (None, 16, 16, 16)        0         
_________________________________________________________________
conv_pw_1 (Conv2D)           (None, 16, 16, 32)        512       
_________________________________________________________________
conv_pw_1_bn (BatchNormaliza (None, 16, 16, 32)        128       
_________________________________________________________________
conv_pw_1_relu (Activation)  (None, 16, 16, 32)        0         
_________________________________________________________________
conv_dw_2 (DepthwiseConv2D)  (None, 8, 8, 32)          288       
_________________________________________________________________
conv_dw_2_bn (BatchNormaliza (None, 8, 8, 32)          128       
_________________________________________________________________
conv_dw_2_relu (Activation)  (None, 8, 8, 32)          0         
_________________________________________________________________
conv_pw_2 (Conv2D)           (None, 8, 8, 64)          2048      
_________________________________________________________________
conv_pw_2_bn (BatchNormaliza (None, 8, 8, 64)          256       
_________________________________________________________________
conv_pw_2_relu (Activation)  (None, 8, 8, 64)          0         
_________________________________________________________________
...
_________________________________________________________________
conv_dw_13 (DepthwiseConv2D) (None, 1, 1, 512)         4608      
_________________________________________________________________
conv_dw_13_bn (BatchNormaliz (None, 1, 1, 512)         2048      
_________________________________________________________________
conv_dw_13_relu (Activation) (None, 1, 1, 512)         0         
_________________________________________________________________
conv_pw_13 (Conv2D)          (None, 1, 1, 512)         262144    
_________________________________________________________________
conv_pw_13_bn (BatchNormaliz (None, 1, 1, 512)         2048      
_________________________________________________________________
conv_pw_13_relu (Activation) (None, 1, 1, 512)         0         
_________________________________________________________________
global_average_pooling2d_1 ( (None, 512)               0         
_________________________________________________________________
reshape_1 (Reshape)          (None, 1, 1, 512)         0         
_________________________________________________________________
dropout (Dropout)            (None, 1, 1, 512)         0         
_________________________________________________________________
conv_preds (Conv2D)          (None, 1, 1, 10)          5130      
_________________________________________________________________
act_softmax (Activation)     (None, 1, 1, 10)          0         
_________________________________________________________________
reshape_2 (Reshape)          (None, 10)                0         
=================================================================
Total params: 834,666
Trainable params: 823,722
Non-trainable params: 10,944
_________________________________________________________________

検証環境

  • Keras 2.0.6

サンプルコード

  • $\alpha=1.0$でval_acc=87%
  • $\alpha=0.5$でval_acc=81% といったところでした.
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.applications import MobileNet

batch_size = 32
classes = 10
epochs = 200

(X_train, y_train), (X_test, y_test) = cifar10.load_data()
Y_train = keras.utils.to_categorical(y_train, classes)
Y_test = keras.utils.to_categorical(y_test, classes)

img_input = keras.layers.Input(shape=(32, 32, 3))
model = MobileNet(input_tensor=img_input, alpha=0.5, weights=None, classes=classes)
model.compile(loss='categorical_crossentropy', optimizer="nadam", metrics=['accuracy'])
X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255

datagen = ImageDataGenerator(
    featurewise_center=False,  # set input mean to 0 over the dataset
    samplewise_center=False,  # set each sample mean to 0
    featurewise_std_normalization=False,  # divide inputs by std of the dataset
    samplewise_std_normalization=False,  # divide each input by its std
    zca_whitening=False,  # apply ZCA whitening
    rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)
    width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)
    height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)
    horizontal_flip=True,  # randomly flip images
    vertical_flip=False)  # randomly flip images
datagen.fit(X_train)
model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size),
                    steps_per_epoch=X_train.shape[0] // batch_size,
                    epochs=epochs,
                    validation_data=(X_test, Y_test))

注意事項

  • 現状だとBackendをTensorFlowにする必要あり.
  • 引数にinput_shapeもあるがコードを見る限り,224か192, 160, 128じゃないと動かないので,おとなしくinput_tensorを使ったほうが良さそう.

ImageNetでの実験結果

----------------------------------------------------------------------------
Width Multiplier (alpha) | ImageNet Acc |  Multiply-Adds (M) |  Params (M)
----------------------------------------------------------------------------
|   1.0 MobileNet-224    |    70.6 %     |        529        |     4.2     |
|   0.75 MobileNet-224   |    68.4 %     |        325        |     2.6     |
|   0.50 MobileNet-224   |    63.7 %     |        149        |     1.3     |
|   0.25 MobileNet-224   |    50.6 %     |        41         |     0.5     |
----------------------------------------------------------------------------
  • $\alpha$を小さくすることで,格段にパラメータを落とすことが可能.
------------------------------------------------------------------------
      Resolution      | ImageNet Acc | Multiply-Adds (M) | Params (M)
------------------------------------------------------------------------
|  1.0 MobileNet-224  |    70.6 %    |        529        |     4.2     |
|  1.0 MobileNet-192  |    69.1 %    |        529        |     4.2     |
|  1.0 MobileNet-160  |    67.2 %    |        529        |     4.2     |
|  1.0 MobileNet-128  |    64.4 %    |        529        |     4.2     |
------------------------------------------------------------------------
  • 画像サイズが変わってもパラメータ数は変わらない.

まとめ

  • MobileNetは性能と計算量のトレードオフを取れるネットワーク.

References

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
What you can do with signing up
22